
McTT: A Verified Kernel for a Proof Assistant
JUNYOUNG JANG,McGill University, Canada
ANTOINE GAULIN,McGill University, Canada
JASON Z. S. HU

∗
, Amazon, USA

BRIGITTE PIENTKA,McGill University, Canada

Proof assistants based on type theories have been widely successful from verifying safety-critical software to
establishing a new standard of rigour by formalizing mathematics. But these proof assistants and even their
type-checking kernels are also complex pieces of software, and software invariably has bugs, so why should
we trust such proof assistants?

In this paper, we describe theMcTT (Mechanized Type Theory) infrastructure to build a verified implemen-
tation of a kernel for a core Martin-Löf type theory (MLTT).McTT is implemented in Rocq and consists of
two main components: In the theoretical component, we specify the type theory and prove theorems such as
normalization, consistency and injectivity of type constructors of MLTT using an untyped domain model. In
the algorithmic component, we relate the declarative specification of typing and the model of normalization in
the theoretical component with a functional implementation within Rocq. From this algorithmic component,
we extract an OCaml implementation and couple it with a front-end parser for execution. This extracted
OCaml code is comparable to what a skilled human programmer would have written and we have successfully
used it to type-check a series of small-scale examples.

McTT provides a fully verified kernel for a coreMLTT with a full cumulative universe hierarchy. Every
step in the compilation pipeline is verified except for the lexer and pretty-printer. As a result,McTT serves
both as a framework to explore the meta-theory of advanced type theories and to investigate optimizations of
and extensions to the type-checking kernel.

CCS Concepts: • Theory of computation → Type theory; Logic and verification; Program verification;
Denotational semantics; Constructive mathematics.

Additional Key Words and Phrases: Type Theory, Verified Implementation, Martin-Löf Type Theory, Rocq,
Normalization-by-Evaluation

ACM Reference Format:
Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka. 2025.McTT: A Verified Kernel for a Proof
Assistant. Proc. ACM Program. Lang. 9, ICFP, Article 242 (August 2025), 32 pages. https://doi.org/10.1145/3747511

1 Introduction
Over the past decades, proof assistants based on type theories have been widely used to develop
safety-critical software (e.g. CompCert [Leroy 2009a,b]). They have also been used to formalize a
significant portion of mathematics with the goal of establishing a new standard of rigour [Avigad
and Harrison 2014] in this field. For example, The Mathlib Community [2020] in the Lean proof
assistant has roughly half a million lines of code and contains formalizations of many non-trivial
mathematics, from number theory to perfectoid spaces [Buzzard et al. 2020]. These endeavors are
∗Jason Z. S. Hu made his contribution during his Ph.D. study at McGill University, Canada.

Authors’ Contact Information: Junyoung Jang, junyoung.jang@mail.mcgill.ca, School of Computer Science, McGill Uni-
versity, Montréal, Québec, Canada; Antoine Gaulin, antoine.gaulin@mail.mcgill.ca, School of Computer Science, McGill
University, Montréal, Québec, Canada; Jason Z. S. Hu, zhonhu@amazon.com, Amazon, Seattle, Washington, USA; Brigitte
Pientka, bpientka@cs.mcgill.ca, School of Computer Science, McGill University, Montréal, Québec, Canada.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/8-ART242
https://doi.org/10.1145/3747511

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://orcid.org/0000-0001-6338-2155
https://orcid.org/0009-0001-4640-4102
https://orcid.org/0000-0001-6710-6262
https://orcid.org/0000-0002-2549-4276
https://doi.org/10.1145/3747511
https://orcid.org/0000-0001-6338-2155
https://orcid.org/0009-0001-4640-4102
https://orcid.org/0000-0001-6710-6262
https://orcid.org/0000-0002-2549-4276
https://orcid.org/0000-0002-2549-4276
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3747511

242:2 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

testimony to the success of proof assistants in practice. Nevertheless, proof assistants are complex
and unavoidably have bugs, so why should we trust a proof assistant and its certification of a proof?
To minimize such concerns, proof assistants are typically designed to rely on a small, trusted

kernel to verify a proof. This design approach narrows our focus to this trusted core, which
is supposed to be close to its well-understood, underlying theory, e.g., Calculus of Inductive
Construction (CIC) [Coquand and Paulin 1988; Paulin-Mohring 1993] or Martin-Löf type theory
(MLTT) [Martin-Löf 1975]. However, in practice, kernels of modern proof assistants are no longer
small, spanning over tens of thousands of lines of code. Rocq’s kernel spans approximately 41K lines
of OCaml code, while Lean’s kernel consists of approximately 8K lines of C++ code. Furthermore,
the kernel might significantly deviate from and extend the core type theories in non-trivial ways,
both to experiment with new features and to support more practical features such as meta-variables
for partial proofs or asynchronous type-checking. As a result, all type-theoretic proof assistants
have encountered major bugs: In Rocq, on average, one critical bug has been found every year.
Lean has experienced both soundness bugs1 and segmentation fault.2
In this work, we investigate a long-standing question: How can we build a verified type-checker

for type-theoretic proof assistants? – Two fundamental aspects need to be answered:

1) Check the Theory. The type theory underlying a proof assistant is itself a full-scale, complex
system. Hence, verifying the type-checking kernel should start with formalizing the type theory
itself, together with its meta-theory. Such an endeavour not only increases the trust in the type-
theoretic foundation itself, but also such puts great pressure on many aspects of a proof assistant –
from stretching the boundaries of the theoretical foundations, to understanding the good practices
of developing such meta-theoretic results, and testing its implementation [Chapman 2008].

The most frequently adapted proof technique to prove normalization ofMLTT is Tait’s reducibil-
ity candidates [Tait 1967] (see, for example, [Abel et al. 2023, 2018; Adjedj et al. 2024; Pujet and
Tabareau 2022, 2023]). These mechanizations often require significant technical set-up and time
investment. Moreover, this style of normalization only gives us 𝛽 normal forms.
An alternative method is normalization-by-evaluation (NbE), where we use a mathematical

model that includes a notion of computation. Such NbE proofs have the advantage of directly giving
a normalization algorithm [Berger and Schwichtenberg 1991] and are often much more compact.
For example, Hu et al. [2023] mechanize an NbE algorithm for MLTT extended with a necessity
modality based on Abel [2013]’s untyped domain model in just 11K lines of Agda code. In Rocq,
Wieczorek and Biernacki [2018] lead the effort of mechanizing a variant of MLTT using NbE.

However, there is a subtle issue that arises in these mechanizations of type theories: existing
proofs in Agda [Abel et al. 2018; Hu et al. 2023; Pujet and Tabareau 2023] critically rely on induction-
recursion [Dybjer and Setzer 2003] to formalize the semantics. However, Rocq does not support
induction-recursion. For this reason, prior Rocq mechanizations ofMLTT (e.g. [Adjedj et al. 2024;
Wieczorek and Biernacki 2018]) restrict MLTT to a finite number of universes. This has been a
stumbling block in scaling mechanizations of MLTT in Rocq. This is unfortunate, since Rocq has
more support for automation and better code extraction than Agda.

In addition, none of the previous mechanizations of normalization proofs for MLTT were devel-
oped with an eye towards extracting a practical type-checker and normalizer from its development.
However, to establish a correspondence between a type-checker and its underlying theory, the
declarative specification of the type theory must be developed hand in hand with an algorithmic
one that forms the core of a usable type-checker.

1https://github.com/leanprover/lean4/issues/1433 and https://github.com/leanprover/lean4/issues/2125
2https://github.com/leanprover/lean4/issues/5188

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://github.com/leanprover/lean4/issues/1433
https://github.com/leanprover/lean4/issues/2125
https://github.com/leanprover/lean4/issues/5188

McTT: A Verified Kernel for a Proof Assistant 242:3

2) Check the Checker. A verified type-checker for a (core) type theory provides the highest level
of assurance and eliminates errors. The first notable verified kernel of a significant fragment of CIC
goes back to Barras and Werner [1997]. Boespflug and Burel [2012] and Assaf et al. [2016] propose
to translate Rocq proofs into the logical framework 𝜆Π-Modulo, and then use that framework to
certify the Rocq proofs. However, since the type-checker for 𝜆Π-Modulo is smaller than that for
Rocq, we cannot establish meta-theoretic results about encodings within the framework.
An alternative approach is pursued in the MetaRocq project, which aims to formalize Rocq in

Rocq and provide tools for manipulating Rocq terms and developing certified plugins [Sozeau et al.
2020a,b, 2019]. The main idea is to reflect the representation of Rocq objects in the implementation
of Rocq into Rocq itself and to provemeta-theoretic properties such as subject reduction, canonicity,
or weak call-by-value standardization. However, while there is a normalization proof for the CIC,
there is no normalization proof for the system that is actually modelled in Rocq.

While one might argue that we cannot prove and hence mechanize the consistency of the entire
Rocq’s type theory in Rocq, one could still hope to mechanize a significant fragment of it.

Contribution. In this paper, we developMcTT (Mechanized Type Theory), a verified type-checker
of MLTT in Rocq. Channeling the spirit of the CompCert project [Leroy 2009a,b], we start by
formalizing the type theory together with its meta-theory (theoretical component). To extract a
usable type-checker, we also implement a type-checker for our type theory in Rocq (algorithmic
component) and prove it correct with respect to the specification in the theoretical component.

In the theoretical component, we check the theory. In particular, we formalize a version of MLTT
that has natural numbers, Π types, a full cumulative universe hierarchy, and universe subtyping.
This formalization includes the mechanized proof of logical consistency using normalization-by-
evaluation (NbE), closely following the proof of Abel [2013]. Compared to a similar previous
mechanization effort [Wieczorek and Biernacki 2018] in Rocq, McTT formalizes a richer type
theory. A key obstacle when mechanizing the meta-theory of MLTT with a full universe hierarchy
is that its semantics is prevalently defined by using induction-recursion. We provide a principled
way to formalize such definitions in Rocq by exploiting impredicativity. As such, the theoretical
component of McTT not only increases our confidence in the coreMLTT, but provides insights
and derives good practices on how to formalize the meta-theory of type theories in proof assistants
such as Rocq. Moreover, we develop the meta-theory of MLTT hand-in-hand with its algorithmic,
functional implementation. This leads us to incorporate universe subtyping into MLTT. This is an
extension which is usually supported in CIC, but not traditionally in MLTT. Universe subtyping is
necessary to establish soundness and completeness of the algorithmic type checker.
In the algorithmic component of McTT, we check the checker. Specifically, we relate the model

of normalization in the theoretical component and the actual implementations of a type checker
and normalization engine, in order to prove that they are equivalent. This allows us to extract a
fully verified type-checker to OCaml. The extracted code does not contain any proof witnesses
and is comparable to what a skilled human programmer would have written. Furthermore, we
connect the extracted type-checker with a front-end parser, so that we can read and type-check
MLTT programs from source files using our certified type-checking kernel. In fact, we have used
the McTT’s extracted type-checker to type-check several small-scale examples to test that it works
as intended. At this point, the only unverified component in the compiler pipeline is the lexer, as
ocamllex does not support extraction to Rocq.
In summary, McTT provides a framework for building verified kernels for dependent type

theories and bridges the gap between the underlying theory and its implementation. Concretely, it
makes the following contributions:

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

242:4 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

• Check the theory. We present a mechanized semantics for a core MLTT with natural num-
bers, Π types, a full cumulative universe hierarchy, and covariant universe subtyping. In
particular, we use an impredicative encoding with subtyping in Rocq’s Prop universe to
avoid induction-recursion. Using this encoding, we prove the completeness and soundness
of the NbE algorithm using an untyped domain model [Abel 2013] and conclude the logical
consistency of the type theory as a corollary.

• Check the checker. We implement an algorithmic type checker for our variant of MLTT in
Rocq and prove that it is correct with respect to the theoretical specification. In particular,
we prove soundness and completeness: an MLTT program is well-formed if and only if it is
accepted by the type-checker.

• Extract a verified type-checker. From the algorithmic implementation of the type-checker,
we extract a readable OCaml implementation which we have used to type-check several
small-scale examples. We further embed this verified type-checker within our front-to-back
pipeline where users are able to write a program in MLTT in a source file and then use our
verified type-checker to check it.

TheMcTT infrastructure provides a platform for formalizing future extensions ofMLTT and
derive verified proof checkers. Furthermore,McTT allows us to experiment with new features even
before we extend the theoretical and algorithmic components by directly modifying the extracted
core type-checker written in OCaml.

The source code and a homepage are available on Github.

2 The McTT Infrastructure
In this section, we give a high-level overview of McTT. A pictorial summary can be found in Fig. 1.
The heart of the infrastructure is the theoretical and algorithmic component implemented in Rocq.

2.1 Theoretical Component in Rocq
As in prior work by Abel et al. [2018], we focus on a variant ofMLTT that includes natural numbers
with a primitive recursor and Π types. We model variables using de Bruijn indices and support
explicit substitutions. This facilitates reasoning and is common in normalization proofs. While this
core fragment of MLTT is well understood, we also push our understanding of how to mechanize
the meta-theory of MLTT in Rocq. In particular, we make the following three contributions:

Impredicativity Instead of Induction-Recursion. Modeling a full cumulative universe hierarchy
is intuitive: each universe is indexed by a natural number, and lower universes are contained in
higher universes. However, mechanizing its meta-theory is non-trivial. Previous mechanizations
of MLTT in Agda [Abel et al. 2018; Hu et al. 2023; Pujet and Tabareau 2023] rely on induction-
recursion to formalize the semantics, but Rocq does not support induction-recursion. One common
workaround to this issue, the Bove-Capretta method [Bove 2009; Bove and Capretta 2005], cannot
be not directly applied to full universe hierarchy. Prior Rocq mechanizations ofMLTT (e.g. [Adjedj
et al. 2024; Wieczorek and Biernacki 2018]) in Rocq restrict MLTT to at most two universes to
avoid this issue. A key contribution of our mechanization is an alternative, principled way of
modeling the semantics using impredicativity instead of induction-recursion in Rocq. We combine
the inductively defined semantics of types and the recursively defined semantics of terms into a
single inductive definition of a weak partial functional relation whose output is unique up to logical
equivalence. This relation itself captures the semantics of types and returns the semantics of terms.
This encoding not only provides an alternative way to model semantics without induction-recursion,
but also takes advantage of the fact that the output of the functional relation is unique up to logical
equivalence to simplify proofs of theorems that are more complex with induction-recursion. This

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/

McTT: A Verified Kernel for a Proof Assistant 242:5

OCaml

Frontend

Lexer

Pretty printer

Backend

Type checker

Normalizer

Rocq

Frontend

Parser Elaborator

Backend

Algorithmic Component

Typing Subtyping Equivalence Normalizer

Theoretical Component: Normalization by Evaluation

Syntactic
Typing

Subtyping

Equivalence

Semantics

Untyped domain

PER model

Evaluation

Readback

Extraction

Source
code

Stream of
tokens

Concrete
syntax tree

Abstract
syntax tree

Yes or
no

Legend
Compiler pipeline

Mapping

Sound and complete

Fig. 1. Structure of McTT

equivalence-based definition further avoids postulating propositional extensionality and reduces
the use of functional extensionality (cf. Sec. 4.1).

Universe Subtyping: Pursuing a Complete Algorithmic Type-checking. Universe subtyping is usually
supported in CIC, but not in much prior work in MLTT [Abel 2013; Coquand 2018; Hu et al. 2023].
Instead, MLTT simply states: if a type is well-formed at universe level 𝑙 , then it is also well-formed
at universe level 1 + 𝑙 . However, we need a more general notion of universe subtyping to establish
the soundness and completeness of algorithmic type-checking w.r.t. the declarative typing. For
example, suppose that we have the following expression:

(𝜆(𝑥 :Type@1).𝜆(𝑦:Type@0).𝑦) Type@0 : (Π(𝑦:Type@0).Type@1)

We first introduce a function with two arguments, where 𝑥 is not used, and apply the function
to Type@0. Declaratively, this expression has type Π(𝑦:Type@0).Type@1, because we apply cu-
mulativity to the variable 𝑦 of Type@0. On the other hand, in a type-checking algorithm, we first
infer the type of the function and get its type Π(𝑥 :Type@1).Π(𝑦:Type@0).Type@0. The function
application leads to the overall type Π(𝑦:Type@0).Type@0 for the expression, but it is not related to
the desired type (Π(𝑦:Type@0).Type@1). In general, it is challenging for algorithmic type-checking
to retrospectively insert cumulativity properly. Using universe subtyping, we can naturally resolve
this issue: Π(𝑦:Type@0).Type@0 is a subtype of Π(𝑦:Type@0).Type@1. Thus, the program has
the latter type.

For this reason, we include a covariant subtyping relation between universes that propagates only
under the outputs of Π types. This extension is sufficient to prove the correctness of algorithmic
typing, while keeping the theoretical development manageable.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

242:6 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

This example illustrates the value of developing the theory hand in hand with algorithmic
implementations of that theory. Algorithmic and implementation concerns often lead to (ad-hoc)
changes in the underlying theory, however those changes are not always accounted for in the
theoretical development. This can then potentially give rise to subtle soundness bugs that are hard
to detect. Developing the algorithmic implementation in a tight loop with the theory within a proof
assistant provides a strong net that ensures that the theory is in sync with its implementation.

ACompact Mechanization of NbE. Amainmeta-theoretical property that we prove aboutMLTT is
normalization based on NbE. NbE offers important advantages compared to the common reducibility
candidate approach. In particular, it results in a compact mechanization. For example, our theoretical
component of McTT in Rocq is only 12K LoC. This is significantly smaller than the mechanization
using reducibility candidates without a full universe hierarchy and without universe subtyping (26k
LoC in Rocq) [Adjedj et al. 2024]). Furthermore, NbE immediately provides an evaluation algorithm
for (well-typed) programs of the language. In Rocq, we can also extract a usable implementation of
a type-checker in OCaml. Last, NbE returns 𝛽𝜂 normal forms, which can be compared syntactically.
This is in contrast to reduction/rewrite rules in the approaches based on reducibility candidates
which only give 𝛽 normal forms and still require a separate comparison algorithm to handle 𝜂
expansions [Abel et al. 2018].

2.2 Algorithmic Component in Rocq
In the algorithmic component, we implement a type-checking algorithm. This component consists
of three algorithms: a functional implementation of the NbE algorithm, a subtyping algorithm, and
a type-checking algorithm. These algorithms are eventually extracted into OCaml and form the
kernel of theMcTT executable.

We adapt a syntax-directed type-checking algorithm to control the use of subtyping. An object
has type𝐴 if we are able to infer a type 𝐵 from it and 𝐵 is a subtype of𝐴. We hence replace checking
whether the type 𝐵 is convertible to𝐴 with checking the subtyping relation. To check the subtyping
relation for the types 𝐴 and 𝐵, we first normalize the types 𝐴 and 𝐵 using the NbE algorithm. We
then check whether the universe levels in the normalized 𝐴 are always smaller than the levels in
the covariant positions of normalized 𝐵.

We prove the correctness of all the implementations in the algorithmic components with respect
to the declarative formulations in the theoretical components. An important theorem of McTT is
that anMLTT program is well-formed if and only if it is accepted by the type-checker, hence by
the extracted proof checker. As a consequence, we can have full confidence in the extracted proof
checker.

2.3 Integration into the Compilation Pipeline
Our theoretical and algorithmic components are connected to a front-end that generates an abstract
syntax tree (AST) from a given source file. The OCaml driver of McTT begins with a lexer generated
by ocamllex, which produces a stream of tokens from a source file. Since ocamllex does not support
extraction to Rocq, the lexer remains an unverified component in the pipeline. The stream of
tokens is then forwarded to the parser, which is Rocq code generated by parser generator Menhir.
The parser converts the tokens into a concrete syntax tree (CST), if the source file is grammatically
well-formed. The parser is proven correct and complete as Menhir also generates the corresponding
theorems. Then, the elaborator converts the CST into an abstract syntax tree (AST). At the current
stage, the elaborator only converts variables represented in strings into de Bruijn indices. In
the future, the elaborator can perform other extensions, such as module name expansions. The

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

McTT: A Verified Kernel for a Proof Assistant 242:7

soundness property of the elaborator is captured by a well-scopedness theorem, which says that if
all open variables in strings of a CST are well-scoped, then this CST must elaborate to an AST.
The AST is used by both the theoretical and algorithmic components; in particular, it is passed

to the extracted type-checker. Using the same AST across all components ensures that every step
in the pipeline, including normalization, subtyping, and type-checking, is correct by construction,
supported by a sequence of theorems. Finally, a normal form of the input program is pretty-printed.

McTT is designed to minimize the use of unverified components. Currently, unverified compo-
nents involve the boundaries between the formal and the informal, e.g. the lexer and the pretty-
printer. All other components are entirely implemented in Rocq, where we establish a series of
soundness and completeness theorems about the parser, the elaborator, and more importantly the
type-checker. The infrastructure provided byMcTT is a significant stepping stone towards building
verified proof checkers for type-theoretic proof assistants.

3 A Core Martin-Löf Type Theory with Universe Hierarchy and Universe Subtyping
In this section, we define the syntax of MLTT, its semantics, and finally the NbE procedure.

3.1 Syntactic Definitions of MLTT
3.1.1 Syntax ofMLTT. The syntax ofMLTT is similar to that presented by Abel [2013]. It includes
natural numbers with a primitive recursor, Π types, closures using explicit substitutions, and a full
universe hierarchy.

Variables 𝑥,𝑦, 𝑟

De Bruijn indices N ∋ 𝑑

Universe levels N ∋ 𝑖, 𝑗

Contexts Ctx ∋ Γ,Δ ::= · | Γ, 𝑥 : 𝐴
Expressions Exp ∋ 𝐴, 𝐵,𝐶,𝑀, 𝑁 ::= 𝑥𝑑 | Nat | Type@𝑖 | Π(𝑥 :𝐴).𝐵

| zero | succ𝑀 | rec𝑥.𝐴 𝑀zero (𝑦, 𝑟 .𝑀succ) 𝑁
| 𝜆(𝑥 :𝐴).𝑀 | 𝑀 𝑁 | 𝑀 [𝜎]

Substitutions Subst ∋ 𝜎, 𝛿 ::= id | wk | 𝜎 ◦ 𝛿 | 𝜎,𝑀/𝑥0

In the Rocq mechanization, we use de Bruijn indices to represent names. However, for clarity of
presentation, we use abstract names in the text. When we need to refer to de Bruijn indices, we
put a subscript to the variable, e.g. 𝑥𝑑 . The same name is used to denote the same variable with
potentially different de Bruijn indices to help readers distinguish variables more easily. We use𝑀
and 𝑁 for expressions that are terms and 𝐴, 𝐵, and 𝐶 for those that are types.

The syntax for natural numbers (Nat) includes zero and succ𝑀 , the successor of𝑀 . The recursion
principle rec𝑥.𝐴 𝑀zero (𝑦, 𝑟 .𝑀succ) 𝑁 takes four parameters. First, 𝑁 is the natural number being
recursed on. This number is called scrutinee. The base case is handled by𝑀zero, when 𝑁 is equivalent
to zero. If 𝑁 is succ 𝑁 ′, then the recursion is continued by 𝑦, 𝑟 .𝑀succ. In this case, the open variable
𝑦 is the predecessor, i.e. 𝑁 ′ in this case, and 𝑟 denotes the recursive call on 𝑁 ′. The type 𝑥 .𝐴

represents the motive, the return type of the recursion. The overall type of the recursion is 𝐴[𝑁 /𝑥],
i.e. 𝐴 with 𝑥 substituted by 𝑁 .

Next, we have standard dependent function spaces, Π(𝑥 :𝐴).𝐵. The introduction form 𝜆(𝑥 :𝐴).𝑀
binds a new variable 𝑥 (or 𝑥0 in de Bruijn indices) of type 𝐴 that can occur in the body 𝑀 of the
function, while the elimination form 𝑀 𝑁 applies the function 𝑀 to the argument 𝑁 . Since we
have dependent types, the result type from function application is 𝐵 [𝑁 /𝑥].

Explicit substitutions come into play via closures, denoted𝑀 [𝜎], which represent the application
of the substitution 𝜎 to the expression 𝑀 . We define substitutions following standard practice

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.Syntax.html#ctx
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.Syntax.html#exp
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.Syntax.html#sub

242:8 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

Γ ⊢ 𝑡 : 𝑇 Term 𝑡 has type 𝑇 in Γ.

Γ ⊢ 𝐴 : Type@𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type@𝑖

Γ ⊢ Π(𝑥 :𝐴).𝐵 : Type@𝑖

Γ ⊢ 𝐴 : Type@𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆(𝑥 : 𝐴).𝑀 : Π(𝑥 : 𝐴).𝐵

Γ ⊢ 𝐴 : Type@𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type@𝑖 Γ ⊢ 𝑀 : Π(𝑥 : 𝐴).𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝐵 [id, 𝑁 /𝑥]

Δ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝜎 : Δ
Γ ⊢ 𝑀 [𝜎] : 𝐴[𝜎]

Γ ⊢ 𝐴′ : Type@𝑖 Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝐴 ⊆ 𝐴′

Γ ⊢ 𝑀 : 𝐴′

Γ ⊢ 𝐴 ⊆ 𝐵 𝐴 is a subtype of 𝐵.

Γ ⊢ 𝐵 : Type@𝑖

Γ ⊢ 𝐴 ≈ 𝐵 : Type@𝑖

Γ ⊢ 𝐴 ⊆ 𝐵

Γ ⊢ 𝐴 ⊆ 𝐴′

Γ ⊢ 𝐴′ ⊆ 𝐴′′

Γ ⊢ 𝐴 ⊆ 𝐴′′
⊢ Γ 𝑖 < 𝑗

Γ ⊢ Type@𝑖 ⊆ Type@ 𝑗

Γ ⊢ 𝐴 : Type@𝑖 Γ ⊢ 𝐴′ : Type@𝑖 Γ ⊢ 𝐴 ≈ 𝐴′ : Type@𝑖

Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type@𝑖 Γ, 𝑥 : 𝐴′ ⊢ 𝐵′ : Type@𝑖 Γ, 𝑥 : 𝐴′ ⊢ 𝐵 ⊆ 𝐵′

Γ ⊢ Π(𝑥 : 𝐴).𝐵 ⊆ Π(𝑥 : 𝐴′).𝐵′

Fig. 2. Selected rules forMLTT

(see, for example, Abel [2013]) using four possible cases. The identity substitution id is a no-op to
expressions, and is the left and right identity of composition 𝜎 ◦ 𝛿 . The weakening substitution wk

weakens the topmost variable, i.e. that of de Bruijn index 0. Finally, we can also extend a substitution
with an expression via 𝜎,𝑀/𝑥 .

3.1.2 Judgements of MLTT. Our variant of MLTT is given by seven mutually defined judgements:
• ⊢ Γ : Γ is well-formed.
• Γ ⊢ 𝑀 : 𝐴 :𝑀 is a well-formed expression of type 𝐴 in context Γ.
• Γ ⊢ 𝜎 : Δ : 𝜎 is a well-formed substitution from Δ to Γ.
• Γ ⊢ 𝑀 ≈ 𝑀 ′ : 𝐴 :𝑀 and𝑀 ′ are equivalent expressions of type 𝐴 in context Γ.
• Γ ⊢ 𝜎 ≈ 𝜎 ′ : Δ : 𝜎 and 𝜎 ′ are equivalent substitutions from Δ to Γ.
• Γ ⊢ 𝐴 ⊆ 𝐵 : Type 𝐴 is a subtype of 𝐵 in context Γ.
• ⊢ Γ ⊆ Δ : Γ is a sub-context of Δ. This judgement generalizes the subtyping judgement.

The rules forMLTT with explicit substitutions are mostly standard (see Fig. 2). We only show
the core fragment consisting of functions, function applications, Π-types, and closures. A more
exhaustive definition ofMLTT can be found in Appendix A (and its mechanized definition).

In the rules, the highlighted premises ensure that well-typed programs always have well-formed
types. We prove that they are redundant with a presupposition lemma [Harper and Pfenning 2005],
essentially stating that each subcomponent of a judgement must also be well-formed. Since each
judgement has different subcomponents, each of them gets their own presupposition lemma. For
example, the presuppostion for the typing judgement states that if Γ ⊢ 𝑀 : 𝐴, then ⊢ Γ and
Γ ⊢ 𝐴 : Type@𝑖 for some 𝑖 . For the rest of our discussion, we will ignore the highlighted premises.
Following Rocq’s core type theory, we replace the standard type conversion rule with one

that allows subsumption and we extend the standardMLTT with a covariant universe subtyping
judgement. The subtyping judgement admits the subsumption of smaller universes in larger ones

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.System.Definitions.html#wf_ctx
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.System.Definitions.html#wf_exp
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.System.Definitions.html#wf_sub
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.System.Definitions.html#wf_exp_eq
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.System.Definitions.html#wf_sub_eq
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.System.Definitions.html#wf_subtyp
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.System.Definitions.html#wf_ctx_sub
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.System.Definitions.html

McTT: A Verified Kernel for a Proof Assistant 242:9

and propagates this relation down to the output types of Π types (but not the input types). In
this way, we implement a full cumulative universe hierarchy. The subtyping judgement allows a
judgement that holds for a subtype to also hold for its supertype. For example, the following is the
subsumption rule for typing:

Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝐴 ⊆ 𝐴′

Γ ⊢ 𝑀 : 𝐴′

This rule says that if 𝑀 has type 𝐴 and 𝐴 is a subtype of 𝐴′, then 𝑀 also has type 𝐴′. In the
standard MLTT, the associated rule only checks the equivalence between 𝐴 and 𝐴′. In contrast to
the symmetry of equivalence, subtyping is asymmetric or uni-directional. In other words, we can
only go from 𝐴 to 𝐴′ but not the other way.
The reason for introducing subtyping to this system is grounded in establishing completeness

of the type-checker w.r.t. the declarative typing rules. Were we to eliminate universe subtyping,
the type-checker would admit more terms than the typing rules. Consider a weaker form of
cumulativity employed by Abel [2013]; Hu et al. [2023], which does not involve subtyping and is
what we originally formulated:

Γ ⊢ 𝐴 : Type@𝑖

Γ ⊢ 𝐴 : Type@1 + 𝑖
Unfortunately, it turns out to be extremely challenging to develop a complete type-checking
algorithm w.r.t this rule. As the example in the introduction illustrates, negative types, such
as Π-types, are sensitive to when we apply this subtyping rule.

The bottom of Fig. 2 defines the subtyping rules. There are only four rules. The first rule says that
equivalence between expressions is subsumed by subtyping, and it is effectively a reflexivity rule.
The second rule is transitivity, which is expected for a subtyping relation. The third rule admits
a smaller universe to be a subtype of a larger universe, thus supporting cumulativity. The final
rule allows propagation of subtyping in the output types of Π types. The input types 𝐴 and 𝐴′ are
equivalent since we do not support contravariant subtyping at this point, following Rocq.
Finally, the subtyping judgement between types is generalized pointwise to context subtyping,

denoted as ⊢ Γ ⊆ Δ. In this judgement, the types in Γ are pointwise subtypes of those in Δ.

3.2 Semantics of MLTT
Next, we consider the semantic model ofMLTT, which is intuitively just the untyped 𝜆-calculus.
Specifically, we use an untyped domain model à la Abel [2013] to formulate the NbE algorithm.
This NbE algorithm has two steps:

(1) First, we evaluate a well-typed term into a domain value (Sec. 3.3.1). During this process, we
reduce away the 𝛽 redexes.

(2) Second, we read from the domain value back to the syntax of an object in normal form.
During this process, we perform a type-directed 𝜂 expansion.

Thus, combining both steps, we obtain the 𝛽𝜂 normal form of the given well-typed term. We can
define syntactic 𝛽-short forms using a standard notion of neutral and normal forms:
Neutral forms Ne ∋ 𝑉 ::= 𝑥𝑑 | rec𝑥.𝑊 𝑊zero (𝑦, 𝑟 .𝑊succ) 𝑉 | 𝑉 𝑊

Normal forms Nf ∋𝑊 ::= 𝑉 | Nat | Type@𝑖 | Π(𝑥 :𝑊𝐴).𝑊𝐵 | zero | succ𝑊 | 𝜆(𝑥 :𝑊𝐴).𝑊𝑀

Neutral forms are either variables or elimination principles blocked by neutral forms. Normal forms
are either neutral, type constructors, or introduction principles applied to normal forms. Note that
these normal forms are not necessarily 𝜂-long. For example, a variable 𝑥 : Π(𝑦:𝑊𝐴).𝑊𝐵 is normal,
but can be 𝜂-expanded to 𝜆(𝑦:𝑊𝐴).𝑥 𝑦. In order to properly 𝜂-expand a term, we need additional
type information, which our semantic model will include.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.Syntax.html#ne
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.Syntax.html#nf

242:10 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

3.2.1 Untyped Domain Model. Following Abel [2013] we give the definition of the untyped domain
model. It is the target to which well-typed terms are evaluated to.

De Bruijn levels N ∋ 𝑧

Neutral domain values D
Ne ∋ 𝑣 ::= 𝑙𝑧 | rec(𝐴,𝑏,𝑀succ, 𝜌, 𝑣) | 𝑣 𝑤

Domain values D ∋ 𝑎, 𝑏,𝑚, 𝑛 ::= ↑𝑎 (𝑣) | N | U@𝑖 | Π(𝑎, 𝐵, 𝜌)
| ze | su(𝑎) | Λ(𝑀, 𝜌)

Normal domain values D
Nf ∋ 𝑤 ::= ↓𝑎 (𝑚)

Evaluation environments Env ∋ 𝜌

In contrast to the syntax’s de Bruijn indices, domain variables are represented with de Bruijn
levels. This means that we count from the left instead of the right, resulting in every variable
having a unique de Bruijn level throughout a program, thus removing the need to shift indices.
De Bruijn indices and levels have a correspondence. In general, given a context Γ, 𝑥 :𝑇,Δ, the de
Bruijn index 𝑑 of 𝑥 is |Δ|, the length of Δ, whereas the de Bruijn level 𝑧 of 𝑥 is |Γ |. Therefore, we
have 𝑑 + 𝑧 + 1 = |Γ, 𝑥 : 𝑇,Δ|. This correspondence will be used later in the readback function to
read de Bruijn indices back from de Bruijn levels. Otherwise, the domain is defined similarly to the
(syntactic) neutral and normal forms.

The model is split into three definitions. Neutral domain values are just domain variables (𝑙𝑧)
or elimination forms. They correspond closely to syntactic neutral forms. Domain values can
be reflected neutral values annotated with a domain type, ↑𝑎 (𝑣), or introduction forms. They
correspond closely to the syntactic normal forms, with onemajor difference: tomechanize dependent
functions in the domain values, we employ defunctionalization [Reynolds 1998] to capture the
ambient evaluation environment 𝜌 and an open type 𝐵 or an open term𝑀 . This is also standard
[Abel 2013; Hu et al. 2023]. Finally, normal domain values are reified domain values annotated with
a domain type, ↓𝑎 (𝑚). This represents the 𝜂-long form of𝑚, although ↓𝑎 (𝑚) is not itself 𝜂-long
since reification is simply a marker. Rather, we will later use 𝑎 to guide the 𝜂-expansions that need
to be performed during readback.

Next, an environment 𝜌 is just a function from de Bruijn indices to D. We need a number of tools
related to evaluation environments. We omit their concrete definitions for space consideration.
First, the empty environment emp :: Env interprets the empty context as a constant function. We
use ze as the default value of emp, but the concrete value does not actually matter. Later, we will
prove the soundness property, which requires that all variables are bound and implies that we will
never access the default value at all. Then, we also need two useful operations on environments:
The extension function ext(𝜌,𝑚) shifts everything in 𝜌 up by 1 and produces𝑚 on 0; its inverse
drop function drop(𝜌) shifts everything in 𝜌 down by 1, forgetting about the previous 0𝑡ℎ value.

3.3 Normalization by Evaluation for MLTT
Next, we define the normalization procedure. It consists of two main steps. First, we define evalu-
ation functions that map syntactic objects to semantic objects, eliminating any 𝛽-redexes in the
process. Second, we define readback functions that map semantic objects back to syntactic objects,
performing all the necessary 𝜂-expansions in the process. Then, we can compose evaluation and
readback to obtain a normalization procedure for computing 𝛽𝜂-normal forms.

3.3.1 Evaluation. As the first step of the NbE algorithm, we evaluate a well-typed term into a
domain value. Evaluation is a partial function (denoted by⇀). Since Rocq requires all functions to
be total, our implementation models evaluation as functional relations.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#domain_ne
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#domain
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#domain_nf
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#env
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#empty_env
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#extend_env
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#drop_env

McTT: A Verified Kernel for a Proof Assistant 242:11

J_K(_) :: Exp ⇀ Env ⇀ D

J𝑥𝑑K(𝜌) := 𝜌 (𝑑)
JΠ(𝑥 : 𝐴) .𝐵K(𝜌) := Π(J𝐴K(𝜌), 𝐵, 𝜌)
J𝜆(𝑥 : 𝐴).𝑀K(𝜌) := Λ(𝑀, 𝜌)

J𝑀 𝑁 K(𝜌) := J𝑀K(𝜌) · J𝑁 K(𝜌)
J𝑡 [𝜎]K(𝜌) := J𝑡K(J𝜎K(𝜌))

_ · _ :: D ⇀ D ⇀ D

(Λ(𝑀, 𝜌)) · 𝑎 := J𝑀K(ext(𝜌, 𝑎))
(↑Π (𝑎,𝐵,𝜌) (𝑣)) ·𝑚 := ↑J𝐵K(ext(𝜌,𝑚)) (𝑣 ↓𝑎 (𝑚))

Fig. 3. Evaluation functions

We define four partial functions for the whole evaluation procedure.

Evaluation of expressions J_K(_) :: Exp ⇀ Env ⇀ D

Evaluation of substitutions J_Ks (_) :: Subst ⇀ Env ⇀ Env

Domain application _ · _ :: D ⇀ D ⇀ D

Domain recursion for Nat rec · (_, _, _, _, _) :: Exp ⇀ D ⇀ Exp ⇀ Env ⇀ D ⇀ D

The first function is the main one: J𝑀K(𝜌) performs evaluation of a syntactic expression 𝑀 in
the evaluation environment 𝜌 . The second function performs evaluation of substitutions into
environments. This is required since we use explicit substitutions. The last two functions perform
computations inside the domain: 𝑚 · 𝑛 is function application and rec · (𝐴,𝑚zero, 𝑀succ, 𝜌,𝑚) is
recursion over natural numbers. We show the definition of the main evaluation function together
with the Domain application in Fig. 3. The complete definition is available in Appendix A (and its
mechanized documentation).
Evaluation is a straightforward process: Every object is evaluated by applying congruences as

much as possible, then, on elimination forms, we apply the relevant domain computation. One
subtlety occurs in the treatment of open objects, such as functions or the successor branch of the
recursor. Specifically, these correspond to premises that are in a larger context than their conclusion,
which means that our current evaluation environment 𝜌 does not yet provide an interpretation of
the additional variables. Thus, we cannot evaluate them until a later stage when all the necessary
information is available. In the meantime, we exploit defunctionalization and simply keep track of
the syntactic forms and of the current evaluation environment.

3.3.2 Readback. In the second step of the NbE algorithm, we read the domain values back to a
syntactic normal form while performing any necessary 𝜂-expansion. The readback process consists
of three mutually defined partial functions (see Fig. 4), which are again defined as functional
relations in Rocq. First, RNf reads back a normal domain object to a 𝛽𝜂-normal syntactic object. RNf

is the main function and it is responsible for performing the 𝜂-expansion. Second, RTy reads back a
type in 𝛽𝜂-normal form. RTy is in particular used to read back domain objects of the form ↓U@𝑖 (𝑎).
Third, RNe reads back neutral domain objects to neutral syntactic objects. RNe is responsible for
converting between de Bruijn levels and indices and it is largely defined by congruence rules.

The readback functions take in addition a natural number 𝑧 as a parameter, which measures the
length of current typing context. This number is used in the variable case to convert from de Bruijn
levels into de Bruijn indices:

R
Ne

𝑧′ (𝑙𝑧) := 𝑥max(𝑧′−𝑧−1,0)

The formula has been explained at the beginning of Sec. 3.2.1.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html#eval_exp
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html#eval_app
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html#eval_exp
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html#eval_sub
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html#eval_app
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html#eval_natrec
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html

242:12 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

R
Nf

_ (_) :: N ⇀ D
Nf ⇀ Nf

R
Nf

𝑧 (↓𝑎 (↑𝑏 (𝑣))) := R
Ne

𝑧 (𝑣) (where 𝑎 = ↑𝑎′ (𝑐) or N)
R
Nf

𝑧 (↓U@𝑖 (𝑎)) := R
Ty

𝑧 (𝑎)
R
Nf

𝑧 (↓Π (𝑎,𝐵,𝜌) (𝑚)) := 𝜆(𝑥 : RTy

𝑧 (𝑎)) .RNf

1+𝑧 (↓J𝐵K(ext(𝜌,↑𝑎 (𝑙𝑧))) (𝑚· ↑𝑎 (𝑙𝑧)))

R
Ty

_ (_) :: N ⇀ D ⇀ Nf

R
Ty

𝑧 (Π(𝑎, 𝐵, 𝜌)) := Π(𝑥 : RTy

𝑧 (𝑎)) .RTy

1+𝑧 (J𝐵K(ext(𝜌, ↑𝑎 (𝑙𝑧))))
R
Ty

𝑧 (↑𝑎 (𝑣)) := R
Ne

𝑧 (𝑣)

R
Ne

_ (_) :: N ⇀ D
Ne ⇀ Ne

R
Ne

𝑧′ (𝑙𝑧) := 𝑥max(𝑧′−𝑧−1,0)
R
Ne

𝑧 (𝑣 𝑤) := R
Ne

𝑧 (𝑣) RNf

𝑧 (𝑤)

Fig. 4. Definition of readbacks

3.3.3 Normalization. With the evaluation and the readback functions, we are able to provide the
NbE algorithm. First, we define a helper function to compute the initial environment:

↑ :: Ctx ⇀ Env

↑· := emp

↑Γ,𝑥 :𝐴 := ext(↑Γ, ↑J𝐴K(↑Γ) (𝑙 |Γ |))
Then the NbE algorithm is defined by first evaluating the term and the type, and then reading back
the domain value of the term annotated by the domain value of the type.

Definition 3.1. For Γ ⊢ 𝑀 : 𝐴, the NbE algorithm for terms is

nbe
𝐴
Γ (𝑀) := R

Nf

|Γ | (↓
J𝐴K(↑Γ) (J𝑀K(↑Γ)))

We need another variant of the NbE algorithm, which normalizes a type. The steps are similar,
but we use RTy for readback, because we know we are handling a type.

Definition 3.2. For Γ ⊢ 𝐴 : Type@𝑖 , the NbE algorithm for types is

nbeΓ (𝐴) := R
Ty

|Γ | (J𝐴K(↑Γ))

4 Completeness and Soundness of NbE
In this section, we establish that our NbE is a complete and sound algorithm. In this setting,
completeness means that NbE gives the same normal form for two equivalent input expressions.
On the other hand, soundness means that the normal form out of NbE is equivalent to the input
expression. Both properties together imply several important colloraries on typing, subtyping, and
equivalence: decidability of equivalence, decidability of subtyping, and completeness and soundness
of algorithmic subtyping and type-checking.
However, as the NbE algorithm crosses through a domain value, we need to define a relation

model between two domain types/values and another model between a domain value and an
expression to show the completeness and soundness.

4.1 Partial Equivalence Relation (PER) Model
We first need to provide the partial equivalence relation (PER) model, which relates two domain
types and domain values. In previous work [Abel 2013; Hu et al. 2023], the PER model is defined
using induction-recursion [Dybjer and Setzer 2003; Martin-Löf 1984]. However, Rocq does not

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Readback.Definitions.html#read_nf
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Readback.Definitions.html#read_typ
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Readback.Definitions.html#read_ne
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.NbE.html#initial_env
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.NbE.html#nbe
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.NbE.html#nbe_ty

McTT: A Verified Kernel for a Proof Assistant 242:13

support induction-recursion. As an alternative, we use the impredicative Prop universe in Rocq. In
this universe, we can define a proposition by quantifying over all propositions in Prop, including
the one being defined. This feature augments the logical power of Rocq enough to express the PER
model of a dependent type theory. In fact, Wieczorek and Biernacki [2018] use Prop to capture
induction-recursion to mechanize NbE of MLTT by adapting the Bove-Capretta method [Bove
2009; Bove and Capretta 2005]. In this approach, their PER model is unrolled into two separate
relations, one for domain types and one for domain values. However, this is only possible for a
bounded universe hierarchy, and indeed their mechanization is restricted to one universe. This
limitation of applying the Bove-Capretta method to universe hierarchy has been noticed by Abel
et al. [2017], but their solution is based on sized types, which are not available in Rocq either.

The key intuition of our solution is that we do not need computability of the recursive definition.
Previous methods [Bove 2009; Bove and Capretta 2005; Larchey-Wendling and Monin 2018] focus
on a faithful encoding of induction-recursion that keeps computability of the recursive function.
However, in our case, we use the PER model only to prove properties of NbE and not to define
the NbE algorithm. Thus, we can encode the inductive-recursive PER model into a (weak partial)
functional relation, which does not directly provide computability. This functional relation is
defined inductively and relates two domain types in the universe of a given level. Then, as an
output, it “returns” a binary relation between domain values of those related domain types.

To define the PER model, we need a few more auxiliary definitions. First, we define three PERs
based on readback, Nf ⊆ D

Nf × D
Nf, Ne ⊆ D

Ne × D
Ne, and Ty ⊆ D × D:

∀ 𝑧 . RNf

𝑧 (𝑤) = R
Nf

𝑧 (𝑤 ′)
𝑤 ≈ 𝑤 ′ ∈ Nf

∀ 𝑧 . RNe

𝑧 (𝑣) = R
Ne

𝑧 (𝑣 ′)
𝑣 ≈ 𝑣 ′ ∈ Ne

∀ 𝑧 . R
Ty

𝑧 (𝑎) = R
Ty

𝑧 (𝑎′)
𝑎 ≈ 𝑎′ ∈ Ty

Nf relates two normal domain values if and only if their readbacks are equal in any given context.
Similarly, Ne relates two neutral domain values based on readbacks, and Ty relates two domain
types based on readbacks. We use these PERs as base cases for the PER model. Furthermore, we
describe the realizability of the PER model using these PERs, which leads to the completeness
theorem of NbE. Therefore, they also play the key roles for the completeness theorem as well.

Now, we first define the PER model Neu ⊆ D × D for domain values of neutral domain types.
𝑤 ≈ 𝑤 ′ ∈ Ne

↑𝑎 (𝑤) ≈ ↑𝑎′ (𝑤 ′) ∈ Neu

This relation Neu simply ignores the type annotations and relates two neutral domain values using
Ne. We can safely ignore these type annotations as we will use Neu only for well-typed terms and
check the relation between types first with our PER model for domain types. Next, we define the
PER model Nat ⊆ D × D for domain values of the natural number type.

ze ≈ ze ∈ Nat

𝑚 ≈ 𝑛 ∈ Nat

su(𝑚) ≈ su(𝑛) ∈ Nat

𝑣 ≈ 𝑣 ′ ∈ Ne

↑𝑎 (𝑣) ≈ ↑𝑎′ (𝑣 ′) ∈ Nat

This relates ze with itself, su(—) of related natural numbers, and two neutral domain values. Again,
the case of neutral domain values ignores the type annotations.

Now, we can define the PER model U𝑖 for domain types in the 𝑖-th universe. We write
𝑎 ≈ 𝑎′ ∈ U𝑖 ↘ 𝑅

to relate domain types 𝑎 and 𝑎′, and a binary relation 𝑅 relating two domain values of types 𝑎
and 𝑎′. The relation 𝑅 is regarded as a "return" predicate, soU𝑖 is a functional relation. We write
𝑎 ≈ 𝑎′ ∈ U𝑖 if we are only concerned about the relation between 𝑎 and 𝑎′. The definition is given
in Fig. 5. There are 4 cases: one for types in neutral forms and one for each type constructor

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Definitions.html#per_top
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Definitions.html#per_bot
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Definitions.html#per_top_typ
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Definitions.html#per_ne
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Definitions.html#per_nat
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Definitions.html#per_univ_elem_core

242:14 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

𝑏 ≈ 𝑏 ′ ∈ Ne 𝑅 ⇔ Neu

↑𝑎 (𝑏) ≈ ↑𝑎′ (𝑏 ′) ∈ U𝑖 ↘ 𝑅

𝑗 < 𝑖 𝑅 ⇔ U𝑗

U@ 𝑗 ≈ U@ 𝑗 ∈ U𝑖 ↘ 𝑅

𝑅 ⇔ Nat

N ≈ N ∈ U𝑖 ↘ 𝑅

𝑎 ≈ 𝑎′ ∈ U𝑖 ↘ 𝑅𝐼

𝑅𝐼 is a PER ∀ D ::𝑚 ≈𝑚′ ∈ 𝑅𝐼 . J𝐵K(ext(𝜌,𝑚)) ≈ J𝐵′K(ext(𝜌 ′,𝑚′)) ∈ U𝑖 ↘ 𝑅𝑂 (D)
∀ 𝑛, 𝑛′ . 𝑛 ≈ 𝑛′ ∈ 𝑅 ↔ (∀ D ::𝑚 ≈𝑚′ ∈ 𝑅𝐼 . 𝑛 ·𝑚 ≈ 𝑛′ ·𝑚′ ∈ 𝑅𝑂 (D))

Π(𝑎, 𝐵, 𝜌) ≈ Π(𝑎′, 𝐵′, 𝜌 ′) ∈ U𝑖 ↘ 𝑅

Fig. 5. PER Model for Domain Types and Values

𝑏 ≈ 𝑏 ′ ∈ Ne

↑𝑎 (𝑏) <:𝑖 ↑𝑎
′ (𝑏 ′)

𝑗 ≤ 𝑘 < 𝑖

U@ 𝑗 <:𝑖 U@𝑘 N <:𝑖 N

𝑎 ≈ 𝑎′ ∈ U𝑖 ↘ 𝑅𝐼 ∀ D ::𝑚 ≈𝑚′ ∈ 𝑅𝐼 . J𝐵K(ext(𝜌,𝑚)) <:𝑖 J𝐵′K(ext(𝜌 ′,𝑚′))
Π(𝑎, 𝐵, 𝜌) ≈ Π(𝑎, 𝐵, 𝜌) ∈ U𝑖 Π(𝑎′, 𝐵′, 𝜌 ′) ≈ Π(𝑎′, 𝐵′, 𝜌 ′) ∈ U𝑖

Π(𝑎, 𝐵, 𝜌) <:𝑖 Π(𝑎′, 𝐵′, 𝜌 ′)

Fig. 6. Semantic Subtyping

(U@ 𝑗 , N, and Π). In the Π case, we have one highlighted premise. This premise enhances the
induction principle forU so that we can proveU and its return relation 𝑅 are actually PERs without
postulating any axioms. After we prove that 𝑅 is actually PER, we remove this highlighted premise
as it is logically redundant.
It is worth noting that we defineU as a weak partial functional relation, in the sense that the

return relation 𝑅 is only unique up to relational equivalence. Here, the relational equivalence
𝑃 ⇔ 𝑄 between two 𝑛-ary relations 𝑃 and 𝑄 is defined as

∀ 𝑥1, 𝑥2, . . . , 𝑥𝑛 . 𝑃 𝑥1 𝑥2 . . . 𝑥𝑛 ↔ 𝑄 𝑥1 𝑥2 . . . 𝑥𝑛

We employ this weakness to avoid excessive uses of extensionality axioms, especially propositional
and functional extensionality. In fact, this approach allows us to remove propositional extensionality
entirely, and only keep one use of functional extensionality for convenience.

Given the definition, it becomes clear why U is encoded in the impredicative universe Prop. In
the universe case, U𝑖 returns 𝑅, a relation equivalent to U𝑗 for 𝑗 < 𝑖 . In a predicative setting, this
would have required U𝑖 to live in a higher universe than U𝑗 , but this is not possible because they
are the same inductive definition. In Prop, this problem no longer exists thanks to impredicativity.
In addition to the PER model, since we are working with universe subtyping in the syntactic

judgements, we also need to introduce subtyping to the semantics as well. The semantic subtyping
relation 𝑎 <:𝑖 𝑎′ between two domain types 𝑎 and 𝑎′ at universe level 𝑖 is defined in Fig. 6. The
four rules in semantic subtyping reflects the definition of syntactic subtyping. For example, in the
Π case, the input types 𝑎 and 𝑎′ are semantically equivalent byU, because we employ covariant
subtyping in our syntactic rules.
Finally, the PER model and semantic subtyping are extended to PER and semantic subtyping

between contexts and environments in order to define the semantic typing judgement for the
completeness theorem. We list the cons rule of the PER Γ ≈ Γ′ ↘ 𝑅 between contexts Γ and Γ′

and the cons rule of semantic subtyping between contexts Γ <: Γ′ in Fig. 7. We omit the rules for
the empty context since they simply relate the empty context to itself. Note that the PER between
contexts also gives the PER 𝑅 for environments as a “returned” value, similarly to the definition of
U. In case of the empty context, this returned PER is the total relation, i.e. any two environments
are related under the PER. Another subtle but important point in the definition is that universe

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Definitions.html#per_subtyp
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Definitions.html#per_ctx_env
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Definitions.html#per_ctx_subtyp

McTT: A Verified Kernel for a Proof Assistant 242:15

Γ ≈ Γ′ ↘ 𝑅𝑇 𝑅𝑇 is a PER ∀ D :: 𝜌 ≈ 𝜌 ′ ∈ 𝑅𝑇 . J𝐴K(𝜌) ≈ J𝐴′K(𝜌 ′) ∈ U𝑖 ↘ 𝑅𝐻 (D)
∀ 𝜌, 𝜌 ′ . 𝜌 ≈ 𝜌 ′ ∈ 𝑅 ↔ (∀ D :: drop(𝜌) ≈ drop(𝜌 ′) ∈ 𝑅𝑇 . 𝜌 (0) ≈ 𝜌 ′(0) ∈ 𝑅𝐻 (D))

Γ, 𝑥 :𝐴 ≈ Γ′, 𝑥 :𝐴′ ↘ 𝑅

Γ <: Γ′ Γ ≈ Γ ↘ 𝑅𝑇
∀ D :: 𝜌 ≈ 𝜌 ′ ∈ 𝑅𝑇 . J𝐴K(𝜌) <:𝑖 J𝐴′K(𝜌 ′) Γ, 𝑥 :𝐴 ≈ Γ, 𝑥 :𝐴 ↘ 𝑅1 Γ′, 𝑥 :𝐴′ ≈ Γ′, 𝑥 :𝐴′ ↘ 𝑅2

Γ, 𝑥 :𝐴 <: Γ′, 𝑥 :𝐴′

Fig. 7. The Cons Rule of the PER Model and Semantic Subtyping for Contexts

level 𝑖 , in which we relate the heads J𝐴K(𝜌) and J𝐴′K(𝜌 ′), is hidden in the conclusion. This forces
us to prove a slightly more general property about U in order to prove that the PER model for
contexts is indeed transitive in Sec. 4.2.2.

In the following section, we prove the properties of the PER model for domain types and values
leading to the completeness theorem.

4.2 Properties of the PER Model
4.2.1 Irrelevance. To show the interesting properties of the PER models, we first need to specify
what determines 𝑅 in the definition of U. Our intuition is that we do not need a full derivation of
𝑎 ≈ 𝑏 ∈ U𝑖 ↘ 𝑅 to determine 𝑅, but having a domain type 𝑎 that satisfies 𝑎 ≈ 𝑏 ∈ U𝑖 is enough.
The following lemma formalizes this intuition:

Lemma 4.1 (U Right Irrelevance). If 𝑎 ≈ 𝑏 ∈ U𝑖 ↘ 𝑅 and 𝑎 ≈ 𝑏 ′ ∈ U𝑖′ ↘ 𝑅′, then 𝑅 ⇔ 𝑅′.

Thus, as long as we have the domain type 𝑎, the relation between domain values of that type is
unique up to relational equivalence.

4.2.2 Structural Property of the PER Model. Now, we show the structural properties of the PER
model and semantic subtyping: the PER model is indeed a PER and semantic subtyping is transitive.
We start by showing that the PER model is symmetric, both for domain types and values.

Lemma 4.2 (Symmetry of U). If 𝑎 ≈ 𝑎′ ∈ U𝑖 ↘ 𝑅, then
• 𝑎′ ≈ 𝑎 ∈ U𝑖 ↘ 𝑅, and,
• 𝑚 ≈𝑚′ ∈ 𝑅 implies𝑚′ ≈𝑚 ∈ 𝑅.

With this, we can show that it is also transitive.

Lemma 4.3 (Transitivity of U). If 𝑎1 ≈ 𝑎2 ∈ U𝑖 ↘ 𝑅, then
• 𝑎2 ≈ 𝑎3 ∈ U𝑗 ↘ 𝑅 implies 𝑎1 ≈ 𝑎3 ∈ U𝑖 ↘ 𝑅, and,
• 𝑚1 ≈𝑚2 ∈ 𝑅 and𝑚2 ≈𝑚3 ∈ 𝑅 implies𝑚1 ≈𝑚3 ∈ 𝑅

Note that this theorem is stronger than the naïve transitivity because we can choose a different
universe level 𝑗 for 𝑎2 ≈ 𝑎3 ∈ U𝑗 ↘ 𝑅. This flexibility is the key for the transitivity of the PER
for contexts, as three transitively related contexts might use different universe levels to relate
their heads. The transitivity of the semantic subtyping for domain types, the symmetry and the
transitivity of the PER model for contexts and environments, and the transitivity of the semantic
subtyping for contexts follow from the above two in this order.

4.2.3 Realizability of the PER Model. Another important property ofU is realizability, which is
essential to establish both completeness and soundness. We define the realizability using Nf, Ne,
and Ty following Abel [2013]:

Theorem 4.4 (Realizability of PER Model). Given 𝑎 ≈ 𝑎′ ∈ U𝑖 ↘ 𝑅,

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Lemmas.html#per_univ_elem_right_irrel
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Lemmas.html#per_univ_elem_sym
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Lemmas.html#per_univ_elem_trans
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Lemmas.html#per_subtyp_trans
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Lemmas.html#per_ctx_env_sym
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Lemmas.html#per_ctx_env_trans
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Lemmas.html#per_ctx_env_trans
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Lemmas.html#per_ctx_subtyp_trans

242:16 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

• For domain values:𝑚 ≈𝑚′ ∈ 𝑅 implies ↓𝑎 (𝑚) ≈ ↓𝑎′ (𝑚′) ∈ Nf;
• For neutral domain values:𝑤 ≈ 𝑤 ′ ∈ Ne implies ↑𝑎 (𝑤) ≈ ↑𝑎′ (𝑤 ′) ∈ 𝑅;
• For domain types: 𝑎 ≈ 𝑎′ ∈ Ty.

Proof. By induction on 𝑎 ≈ 𝑎′ ∈ U𝑖 ↘ 𝑅. We need to prove a lemma that𝑚 ≈𝑚′ ∈ Nat implies
↓N𝑚 ≈ ↓N𝑚′ ∈ Nf along the way, which is shown by induction on𝑚 ≈𝑚′ ∈ Nat. □

4.2.4 Other Properties of the PER Model. To show the fundamental theorem for completeness (that
syntactic typing rules are admissible for semantic equivalence judgement for completeness), we
need some lemmas about U. Particularly, we need thatU is cumulative in its universe level.

Lemma 4.5 (Cumulativity ofU). If 𝑎 ≈ 𝑎′ ∈ U𝑖 ↘ 𝑅, then 𝑎 ≈ 𝑎′ ∈ U𝑗 ↘ 𝑅 for 𝑗 ≥ 𝑖 .

Another key property is that the PER respects subtyping, which is crucial for our subtyping rule.

Lemma 4.6 (Subtyping of U). If 𝑎 <:𝑖 𝑎′, 𝑎 ≈ 𝑏 ∈ U𝑖 ↘ 𝑅, and 𝑎′ ≈ 𝑏 ′ ∈ U𝑖 ↘ 𝑅′ then
𝑚 ≈𝑚′ ∈ 𝑅 implies𝑚 ≈𝑚′ ∈ 𝑅′.

4.3 Completeness
We first define the semantic equivalence judgement Γ ⊨ 𝑀 ≈ 𝑀 ′ : 𝐴 for completeness:
Γ ≈ Γ′ ↘ 𝑅𝐸 ∀ D :: 𝜌 ≈ 𝜌 ′ ∈ 𝑅𝐸 . J𝐴K(𝜌) ≈ J𝐴K(𝜌 ′) ∈ U𝑖 ↘ 𝑅 ∧ J𝑀K(𝜌) ≈ J𝑀 ′K(𝜌 ′) ∈ 𝑅

Γ ⊨ 𝑀 ≈ 𝑀 ′ : 𝐴
From this, we derive the semantic typing judgement Γ ⊨ 𝑀 : 𝐴 by defining it as an alias of
Γ ⊨ 𝑀 ≈ 𝑀 : 𝐴. Then, we use the lemmas for U to show the following fundamental theorem of
the semantic judgements for completeness:

Theorem 4.7 (Fundamental Theorem). If Γ ⊢ 𝑀 ≈ 𝑀 ′ : 𝐴 then Γ ⊨ 𝑀 ≈ 𝑀 ′ : 𝐴.

Proof. By induction on the given equivalence derivation. This should be mutually proven with
fundamental theorems for other judgements such as one for Γ ⊢ 𝑀 : 𝐴. In our mechanization, we
handle each case as a separate lemma as they are fairly long. □

Now, we can derive the completeness of NbE:

Theorem 4.8 (Completeness of NbE). If Γ ⊢ 𝑀 ≈ 𝑀 ′ : 𝐴 then nbe
𝐴
Γ (𝑀) = nbe

𝐴
Γ (𝑀 ′).

Proof. We first show a lemma that Γ ≈ Γ′ ↘ 𝑅𝐸 implies ↑Γ≈↑Γ′∈ 𝑅𝐸 by induction on the given
derivation. Then, we prove the main goal by applying the fundamental theorem together with this
lemma □

4.4 Kripke Gluing Model
Now, we move our focus to the soundness of NbE. For soundness, we need to connect a term and
its normalization result that was read back from the semantic world. Thus, the model for soundness
should “glue” the syntactic types/terms with domain types/values [Coquand and Dybjer 1997].
Moreover, as we need to deal with open terms, our model should be stable under weakenings.
Following Abel [2013], we call this condition “Kripke”. In short, we will define a Kripke gluing
model for McTT in this section.
First, we need to formalize the definition of weakenings. The following judgement Γ ⊢𝑤 𝜎 : Δ

means that 𝜎 is a weakening from Δ to Γ.
Γ ⊢ 𝜎 ≈ id : Δ
Γ ⊢𝑤 𝜎 : Δ

Γ ⊢𝑤 𝜏 : Δ′, 𝑥 :𝐴 ⊢ Δ′ ⊆ Δ Γ ⊢ 𝜎 ≈ wk ◦ 𝜏 : Δ
Γ ⊢𝑤 𝜎 : Δ

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Realizability.html#per_elem_then_per_top
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Realizability.html#per_bot_then_per_elem
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Realizability.html#per_univ_then_per_top_typ
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Realizability.html#per_nat_then_per_top
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Lemmas.html#per_univ_elem_cumu_ge
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.PER.Lemmas.html#per_elem_subtyping
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Completeness.LogicalRelation.Definitions.html#rel_exp_under_ctx
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Completeness.LogicalRelation.Definitions.html#rel_exp_under_ctx
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Completeness.FundamentalTheorem.html#completeness_fundamental
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Completeness.html#completeness
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Realizability.html#per_ctx_then_per_env_initial_env
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.Weakening.Definitions.html#weakening

McTT: A Verified Kernel for a Proof Assistant 242:17

𝑃 ⇔ Neu𝑎𝑖 𝐸𝑙 ⇔ Neu𝑎𝑖
↑𝑏 𝑎 ∈ U∗

𝑖 ↘ 𝑃 ↘ 𝐸𝑙

𝑃 ⇔ Nat𝑖 𝐸𝑙 ⇔ Nat𝑖
N ∈ U∗

𝑖 ↘ 𝑃 ↘ 𝐸𝑙

𝑗 < 𝑖 ∀ Γ, 𝐴 . Γ ⊢ 𝐴 ® 𝑃 ↔ (Γ ⊢ 𝐴 ≈ Type@ 𝑗 : Type@𝑖)
∀ Γ, 𝑀,𝐴,𝑚.

Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ 𝐸𝑙 ↔ (Γ ⊢ 𝑀 : 𝐴 ∧ Γ ⊢ 𝐴 ® 𝑃 ∧𝑚 ∈ U∗
𝑗 ↘ 𝑃 ′ ↘ 𝐸𝑙 ′ ∧ Γ ⊢ 𝑀 ® 𝑃 ′)

U@ 𝑗 ∈ U∗
𝑖 ↘ 𝑃 ↘ 𝐸𝑙

𝑎 ∈ U∗
𝑖 ↘ 𝑃𝐼 ↘ 𝐸𝑙𝐼

𝑎 ≈ 𝑎 ∈ U𝑖 ↘ 𝑅𝐼 ∀ D :: 𝑛 ≈ 𝑛 ∈ 𝑅𝐼 . J𝐵K(ext(𝜌, 𝑛)) ∈ U∗
𝑖 ↘ 𝑃𝑂 (D) ↘ 𝐸𝑙𝑂 (D)

Π(𝑎, 𝐵, 𝜌) ≈ Π(𝑎, 𝐵, 𝜌) ∈ U𝑖 ↘ 𝑅 𝑃 ⇔ Π𝑖 (𝑅𝐼 , 𝑃𝐼 , 𝐸𝑙𝐼 , 𝑃𝑂) 𝐸𝑙 ⇔ Π𝑖 (𝑅, 𝑅𝐼 , 𝑃𝐼 , 𝐸𝑙𝐼 , 𝐸𝑙𝑂)
Π(𝑎, 𝐵, 𝜌) ∈ U∗

𝑖 ↘ 𝑃 ↘ 𝐸𝑙

Fig. 8. Gluing Model for Domain Types and Values

Note that the rule forwk also handles context subtyping. This allows us to apply subtyping between
contexts to weakening judgement without a separate rule for subtyping.

Now, we define the Kripke gluing model. Usually, one defines the model using a recursion over a
derivation of the PER model for domain types. However, our U is defined in Prop, and we cannot
match on it to generate a new predicate.3 Thus, we need to define an inductive predicateU∗ reusing
cases ofU. There are two main differences betweenU∗ andU: 1)U∗ is a unary relation on domain
types, while U is binary; 2) U∗ outputs two predicates, while U only outputs one. More precisely,
the judgement 𝑎 ∈ U∗

𝑖 ↘ 𝑃 ↘ 𝐸𝑙 returns a unary predicate 𝑃 for syntactic types related to 𝑎 and a
binary predicate 𝐸𝑙 for syntactic terms related to a domain value of type 𝑎. To give a clear definition
of U∗, we first need to specify concrete predicates 𝑃 and 𝐸𝑙 . We will use notations Γ ⊢ 𝐴 ® 𝑃

for gluing of a syntactic type 𝐴, and Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ 𝐸𝑙 for gluing of the syntactic term 𝑀 and
domain value𝑚.
For the neutral case, we define Neu𝑎𝑖 that relates a syntactic type 𝐴 under a context Γ with

a given neutral domain type 𝑎 and universe level 𝑖 (Γ ⊢ 𝐴 ® Neu𝑎𝑖). For brevity, Neu
𝑎
𝑖 is also

overloaded for the relation that relates a syntactic term 𝑀 of type 𝐴 with a domain value 𝑚
(Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ Neu𝑎𝑖).

Γ ⊢ 𝐴 : Type@𝑖 ∀ Δ, 𝜎 . Δ ⊢𝑤 𝜎 : Γ → Δ ⊢ 𝐴[𝜎] ≈ R
Ne

|Δ | (𝑎) : Type@𝑖

Γ ⊢ 𝐴 ® Neu𝑎𝑖
Γ ⊢ 𝐴 ® Neu𝑎𝑖 Γ ⊢ 𝑀 : 𝐴 𝑣 ≈ 𝑣 ∈ Ne ∀ Δ, 𝜎 . Δ ⊢𝑤 𝜎 : Γ → Δ ⊢ 𝑀 [𝜎] ≈ R

Ne

|Δ | (𝑣) : Type@𝑖

Γ ⊢ 𝑀 : 𝐴 ® ↑𝑎′ (𝑣) ∈ Neu𝑎𝑖

Note that both Γ ⊢ 𝐴 ® Neu𝑎𝑖 and Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ Neu𝑎𝑖 require domain and syntax to be related
even after an arbitrary weakening from Γ. We repeat this requirement for the N case whenever
neutral terms appear. We use the name Nat𝑖 for the relation that checks syntactic type𝐴 is a natural
number type (Γ ⊢ 𝐴 ® Nat𝑖) and for the relation between syntactic natural number term𝑀 with
domain natural number𝑚 (Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ Nat𝑖). This relation needs to be inductive, and we

3It is possible to match on Prop to generate a proof of a predicate of Prop. However, Prop itself lives in Type, and one
cannot generate a member of a type by pattern matching on Prop.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#glu_univ_elem_core
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#neut_glu_typ_pred
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#neut_glu_exp_pred
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#nat_glu_typ_pred
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#nat_glu_exp_pred

242:18 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

∀Δ, 𝜎, 𝜌 . Δ ⊢ 𝜎 ® 𝜌 ∈ 𝑆𝑏 ↔ Δ ⊢ 𝜎 : ·
· ↘ 𝑆𝑏

Γ ↘ 𝑆𝑏𝑇 Γ ⊢ 𝐴 : Type@𝑖 𝑆𝑏 ⇔ 𝐶𝑜𝑛𝑠𝑖 (Γ, 𝐴, 𝑆𝑏𝑇)
∀Δ, 𝜎, 𝜌, 𝑃, 𝐸𝑙 . Δ ⊢ 𝜎 ® 𝜌 ∈ 𝑆𝑏𝑇 → J𝐴K(𝜌) ∈ U∗

𝑖 ↘ 𝑃 ↘ 𝐸𝑙 ∧ Δ ⊢ 𝐴[𝜎] ® 𝑃

Γ, 𝑥 :𝐴 ↘ 𝑆𝑏

Fig. 9. Gluing Model for Contexts

extract the inductive part into Γ ⊢ 𝑀 ® 𝑚 ∈ Nat.
Γ ⊢ 𝐴 ≈ Nat : Type@𝑖

Γ ⊢ 𝐴 ® Nat𝑖

Γ ⊢ 𝐴 ® Nat𝑖 Γ ⊢ 𝑀 ® 𝑚 ∈ Nat

Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ Nat𝑖

Γ ⊢ 𝑀 ≈ zero : Nat
Γ ⊢ 𝑀 ® ze ∈ Nat

Γ ⊢ 𝑀 ≈ succ𝑀 ′ : Nat
Γ ⊢ 𝑀 ′ ® 𝑚′ ∈ Nat

Γ ⊢ 𝑀 ® su(𝑚′) ∈ Nat

𝑣 ≈ 𝑣 ∈ Ne
∀ Δ, 𝜎 . Δ ⊢𝑤 𝜎 : Γ → Δ ⊢ 𝑀 [𝜎] ≈ R

Ne

|Δ | (𝑣) : Type@𝑖

Γ ⊢ 𝑀 ® ↑𝑎 (𝑤) ∈ Nat

Likewise, we define Π𝑖 (𝑅𝐼 , 𝑃𝐼 , 𝐸𝑙𝐼 , 𝑃𝑂) for Π-types and Π𝑖 (𝑅, 𝑅𝐼 , 𝑃𝐼 , 𝐸𝑙𝐼 , 𝐸𝑙𝑂) for terms of Π-types,
where the subscripts 𝐼 and 𝑂 indicate a relation on inputs and outputs, respectively, and 𝑅 is the
PER associated to the whole function space:

Γ ⊢ 𝐴 ≈ Π(𝑥 :𝐵).𝐶 : Type@𝑖 ∀ Δ, 𝜎 . Δ ⊢𝑤 𝜎 : Γ → Δ ⊢ 𝐵 [𝜎] ® 𝑃𝐼
∀ Δ, 𝜎, 𝑁 , 𝑛 . Δ ⊢𝑤 𝜎 : Γ ∧ Δ ⊢ 𝑁 : 𝐵 [𝜎] ® 𝑛 ∈ 𝐸𝑙𝐼 → ∀ D :: 𝑛 ≈ 𝑛 ∈ 𝑅𝐼 . Δ ⊢ 𝐶 [𝜎, 𝑁] ® 𝑃𝑂 (D)

Γ ⊢ 𝐴 ® Π𝑖 (𝑅𝐼 , 𝑃𝐼 , 𝐸𝑙𝐼 , 𝑃𝑂)
Γ ⊢ 𝑀 : 𝐴

𝑚 ≈𝑚 ∈ 𝑅 Γ ⊢ 𝐴 ≈ Π(𝑥 :𝐵).𝐶 : Type@𝑖 ∀ Δ, 𝜎 . Δ ⊢𝑤 𝜎 : Γ → Δ ⊢ 𝐵 [𝜎] ® 𝑃𝐼
∀ Δ, 𝜎, 𝑁 , 𝑛 . Δ ⊢𝑤 𝜎 : Γ ∧ Δ ⊢ 𝑁 : 𝐵 [𝜎] ® 𝑛 ∈ 𝐸𝑙𝐼 →

∀ D ::𝑚 ≈𝑚 ∈ 𝑅𝐼 . Δ ⊢ 𝑀 [𝜎] 𝑁 : 𝐶 [𝜎, 𝑁] ® 𝑚 · 𝑛 ∈ 𝐸𝑙𝑂 (D)
Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ Π𝑖 (𝑅, 𝑅𝐼 , 𝑃𝐼 , 𝐸𝑙𝐼 , 𝐸𝑙𝑂)

Using these predicates, we give the definition of U∗ in Fig. 8.
We also need to extend the gluing model to one for contexts for soundness. In Fig. 9, we define

Γ ↘ 𝑆𝑏. Here, 𝑆𝑏 is a predicate relating a syntactic substitution 𝜎 from Δ to Γ with an environment
𝜌 . To represent this, we use the notation Δ ⊢ 𝜎 ® 𝜌 ∈ 𝑆𝑏. This definition uses the following
predicate 𝐶𝑜𝑛𝑠𝑖 (Γ, 𝐴, 𝑆𝑏𝑇):

Δ ⊢ 𝜎 : Γ, 𝑥 :𝐴 J𝐴K(𝜌) ∈ U∗
𝑖 ↘ 𝑃 ↘ 𝐸𝑙

Δ ⊢ 𝑥 [𝜎] : 𝐴[wk ◦ 𝜎] ® 𝜌 (0) ∈ 𝐸𝑙 Δ ⊢ wk ◦ 𝜎 ® drop(𝜌) ∈ 𝑆𝑏𝑇

Γ ⊢ 𝜎 ® 𝜌 ∈ 𝐶𝑜𝑛𝑠𝑖 (Γ, 𝑥, 𝐴, 𝑆𝑏𝑇)
This predicate relates the substitution entry for latest variable in the context (𝑥 [𝜎]) with the top-
most value in the environment (𝜌 (0)), and relate weakened substitution (wk ◦ 𝜎) with the shifted
environment (drop(𝜌)).
In the following section, we prove the properties of the Kripke gluing model for domain types

and values leading to the soundness theorem.

4.5 Properties of the Kripke Gluing Model
4.5.1 Monotonicity. As mentioned previously, this model is Kripke in the sense that it is stable
under weakenings. We can formalize this property as follows:

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#glu_nat
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#pi_glu_typ_pred
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#pi_glu_exp_pred
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#glu_univ_elem_core
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#glu_ctx_env
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#cons_glu_sub_pred

McTT: A Verified Kernel for a Proof Assistant 242:19

Γ ⊢ 𝑀 : 𝐴 𝑎 ∈ U∗
𝑖 ↘ 𝑃 ↘ 𝐸𝑙

Γ ⊢ 𝐴 ® 𝑃 ↓𝑎 𝑚 ≈↓𝑎 𝑚 ∈ Nf ∀Δ, 𝜎 . Δ ⊢𝑤 𝜎 : Γ → Δ ⊢ 𝑀 [𝜎] ≈ R
Nf

|Δ | (↓
𝑎 𝑚) : 𝐴[𝜎]

Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ Nf 𝑎𝑖
Γ ⊢ 𝑀 : 𝐴 𝑎 ∈ U∗

𝑖 ↘ 𝑃 ↘ 𝐸𝑙

Γ ⊢ 𝐴 ® 𝑃 𝑤 ≈ 𝑤 ∈ Ne ∀Δ, 𝜎 . Δ ⊢𝑤 𝜎 : Γ → Δ ⊢ 𝑀 [𝜎] ≈ R
Ne

|Δ |𝑤 : 𝐴[𝜎]
Γ ⊢ 𝑀 : 𝐴 ® 𝑤 ∈ Ne𝑎𝑖

Γ ⊢ 𝐴 : Type@𝑖 𝑎 ≈ 𝑎 ∈ Ty ∀Δ, 𝜎 . Δ ⊢𝑤 𝜎 : Γ → Δ ⊢ 𝐴[𝜎] ≈ R
Ty

|Δ |𝑤 : Type@𝑖

Γ ⊢ 𝐴 ® Ty𝑎𝑖

Fig. 10. The Definition of Nf 𝑎𝑖 , Ne𝑎
𝑖
, and Ty𝑎

𝑖

Lemma 4.9 (Monotonicity). Given 𝑎 ∈ U∗
𝑖 ↘ 𝑃 ↘ 𝐸𝑙 ,

• For types: Γ ⊢ 𝐴 ® 𝑃 and Δ ⊢𝑤 𝜎 : Γ imply Δ ⊢ 𝐴[𝜎] ® 𝑃 ,
• For terms: Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ 𝐸𝑙 and Δ ⊢𝑤 𝜎 : Γ imply Δ ⊢ 𝑀 [𝜎] : 𝐴[𝜎] ® 𝑚 ∈ 𝐸𝑙 .

4.5.2 Realizability. As in completeness, the realizability of the Kripke gluing model is a key step
towards the soundness theorem. To state and prove the realizability of the Kripke gluing model, we
first need to introduce gluing versions of Nf, Ne, and Ty, called Nf 𝑎𝑖 , Ne𝑎𝑖 , and Ty

𝑎
𝑖 . Their definitions

are given in Fig. 10.
Note that two main differences exist compared to the previous Nf, Ne, and Ty for completeness.

Nf, Ne, and Ty for completeness relate the readbacks of two domain terms/types. On the other hand,
the Nf 𝑎𝑖 , Ne𝑎𝑖 , and Ty𝑎𝑖 for soundness relate the readback of a domain term/type and a syntactic
term/type. More importantly,Nf,Ne, and Ty for completeness relate normal forms using the equality
on their syntactic forms whereas Nf 𝑎𝑖 , Ne𝑎𝑖 , and Ty

𝑎
𝑖 use typed equivalence to compare them. These

changes allow us to prove the soundness theorem, as the theorem states typed equivalence between
a term and its normal form.

Now, we can state the following realizability theorem:

Theorem 4.10 (Realizability of Gluing Model). Given 𝑎 ∈ U∗
𝑖 ↘ 𝑃 ↘ 𝐸𝑙 ,

• For domain values: Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ 𝐸𝑙 implies Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ Nf 𝑎𝑖 ;
• For neutral domain values: Γ ⊢ 𝑀 : 𝐴 ® 𝑤 ∈ Ne𝑎𝑖 implies Γ ⊢ 𝑀 : 𝐴 ® ↑𝑎 𝑤 ∈ 𝐸𝑙 ;
• For domain types: Γ ⊢ 𝐴 ® 𝑃 implies Γ ⊢ 𝐴 ® Ty𝑎𝑖 .

Proof. By induction on 𝑎 ∈ U∗
𝑖 ↘ 𝑃 ↘ 𝐸𝑙 . As in the realizability of the PER model, we need a

lemma to deal with Γ ⊢ 𝑀 ® 𝑚 ∈ Nat, which is proven by induction on Γ ⊢ 𝑀 ® 𝑚 ∈ Nat. □

4.5.3 Other Properties of the Kripke Gluing Model. Again, the fundamental theorem for soundness
requires the cumulativity of the gluing model as its key property. However, as the Π case of the
gluing model uses 𝐸𝑙 in a negative position, we also need a “lowering” lemma that brings a term
into a lower universe. The formal statement of the theorem follows:

Lemma 4.11 (Cumulativity and Lowering of Gluing Model). Given 𝑎 ∈ U∗
𝑖 ↘ 𝑃 ↘ 𝐸𝑙 and

𝑎 ∈ U∗
𝑗 ↘ 𝑃 ′ ↘ 𝐸𝑙 ′ for 𝑖 ≤ 𝑗 ,

• Cumulativity for types: Γ ⊢ 𝐴 ® 𝑃 implies Γ ⊢ 𝐴 ® 𝑃 ′;
• Cumulativity for terms: Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ 𝐸𝑙 implies Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ 𝐸𝑙 ′;
• Lowering for terms: Γ ⊢ 𝐴 ® 𝑃 and Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ 𝐸𝑙 ′ implies Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ 𝐸𝑙 .

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.CoreLemmas.html#glu_univ_elem_typ_monotone
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.CoreLemmas.html#glu_univ_elem_exp_monotone
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#glu_elem_top
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#glu_elem_bot
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#glu_typ_top
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.Realizability.html#realize_glu_elem_top
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.Realizability.html#realize_glu_elem_bot
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.Realizability.html#realize_glu_typ_top
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.CoreLemmas.html#glu_nat_readback
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.CoreLemmas.html#glu_nat_readback
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Lemmas.html#glu_univ_elem_cumulativity_ge

242:20 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

We also need a lemma about interaction between the semantic subtyping and the gluing model.
First, if two domain types are in the semantic subtyping relation, then glued syntactic types are
also in subtyping relation:

Lemma 4.12 (Subtyping of Gluing Model for Types). If 𝑎 <:𝑖 𝑎′, 𝑎 ∈ U∗
𝑖 ↘ 𝑃 ↘ 𝐸𝑙 , and

𝑎′ ∈ U∗
𝑖 ↘ 𝑃 ′ ↘ 𝐸𝑙 ′ then Γ ⊢ 𝐴 ® 𝑃 and Γ ⊢ 𝐴′ ® 𝑃 ′ implies Γ ⊢ 𝐴 ⊆ 𝐴′.

Also, the term predicates from the gluing model respect subtyping relation.

Lemma 4.13 (Subtyping of Gluing Model for Terms). If 𝑎 <:𝑖 𝑎′, 𝑎 ∈ U∗
𝑖 ↘ 𝑃 ↘ 𝐸𝑙 , and

𝑎′ ∈ U∗
𝑖 ↘ 𝑃 ′ ↘ 𝐸𝑙 ′ then Γ ⊢ 𝐴′ ® 𝑃 ′ and Γ ⊢ 𝑀 : 𝐴 ® 𝑚 ∈ 𝐸𝑙 implies Γ ⊢ 𝑀 : 𝐴′ ® 𝑚 ∈ 𝐸𝑙 ′.

4.6 Soundness
As for the completeness, we first define the semantic typing judgement Γ ⊩ 𝑀 : 𝐴 for soundness:

Γ ↘ 𝑆𝑏

∀ Δ, 𝜎, 𝜌, 𝑃, 𝐸𝑙 . Δ ⊢ 𝜎 ® 𝜌 ∈ 𝑆𝑏 → J𝐴K(𝜌) ∈ U∗
𝑖 ↘ 𝑃 ↘ 𝐸𝑙 ∧ Δ ⊢ 𝑀 [𝜎] : 𝐴[𝜎] ® J𝑀K(𝜌) ∈ 𝐸𝑙

Γ ⊩ 𝑀 : 𝐴
Then, we show the following fundamental theorem of the semantic typing judgements for sound-
ness:

Theorem 4.14 (Fundamental Theorem for Soundness). If Γ ⊢ 𝑀 : 𝐴 then Γ ⊩ 𝑀 : 𝐴.

Proof. By induction on the given typing derivation. As in the case of the completeness, we
prove each case separately due to its complexity. □

We can derive the soundness of NbE from this:

Theorem 4.15 (Soundness of NbE). If Γ ⊢ 𝑀 : 𝐴 then Γ ⊢ 𝑀 ≈ nbe
𝐴
Γ (𝑀 ′) : 𝐴

Proof. We first show a lemma that Γ ↘ 𝑆𝑏 implies Γ ⊢ id ® ↑Γ∈ 𝑆𝑏 by induction on the
given derivation. Then, we prove the main goal by applying the fundamental theorem and this
lemma. □

4.7 Key Corollaries
The fundamental theorems for the PER and gluing model allows us to derive several semantic
results. Other than the completeness and soundness of NbE, another key result is the consistency
of McTT:

Corollary 4.16 (Consistency). There is no such𝑀 and 𝑖 satisfying Γ ⊢ 𝑀 : Π(𝑥 : Type@𝑖).𝑥 .
McTT also contains other interesting results such as the idempotency of NbE and injectivity of

Π with regard to our equivalence. One can find them in our semantic consequence module.

5 Algorithmic Component
In the previous sections, we have introduced the NbE algorithm that computes 𝛽𝜂 normal forms of
well-formed expressions, and proved its completeness and soundness. Based on the NbE algorithm,
we can provide a set of algorithmic rules for type-checking. For simplicity, our type-checking
algorithm is essentially uni-directional; this is possible because we made sure that types can
always be inferred from given expressions. During type-checking, we sometimes need to check
whether an expression of an inferred type can also have a desired type. For example, in Sec. 2.1,
we give an example program where we infer the type Π(𝑦:Type@0).Type@0, but the desired type
is Π(𝑦:Type@0) .Type@1. Therefore, we also need an algorithm for subtyping. As a result, we are
motivated to define the following four algorithmic judgements:

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Lemmas.html#glu_univ_elem_per_subtyp_typ_escape
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Lemmas.html#glu_univ_elem_per_subtyp_trm_if
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Definitions.html#glu_rel_exp
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.FundamentalTheorem.html#soundness_fundamental
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.html#soundness
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Soundness.LogicalRelation.Lemmas.html#initial_env_glu_rel_exp
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Consequences.html#consistency
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Consequences.html

McTT: A Verified Kernel for a Proof Assistant 242:21

⊢Nf
𝐴

𝑊 ⊆𝑊 ′ Algorithmic subtyping between normal types

𝑊 is not Type or Π

⊢Nf𝐴 𝑊 ⊆𝑊

𝑖 ≤ 𝑗

⊢Nf𝐴 Type@𝑖 ⊆ Type@ 𝑗

⊢Nf𝐴 𝑊2 ⊆𝑊 ′
2

⊢Nf𝐴 Π(𝑥 :𝑊1).𝑊2 ⊆ Π(𝑥 :𝑊1).𝑊 ′
2

Γ ⊢𝐴 𝐴 ⊆ 𝐵 Algorithmic subtyping between well-formed types

⊢Nf𝐴 nbeΓ (𝐴) ⊆ nbeΓ (𝐵)
Γ ⊢𝐴 𝐴 ⊆ 𝐵

Γ ⊢𝐴 𝑀 ⇐ 𝐴 Term𝑀 is checked against type 𝐴

Γ ⊢𝐴 𝑀 ⇒𝑊 Γ ⊢𝐴 𝑊 ⊆ 𝐴

Γ ⊢𝐴 𝑀 ⇐ 𝐴

Γ ⊢𝐴 𝑀 ⇒𝑊 𝑊 is an inferred normal type of term𝑀

𝑥 : 𝐴 ∈ Γ

Γ ⊢𝐴 𝑥 ⇒ nbeΓ (𝐴)
Γ ⊢𝐴 𝐴 ⇒ Type@𝑖 Γ, 𝑥 : 𝐴 ⊢𝐴 𝐵 ⇒ Type@ 𝑗

Γ ⊢𝐴 Π(𝑥 : 𝐴).𝐵 ⇒ Type@max(𝑖, 𝑗)
Γ ⊢𝐴 𝐴 ⇒ Type@𝑖 Γ, 𝑥 : 𝐴 ⊢𝐴 𝑀 ⇒𝑊

Γ ⊢𝐴 𝜆(𝑥 : 𝐴).𝑀 ⇒ Π(𝑥 : nbeΓ (𝐴)) .𝑊
Γ ⊢𝐴 𝑀 ⇒ Π(𝑥 :𝑊).𝑊 ′ Γ ⊢𝐴 𝑁 ⇐𝑊

Γ ⊢𝐴 𝑀 𝑁 ⇒ nbeΓ (𝑊 ′[id, 𝑁 /𝑥])

Fig. 11. Algorithmic judgements

• Γ ⊢𝐴 𝑀 ⇐ 𝐴 : Expression𝑀 checks against type 𝐴.
• Γ ⊢𝐴 𝑀 ⇒𝑊 : A normal type𝑊 is inferred from expression𝑀 .

• ⊢Nf𝐴 𝑊 ⊆𝑊 ′ : Normal type𝑊 is an algorithmic subtype of normal type𝑊 ′.

• Γ ⊢𝐴 𝐴 ⊆ 𝐵 : Type 𝐴 is an algorithmic subtype of type 𝐵.
Selected rules are shown in Fig. 11, and rest of the rules are available on Appendix A (also in its
mechanization). The judgement Γ ⊢𝐴 𝑀 ⇐ 𝐴 implements type-checking by checking𝑀 against a
desired type 𝐴 and is the entry point of the overall type-checking procedure. This judgement first
infers a normal type𝑊 from𝑀 , and then checks if𝑊 is a subtype of 𝐴.
The main workhorse of the type-checking algorithm is the inference judgement Γ ⊢𝐴 𝑀 ⇒𝑊 .

Type inference proceeds in a standard manner by recursively walking down the AST so that for any
expression, at most one inference rule applies. Note that the judgement always infers a normal type,
which ensures a unique return for a given input expression. The NbE algorithm is properly invoked
to ensure that this invariant is maintained. In certain rules, the checking direction might also be
used. For example, in the case of the function application 𝑀 𝑁 , we first make sure that 𝑀 has a
function type Π(𝑥 :𝑊).𝑊 ′. To ensure that the function application is well-formed, Γ ⊢𝐴 𝑁 ⇐𝑊 ′

is invoked to check whether 𝑁 has type𝑊 ′. If that is the case, we can safely say that the overall
type of𝑀 𝑁 is𝑊 ′[id, 𝑁 /𝑥], and we normalize this type before returning it.

Another critical piece that type-checking relies on is the algorithmic subtyping. The main entry
is Γ ⊢𝐴 𝐴 ⊆ 𝐵, which has only one case. It simply invokes NbE to normalize the input types 𝐴 and
𝐵, and passes the results in normal forms to the core subtyping procedure ⊢Nf

𝐴
𝑊 ⊆𝑊 ′. Note that

the context Γ is only used for normalization; the core subtyping comparison algorithm does not
rely on the context at all. Fig. 11 shows the full set of three rules for ⊢Nf

𝐴
𝑊 ⊆𝑊 ′. If𝑊 and𝑊 ′ are

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Typing.Definitions.html#alg_type_check
https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Typing.Definitions.html#alg_type_infer
https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Subtyping.Definitions.html#alg_subtyping_nf
https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Subtyping.Definitions.html#alg_subtyping
https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Typing.Definitions.html
https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Typing.Definitions.html

242:22 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

neither universes nor Π types, then they must be equal. For two universes, the first universe level
must be smaller than or equal to the other. Given two Π types, the input types must be the same,
while the output type of the first Π must be a subtype of the second output type.

We prove that the algorithmic definitions are sound and complete w.r.t. the declarative definitions.
We proceed by first reasoning about the algorithmic subtyping. The easier direction is the soundness
of the two algorithmic subtyping judgements:

Theorem 5.1 (Soundness of algorithmic subtyping for normal types). If ⊢Nf
𝐴
𝑊 ⊆𝑊 ′ and

for any Γ and 𝑖 , such that Γ ⊢𝑊 : Type@𝑖 and Γ ⊢𝑊 ′ : Type@𝑖 , then Γ ⊢𝑊 ⊆𝑊 ′.

In other words, algorithmic subtyping for normal types always holds regardless of the typing
context. Then, the soundness of algorithmic subtyping for general types is proved using the
soundness of NbE:

Theorem 5.2 (Soundness of algorithmic subtyping). If Γ ⊢𝐴 𝐴 ⊆ 𝐵, Γ ⊢ 𝐴 : Type@𝑖 and
Γ ⊢ 𝐵 : Type@𝑖 , then Γ ⊢ 𝐴 ⊆ 𝐵.

The completeness direction is a bit more challenging because we must show that algorithmic
subtyping is transitive and works for the Π case.

Lemma 5.3 (Transitivity of algorithmic subtyping). If Γ ⊢𝐴 𝐴0 ⊆ 𝐴1 and Γ ⊢𝐴 𝐴1 ⊆ 𝐴2, then
Γ ⊢𝐴 𝐴0 ⊆ 𝐴2.

Theorem 5.4 (Completeness of algorithmic subtyping). If Γ ⊢ 𝐴 ⊆ 𝐵, then Γ ⊢𝐴 𝐴 ⊆ 𝐵.

Proof. Induction on Γ ⊢ 𝐴 ⊆ 𝐵. In the Π case, since we support only covariant subtyping,
we know the input types are equivalent. This is checked by the equality of their normal forms.
Moreover, the equivalence between input types also ensures that the contexts in which the output
types are normalized are also equivalent. Therefore, the normal forms of output types can also be
compared by algorithmic subtyping. At this point, the induction hypothesis applies and discharges
this case. □

Next, we show that algorithmic typing is also sound and complete w.r.t. the declarative typing.
The easier direction is again soundness, which is proved by mutual induction on type-checking
and type inference:

Theorem 5.5 (Soundness of algorithmic typing).
• If Γ ⊢𝐴 𝑀 ⇐ 𝐴, ⊢ Γ and Γ ⊢ 𝐴 : Type@𝑖 , then Γ ⊢ 𝑀 : 𝐴.
• If Γ ⊢𝐴 𝑀 ⇒𝑊 and ⊢ Γ, then Γ ⊢ 𝑀 :𝑊 .

Completeness is a collective consequence of all previous results:

Theorem 5.6 (Completeness of algorithmic typing). If𝑀 contains no closure and Γ ⊢ 𝑀 : 𝐴,
then Γ ⊢𝐴 𝑀 ⇐ 𝐴 and there exists𝑊 such that Γ ⊢𝐴 𝑀 ⇒𝑊 and Γ ⊢𝑊 ⊆ 𝐴.

6 Implementation and Extraction
So far, we have provided complete and soundNbE algorithm, subtyping algorithm and type-checking
algorithm. However, these algorithms cannot be directly implemented as functions because Rocq
requires functions to be total; while NbE, the base algorithm of all, is partial in general and only
terminates when inputs are well-formed. For this reason, in Sec. 3.3 and 5, we define evaluation,
readback, and algorithmic typing as functional relations to prove properties about them.
However, one immediate problem is that these functional relations cannot be extracted to

executable functions while our purpose is to provide a verified implementation. Moreover, an

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Subtyping.Lemmas.html#alg_subtyping_nf_sound
https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Subtyping.Lemmas.html#alg_subtyping_sound
https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Subtyping.Lemmas.html#alg_subtyping_trans
https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Subtyping.Lemmas.html#alg_subtyping_complete
https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Typing.Lemmas.html#alg_type_sound
https://beluga-lang.github.io/McTT/icfp25/Mctt.Algorithmic.Typing.Lemmas.html#alg_type_check_complete

McTT: A Verified Kernel for a Proof Assistant 242:23

executable version of these algorithms should not carry proof information during runtime for
efficiency. Last, the algorithms should be extracted into human-readable and comparable to what
a skilled human programmer would write. This means that the code can be verified by a skilled
human programmer independently. This not only increases our confidence in the final result but
also allows developers to experiment with new features before fully verifying them.
To summarize, the main challenge in providing a verified proof checker is to ensure that the

extracted code: 1) satisfies the properties proven in the theoretical component; 2) does not carry
any extraneous information during runtime; 3) is human-readable. Achieving these three goals
at the same time is a nontrivial problem. For example, Hu et al. [2023]’s extraction from Agda to
Haskell carries proof information. As a consequence, performance significantly declines and the
extracted code base is messy, hard to work with, and difficult to read for a human programmer.

One potential approach to resolve this issue in Rocq is to use the coq-partialfun library [Win-
terhalter 2023], which uses free monads to represent partial functions, so that the latter can be
executed within Rocq. This library is used by Adjedj et al. [2024] to implement a type-checking
algorithm in Rocq. However, extraction from this library carries some line noise due to the monadic
style and is not very human-readable.

In McTT, we use a variation of Bove [2009]’s method, where for each function, we define a call
graph to restrict its domain. This call graph also serves as the termination measure. We define
this call graph as an inductive relation in Prop. Since Rocq’s extraction mechanism omits all
instances of Prop, we automatically obtain a code base that is free of proofs and is as readable as a
human-written source program. For example, we define the call graph of eval_exp (i.e. the name
of the functional relation that formalizes J𝑀K(𝜌) =𝑚 in McTT) as the following inductive type
eval_exp_order. We only show the application case below:
Inductive eval_exp_order : exp -> env -> Prop :=

(* ... *)

| eeo_app : forall M N p,

eval_exp_order M p ->

eval_exp_order N p ->

(forall m n, eval_exp M p m -> eval_exp N p n -> eval_app_order m n) ->

eval_exp_order (a_app M N) p

This case says that the call graph for the function application a_app M N case includes the sub-graphs
for M and N, and also another sub-graph for the result of applying the evaluation of M to that of N.
We now briefly discuss the evaluation function eval_exp_impl. As a naming convention, we use

the post-fix impl to refer to the implementation of the corresponding functional relation eval_exp. In
addition to the expressions m:exp and the environment p:env, it also takes in the call graph defined
by the inductive type eval_exp_order m p. Its return states that there exists a normal form d s.t.
eval_exp m p d. In Rocq, we write the Σ type { d | eval_exp m p d } for it. Mimicking the definition
of eval_exp_order (i.e. the definition of the call graph), we define eval_exp_impl as follows: we first
recursively evaluate M and N using eval_exp_impl. Then, we apply eval_app_impl (which corresponds
to _ · _) to the results. The function is implemented using the Equations plugin [Sozeau and Mangin
2019] to discharge proof obligations more easily.
Equations eval_exp_impl m p (H : eval_exp_order m p) : { d | eval_exp m p d } :=

(* ... *)

| a_app M N , p, H =>

let (m , Hm) := eval_exp_impl M p _ in

let (n , Hn) := eval_exp_impl N p _ in

let (a, Ha) := eval_app_impl m n _ in

exist _ a _

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Extraction.Evaluation.html#eval_exp_order
https://beluga-lang.github.io/McTT/icfp25/Mctt.Extraction.Evaluation.html#eval_exp_impl
https://beluga-lang.github.io/McTT/icfp25/Mctt.Extraction.Evaluation.html#eval_exp_impl

242:24 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

Rocq’s extraction removes the call graph and the witness that the resulting normal form d is
identical to the one the declarative algorithm returns. In other words, we remove eval_exp_order m p

from the input and eval_exp m p d from the output. As a result, the extracted code is without any
redundant proof witness and is what a skilled human programmer would have written directly in
OCaml.
let rec eval_exp_impl m p : domain =

(* ... *)

| A_app (e, e0) -> eval_app_impl (eval_exp_impl e p) (eval_exp_impl e0 p)

Now, how can we obtain an instance of eval_exp_order when we use this function? Our so-
lution is to prove that eval_exp_order is sound: If there exists a d, s.t. eval_exp M p d then we
have eval_exp_order M p. Our completeness theorem for NbE guarantees that there is a proof of
exists d, eval_exp M p d for a well-typed term M. In fact, we can easily get this order when we
implement a type-checker by type-checking M first.
We have addressed two goals out of three in the implementation: the extracted code carries no

extra information and is human-readable. The last problem is to prove that the implementation is
indeed sound and complete w.r.t. the corresponding functional relation. In fact, soundness is an im-
mediate consequence of the return type of the function: eval_exp_impl returns { d | eval_exp m p d },
i.e. a domain value d that satisfies eval_exp m p d. Completeness, on the other hand, says that every
instance of a functional relation finds an execution in the implementation. For evaluation, the
lemma states that if eval_exp m p d, then eval_exp_impl m p terminates and returns the same d. This
property is easy to conclude, because eval_exp m p d is deterministic and eval_exp_order is sound.
We apply this procedure for all algorithms (readback, NbE, subtyping and type-checking) to

obtain a fully verified pipeline after extraction satisfying all three criteria.

7 Related Work
7.1 Mechanization of Type Theories
The mechanization of type theories dates back to Barras and Werner [1997]’s effort on mechanizing
the Calculus of Constructions. More recently, Abel et al. [2018] mechanize a weak normalization
proof for MLTT with two universes using Tait’s reducibility candidates [Tait 1967] in Agda. This
mechanization is the basis for many subsequent developments [Abel et al. 2023; Liu et al. 2025;
Pujet and Tabareau 2022, 2023]. Recently, Adjedj et al. [2024] also mechanize this proof in Rocq
concentrating on a fixed number of universes. However, Tait-style normalization proofs often
require significant technical set-up and time investment whenwe formalize them in a proof assistant.
Furthermore, this style of proof does not directly give us a complete 𝛽𝜂-normalization algorithm.
OurMcTT infrastructure uses normalization-by-evaluation (NbE), which often leads to more

compact proofs. Normalization by evaluation is a technique to piggyback the normalization problem
of the target system onto some computational domain. NbE was originally developed by Martin-Löf
[1975] to prove the 𝛽 normalization of a version of his type theories, and independently by Berger
and Schwichtenberg [1991] for their proof checker MinLog. There are different possible choices
for the computational domain. One popular choice is based on category theory [Altenkirch et al.
1995]. Such models are often organized as presheaf categories [Hu and Pientka 2022; Valliappan
et al. 2022], which map the category of weakenings to the set of well-formed terms. Altenkirch and
Kaposi [2016a,b, 2017] mechanize an NbE proof for a dependent type theory based on category
with families [Dybjer 1995], a presheaf framework for modelling dependent types.

NbE algorithms are usually easier to understand, extend, and easier to implement if we choose
an untyped domain model over a presheaf model [Abel 2013]. For example, Abel et al. [2017] and
Gratzer et al. [2019] both extend this style of NbE proof to sized types and idempotent modal types

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

McTT: A Verified Kernel for a Proof Assistant 242:25

respectively. Most recently, Hu et al. [2023] mechanize an NbE algorithm for MLTT extended with
a □ modality, based on Abel [2013]’s untyped domain model in just 11K lines of Agda code. This
demonstrates the compactness and elegance of mechanizing NbE for dependent type theories, in
particular compared to mechanizations of other styles of normalization proofs.
Mechanizing normalization proofs for type theory within Rocq poses its own challenge: in

particular, we cannot rely on induction-recursion in the definition of our semantic model which is
common in on-paper proofs as well as in Agda mechanizations. Existing mechanizations of type
theory such as by Adjedj et al. [2024] orWieczorek and Biernacki [2018] cap the number of universes.
However, removing this restriction is not straightforward in Rocq. Our McTT infrastructure
leverages impredicativity in Rocq together with our subtyping rule to provide a general principled
way of developing proofs that usually require induction-recursion. This allows us to mechanize a
larger fragment of MLTT than previously in Rocq. Choosing Rocq as our proof assistant also has
a distinct advantage: we can leverage Rocq’s excellent support for code extraction to derive an
OCaml implementation of the verified normalization algorithms without extraneous noises from
proof evidences.

7.2 Verified Proof Checking Kernels
In addition to the mechanization of CIC, Barras and Werner [1997] also made the first notable
attempt to verify the kernel of a significant fragment of the Calculus of Inductive Construction
and to extract a verified type-checker from the verification. More recently, an alternative approach
has been pursued in the MetaRocq project to verify the formal semantics of Rocq’s type theory
within Rocq [Sozeau et al. 2020a,b, 2019]. In this line of work, the representation of Rocq terms in
the implementation of Rocq is reflected into Rocq itself. Many properties about Rocq can then be
proven and mechanized within Rocq about these representations. Since MetaRocq aims to capture
the whole feature sets of Rocq, we cannot hope to prove the consistency of Rocq itself due to
Gödel’s incompleteness theorem. Hence, it is necessary to postulate normalization. The goal of
McTT is to actually internalize the normalization proof for a type theory within Rocq. In this
approach we will ultimately hit the normalization barrier, but we can still mechanize a significant,
but strict subset of Rocq.

Compared to previous work, inMcTT, we verify the meta-theory ofMLTT hand-in-hand with
the algorithmic implementation of a type checker and a normalizer forMLTT. Using Rocq’s code
extraction, we are able to synthesize an OCaml implementation that is readable and compact. This
gives us a verified type-checker for a core fragment of MLTT.

8 Conclusion
We have described the McTT infrastructure to build a verified implementation of a normalizer
and type-checker for coreMLTT. Every step in theMcTT pipeline is verified except for the lexer
and pretty-printer. As a result, we have a fully verified kernel for core MLTT with the cumulative
universe hierarchy.
In building McTT, we pushed our understanding on how to mechanize type theory in Rocq

showing how to leverage impredicativity to deal with the more common induction-recursion
definitions. Another important lesson we can draw from our work is that theory and verifiable
algorithmic implementations of that theory should be developed hand in hand in a tight loop. In
our case, this leads us to include universe subtyping.
OurMcTT infrastructure also provides valuable lessons on how to arrive at a verified normal-

ization algorithm within Rocq that allows us to extract readable OCaml code without extraneous
noises due to proof witnesses. In particular, we identified two important steps: 1) Encoding partial

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

242:26 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

functions for evaluation and readback using functional relations and 2) Defining a call graph of
each function to restrict the domain of the function following Bove [2009].
We regardMcTT as a test-bed for two further directions: First, the theoretical component is a

platform for formally verifying standard features like equality types and inductive types, to narrow
the gap between the meta-theory and the implementation. Extending our meta-theoretic proofs
follows the same principle that we have set up. While this is somewhat tedious, we believe that it
is very feasible given the modularity of the McTT infrastructure. This would allow us to extract a
verified type-checker to OCaml which can then be used in practice to certify significant parts of
existing mechanizations.
Second,McTT can be used to study novel extensions to standardMLTT such as modalities or

proof irrelevance. We believe that our theoretical component is sufficiently modular that others
can build on it. Furthermore, we believe that leveraging impredicativity for modelling induction-
recursion is a technique that is very relevant when mechanizing advanced type theories. More
importantly, ourMcTT infrastructure not only allows us to study the meta-theory of these advanced
type theories, but also provides a convenient way to extract a verified type-checker to OCaml, so
that we can experiment with these advanced features and explore their potential impact in practice.

Acknowledgments
We would like to thank the anonymous reviewers for their suggestions and feedbacks. This work
was funded in part by a Natural Sciences and Engineering Research Council of Canada (discovery
grant 206263) and Fonds de recherche du Quebec - Nature et technologies (grant 253521). Junyoung
Jang was funded by Fonds de recherche du Quebec - Nature et technologies (grant 333531). Jason Z.
S. Hu was funded partly by Postgraduate Scholarship - Doctoral from the Natural Sciences and
Engineering Research Council of Canada and partly by Doctoral (B2X) Research Scholarship from
Fonds de recherche du Québec - Nature et technologies during his Ph.D. study.

Data-Availability Statement
This paper is accompanied by a software artifact [Jang et al. 2025] that embodies the key contribution
of this paper, a verified kernel ofMLTT. The installation instruction and browsable documentation
are available in https://beluga-lang.github.io/McTT/icfp25/.

References
Andreas Abel. 2013. Normalization by Evaluation: Dependent Types and Impredicativity. Habilitation Thesis. Ludwig-

Maximilians-Universität München, Munich, Germany. https://www.cse.chalmers.se/~abela/habil.pdf
Andreas Abel, Nils Anders Danielsson, and Oskar Eriksson. 2023. A Graded Modal Dependent Type Theory with a Universe

and Erasure, Formalized. Proc. ACM Program. Lang. 7, ICFP (2023), 920–954. doi:10.1145/3607862
Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2018. Decidability of Conversion for Type Theory in Type Theory. Proc.

ACM Program. Lang. 2, POPL (2018), 23:1–23:29. doi:10.1145/3158111
Andreas Abel, Andrea Vezzosi, and Théo Winterhalter. 2017. Normalization by Evaluation for Sized Dependent Types. Proc.

ACM Program. Lang. 1, ICFP (2017), 33:1–33:30. doi:10.1145/3110277
Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pédrot, and Loïc Pujet. 2024. Martin-Löf à la Coq.

In Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2024, London,
UK, January 15-16, 2024, Amin Timany, Dmitriy Traytel, Brigitte Pientka, and Sandrine Blazy (Eds.). ACM, 230–245.
doi:10.1145/3636501.3636951

Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical Reconstruction of a Reduction Free
Normalization Proof. In Proceedings of the 6th International Conference on Category Theory and Computer Science, CTCS
1995, Cambridge, UK, August 7-11, 1995 (Lecture Notes in Computer Science, Vol. 953), David H. Pitt, David E. Rydeheard,
and Peter T. Johnstone (Eds.). Springer, 182–199. doi:10.1007/3-540-60164-3_27

Thorsten Altenkirch and Ambrus Kaposi. 2016a. Normalisation by Evaluation for Dependent Types. In 1st International
Conference on Formal Structures for Computation and Deduction, FSCD 2016, Porto, Portugal, June 22-26, 2016 (LIPIcs,

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/
https://www.cse.chalmers.se/~abela/habil.pdf
https://doi.org/10.1145/3607862
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3110277
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1007/3-540-60164-3_27

McTT: A Verified Kernel for a Proof Assistant 242:27

Vol. 52), Delia Kesner and Brigitte Pientka (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 6:1–6:16. doi:10.
4230/LIPICS.FSCD.2016.6

Thorsten Altenkirch and Ambrus Kaposi. 2016b. Type Theory in Type Theory Using Quotient Inductive Types. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
Florida, USA, January 20-22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 18–29. doi:10.1145/2837614.2837638

Thorsten Altenkirch and Ambrus Kaposi. 2017. Normalisation by Evaluation for Type Theory, in Type Theory. Log. Methods
Comput. Sci. 13, 4 (2017). doi:10.23638/LMCS-13(4:1)2017

Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. 2016. Encoding Proofs in Dedukti: the case of Coq proofs.
In Proceedings Hammers for Type Theories. 1–6. https://inria.hal.science/hal-01330980

Jeremy Avigad and John Harrison. 2014. Formally verified mathematics. Commun. ACM 57, 4 (2014), 66–75.
Bruno Barras and Benjamin Werner. 1997. Coq in Coq. https://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.

pdf Unpublished manuscript.
Ulrich Berger and Helmut Schwichtenberg. 1991. An Inverse of the Evaluation Functional for Typed Lambda-calculus. In

Proceedings of the 6th Annual Symposium on Logic in Computer Science, LICS 1991, Amsterdam, the Netherlands, July 15-18,
1991. IEEE Computer Society, 203–211. doi:10.1109/LICS.1991.151645

Mathieu Boespflug and Guillaume Burel. 2012. CoqInE: Translating the Calculus of Inductive Constructions into the
𝜆Π-calculus Modulo. In Workshop on Proof eXchange for Theorem Proving (PxTP) (CEUR Workshop Proceedings, Vol. 878).
CEUR-WS.org, 44–50.

Ana Bove. 2009. Another Look at Function Domains. Electronic Notes in Theoretical Computer Science 249 (2009), 61–74.
doi:10.1016/j.entcs.2009.07.084 Proceedings of the 25th Conference on Mathematical Foundations of Programming
Semantics (MFPS 2009).

Ana Bove and Venanzio Capretta. 2005. Modelling general recursion in type theory. Mathematical Structures in Computer
Science 15, 4 (2005), 671–708. doi:10.1017/S0960129505004822

Kevin Buzzard, Johan Commelin, and Patrick Massot. 2020. Formalising perfectoid spaces. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs (New Orleans, LA, USA) (CPP 2020). Association for
Computing Machinery, New York, NY, USA, 299–312. doi:10.1145/3372885.3373830

James Chapman. 2008. Type Theory Should Eat Itself. In Proceedings of the International Workshop on Logical Frameworks
and Metalanguages: Theory and Practice, LFMTP@LICS 2008, Pittsburgh, Pennsylvania, USA, June 23, 2008 (Electronic Notes
in Theoretical Computer Science, Vol. 228), Andreas Abel and Christian Urban (Eds.). Elsevier, 21–36. doi:10.1016/J.ENTCS.
2008.12.114

Thierry Coquand. 2018. Canonicity and normalisation for Dependent Type Theory. CoRR abs/1810.09367 (2018).
arXiv:1810.09367 http://arxiv.org/abs/1810.09367

Thierry Coquand and Peter Dybjer. 1997. Intuitionistic model constructions and normalization proofs. Mathematical
Structures in Computer Science 7, 1 (1997), 75–94. doi:10.1017/S0960129596002150

Thierry Coquand and Christine Paulin. 1988. Inductively Defined Types. In COLOG-88, International Conference on Computer
Logic, Tallinn, USSR, December 1988, Proceedings (Lecture Notes in Computer Science, Vol. 417), Per Martin-Löf and Grigori
Mints (Eds.). Springer, 50–66. doi:10.1007/3-540-52335-9_47

Peter Dybjer. 1995. Internal Type Theory. In International Workshop on Types for Proofs and Programs, TYPES 1995, Torino,
Italy, June 5-8, 1995, Selected Papers (Lecture Notes in Computer Science, Vol. 1158), Stefano Berardi and Mario Coppo (Eds.).
Springer, 120–134. doi:10.1007/3-540-61780-9_66

Peter Dybjer and Anton Setzer. 2003. Induction-recursion and Initial Algebras. Ann. Pure Appl. Log. 124, 1-3 (2003), 1–47.
doi:10.1016/S0168-0072(02)00096-9

Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. 2019. Implementing A Modal Dependent Type Theory. Proc. ACM
Program. Lang. 3, ICFP (2019), 107:1–107:29. doi:10.1145/3341711

Robert Harper and Frank Pfenning. 2005. On equivalence and canonical forms in the LF type theory. ACM Trans. Comput.
Log. 6, 1 (2005), 61–101. doi:10.1145/1042038.1042041

Jason Z. S. Hu, Junyoung Jang, and Brigitte Pientka. 2023. Normalization by Evaluation for Modal Dependent Type Theory.
J. Funct. Program. 33 (2023). doi:10.1017/S0956796823000060

Jason Z. S. Hu and Brigitte Pientka. 2022. A Categorical Normalization Proof for the Modal Lambda-Calculus. In Proceedings
of the 38th Conference on the Mathematical Foundations of Programming Semantics, MFPS 2022, Cornell University, Ithaca,
New York, USA, with a satellite event at IRIF, Denis Diderot University, Paris, France, and online, July 11-13, 2022 (EPTICS,
Vol. 1), Justin Hsu and Christine Tasson (Eds.). EpiSciences. doi:10.46298/ENTICS.10360

Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka. 2025. McTT: A Verified Kernel for a Proof Assistant.
doi:10.5281/zenodo.15712175

Dominique Larchey-Wendling and Jean-François Monin. 2018. Simulating Induction-Recursion for Partial Algorithms. In 24th
International Conference on Types for Proofs and Programs,TYPES 2018. Braga, Portugal. https://hal.science/hal-02333374

Xavier Leroy. 2009a. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://doi.org/10.4230/LIPICS.FSCD.2016.6
https://doi.org/10.4230/LIPICS.FSCD.2016.6
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.23638/LMCS-13(4:1)2017
https://inria.hal.science/hal-01330980
https://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
https://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1016/j.entcs.2009.07.084
https://doi.org/10.1017/S0960129505004822
https://doi.org/10.1145/3372885.3373830
https://doi.org/10.1016/J.ENTCS.2008.12.114
https://doi.org/10.1016/J.ENTCS.2008.12.114
https://arxiv.org/abs/1810.09367
http://arxiv.org/abs/1810.09367
https://doi.org/10.1017/S0960129596002150
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1145/3341711
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.1017/S0956796823000060
https://doi.org/10.46298/ENTICS.10360
https://doi.org/10.5281/zenodo.15712175
https://hal.science/hal-02333374

242:28 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

Xavier Leroy. 2009b. A Formally Verified Compiler Back-end. J. Autom. Reasoning 43, 4 (2009), 363–446.
Yiyun Liu, Jonathan Chan, and Stephanie Weirich. 2025. Consistency of a Dependent Calculus of Indistinguishability. Proc.

ACM Program. Lang. 9, POPL, Article 7 (Jan. 2025), 27 pages. doi:10.1145/3704843
Per Martin-Löf. 1984. Intuitionistic Type Theory. Studies in proof theory, Vol. 1. Bibliopolis.
Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium 1973, H.E. Rose and J.C.

Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80. Elsevier, 73–118. doi:10.1016/S0049-
237X(08)71945-1

Christine Paulin-Mohring. 1993. Inductive Definitions in the System Coq - Rules and Properties. In Typed Lambda Calculi
and Applications, International Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, the Netherlands,
March 16-18, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 664), Marc Bezem and Jan Friso Groote (Eds.).
Springer, 328–345. doi:10.1007/BFB0037116

Loïc Pujet and Nicolas Tabareau. 2022. Observational Equality: Now for Good. Proc. ACM Program. Lang. 6, POPL (2022),
1–27. doi:10.1145/3498693

Loïc Pujet and Nicolas Tabareau. 2023. Impredicative Observational Equality. Proc. ACM Program. Lang. 7, POPL (2023),
2171–2196. doi:10.1145/3571739

John C. Reynolds. 1998. Definitional Interpreters for Higher-Order Programming Languages. High. Order Symb. Comput. 11,
4 (1998), 363–397. doi:10.1023/A:1010027404223

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze, Gregory Malecha, Nicolas
Tabareau, and Théo Winterhalter. 2020a. The MetaCoq Project. J. Autom. Reason. 64, 5 (2020), 947–999. https:
//doi.org/10.1007/s10817-019-09540-0

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze, Gregory Malecha, Nicolas
Tabareau, and Théo Winterhalter. 2020b. The MetaCoq Project. Journal of Automated Reasoning (Feb. 2020). doi:10.1007/
s10817-019-09540-0

Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter. 2019. Coq Coq correct!
verification of type checking and erasure for Coq, in Coq. Proc. ACM Program. Lang. 4, POPL, Article 8 (Dec. 2019),
28 pages. doi:10.1145/3371076

Matthieu Sozeau and Cyprien Mangin. 2019. Equations reloaded: high-level dependently-typed functional programming
and proving in Coq. Proc. ACM Program. Lang. 3, ICFP (2019), 86:1–86:29. doi:10.1145/3341690

William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log. 32, 2 (1967), 198–212.
doi:10.2307/2271658

The Mathlib Community. 2020. The Lean Mathematical Library. In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2020, New Orleans, Louisiana, USA, January 20-21, 2020, Jasmin Blanchette
and Catalin Hritcu (Eds.). ACM, 367–381. doi:10.1145/3372885.3373824

Nachiappan Valliappan, Fabian Ruch, and Carlos Tomé Cortiñas. 2022. Normalization for Fitch-style Modal Calculi. Proc.
ACM Program. Lang. 6, ICFP (2022), 772–798. https://doi.org/10.1145/3547649

Pawel Wieczorek and Dariusz Biernacki. 2018. A Coq Formalization of Normalization by Evaluation for Martin-Löf Type
Theory. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los
Angeles, California, USA, January 8-9, 2018, June Andronick and Amy P. Felty (Eds.). ACM, 266–279. doi:10.1145/3167091

Théo Winterhalter. 2023. Composable partial functions in Coq, totally for free. In 29th International Conference on Types for
Proofs and Programs TYPES 2023 — Abstracts. 208.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://doi.org/10.1145/3704843
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1007/BFB0037116
https://doi.org/10.1145/3498693
https://doi.org/10.1145/3571739
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1145/3371076
https://doi.org/10.1145/3341690
https://doi.org/10.2307/2271658
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3167091

McTT: A Verified Kernel for a Proof Assistant 242:29

A Definition of Martin-Löf type theory
A.1 Syntactic definition
A.1.1 Syntax. We recall the syntax of McTT for convenience:

Variables 𝑥,𝑦, 𝑟

De Bruijn indices N ∋ 𝑑

Universe levels N ∋ 𝑖, 𝑗

Contexts Ctx ∋ Γ,Δ ::= · | Γ, 𝑥 : 𝐴
Expressions Exp ∋ 𝐴, 𝐵,𝐶,𝑀, 𝑁 ::= 𝑥𝑑 | Nat | Type@𝑖 | Π(𝑥 :𝐴).𝐵

| zero | succ𝑀 | rec𝑥.𝐴 𝑀zero (𝑦, 𝑟 .𝑀succ) 𝑁
| 𝜆(𝑥 :𝐴).𝑀 | 𝑀 𝑁 | 𝑀 [𝜎]

Substitutions Subst ∋ 𝜎, 𝛿 ::= id | wk | 𝜎 ◦ 𝛿 | 𝜎,𝑀/𝑥0

A.1.2 Judgments. We give a more exhaustive definition of the declarative judgements of McTT.
Congruence rules are omitted from the equivalence judgments.

⊢ Γ Γ is a well-formed context.

⊢ ·
⊢ Γ Γ ⊢ 𝐴 : Type@𝑖

⊢ Γ, 𝑥 :𝐴

Γ ⊢ 𝑡 : 𝑇 Term 𝑡 has type 𝑇 in Γ.

⊢ Γ 𝑥 : 𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴
Γ ⊢ 𝐴 : Type@𝑖

Γ ⊢ 𝐴 : Type@1 + 𝑖
⊢ Γ

Γ ⊢ Nat : Type@0
⊢ Γ

Γ ⊢ zero : Nat

Γ ⊢ 𝑀 : Nat
Γ ⊢ succ𝑀 : Nat

Γ, 𝑥 : Nat ⊢ 𝐴 : Type@𝑖 Γ ⊢ 𝑀zero : 𝐴[id, zero/𝑥]
Γ, 𝑦 : Nat, 𝑟 : 𝐴 ⊢ 𝑀succ : 𝐴[wk ◦ wk, succ 𝑦/𝑥] Γ ⊢ 𝑁 : Nat

Γ ⊢ rec𝑥.𝐴 𝑀zero (𝑦, 𝑟 .𝑀succ) 𝑁 : 𝐴[id, 𝑁 /𝑥]

Γ ⊢ 𝐴 : Type@𝑖

Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type@𝑖

Γ ⊢ Π(𝑥 : 𝐴).𝐵 : Type@𝑖

Γ ⊢ 𝐴 : Type@𝑖

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵
Γ ⊢ 𝜆(𝑥 : 𝐴).𝑀 : Π(𝑥 : 𝐴).𝐵

Γ ⊢ 𝐴 : Type@𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type@𝑖

Γ ⊢ 𝑀 : Π(𝑥 : 𝐴).𝐵 Γ ⊢ 𝑁 : 𝐴
Γ ⊢ 𝑀 𝑁 : 𝐵 [id, 𝑁 /𝑥]

Δ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝜎 : Δ
Γ ⊢ 𝑀 [𝜎] : 𝐴[𝜎]

Γ ⊢ 𝐴′ : Type@𝑖 Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝐴 ⊆ 𝐴′

Γ ⊢ 𝑀 : 𝐴′

Γ ⊢ 𝜎 : Δ 𝜎 is a well-formed substitution from Δ to Γ.

⊢ Γ

Γ ⊢ id : Γ
⊢ Γ, 𝑥 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ wk : Γ
Γ ⊢ 𝜎 : Δ Δ ⊢ 𝐴 : Type@𝑖 Γ ⊢ 𝑀 : 𝐴[𝜎]

Γ ⊢ 𝜎,𝑀/𝑥0 : Δ, 𝑥 : 𝐴

Γ′ ⊢ 𝜎 : Γ′′ Γ ⊢ 𝛿 : Γ′

Γ ⊢ 𝜎 ◦ 𝛿 : Γ′′
⊢ Δ′ Γ ⊢ 𝜎 : Δ ⊢ Δ ⊆ Δ′

Γ ⊢ 𝜎 : Δ′

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.Syntax.html#ctx
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.Syntax.html#exp
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Syntactic.Syntax.html#sub

242:30 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

Γ ⊢ 𝑀 ≈ 𝑁 : 𝐴 𝑀 and 𝑁 of type 𝐴 are equivalent.

Γ, 𝑥 : Nat ⊢ 𝐴 : Type@𝑖

Γ ⊢ 𝑀zero : 𝐴[id, zero/𝑥0] Γ, 𝑦 : Nat, 𝑟 : 𝐴 ⊢ 𝑀succ : 𝐴[wk ◦ wk, succ 𝑦/𝑥0]
Γ ⊢ rec𝑥.𝐴 𝑀zero (𝑦, 𝑟 .𝑀succ) zero ≈ 𝑀zero : 𝐴[id, zero/𝑥0]

Γ, 𝑥 : Nat ⊢ 𝐴 : Type@𝑖

Γ ⊢ 𝑀zero : 𝐴[id, zero/𝑥0] Γ, 𝑦 : Nat, 𝑟 : 𝐴 ⊢ 𝑀succ : 𝐴[wk ◦ wk, succ 𝑦/𝑥0]
Γ ⊢ 𝑁 : Nat 𝑀𝑟 = rec𝑥.𝐴 𝑀zero (𝑦, 𝑟 .𝑀succ) 𝑁

Γ ⊢ rec𝑥.𝐴 𝑀zero (𝑦, 𝑟 .𝑀succ) (succ 𝑁) ≈ 𝑀succ [id, 𝑁 /𝑦1, 𝑀𝑟/𝑟0] : 𝐴[id, succ 𝑁 /𝑥0]

Γ ⊢ 𝐴 : Type@𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type@𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ (𝜆(𝑥 : 𝐴).𝑀) 𝑁 ≈ 𝑀 [id, 𝑁 /𝑥0] : 𝐵 [id, 𝑁 /𝑥0]

Γ ⊢ 𝐴 : Type@𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type@𝑖 Γ ⊢ 𝑀 : Π(𝑥 : 𝐴).𝐵
Γ ⊢ 𝑀 ≈ 𝜆(𝑥 : 𝐴).(𝑀 [wk]) 𝑥 : Π(𝑥 : 𝐴).𝐵

Γ ⊢ 𝐴′ : Type@𝑖 Γ ⊢ 𝑀 ≈ 𝑁 : 𝐴 Γ ⊢ 𝐴 ⊆ 𝐴′

Γ ⊢ 𝑀 ≈ 𝑁 : 𝐴′

Γ ⊢ 𝜎 ≈ 𝛿 : Δ 𝜎 and 𝛿 are equivalent substitutions from Δ to Γ.

Γ′ ⊢ 𝜎 : Γ′′ Γ′′ ⊢ 𝐴 : Type@𝑖

Γ′ ⊢ 𝑀 : 𝐴[𝜎] Γ ⊢ 𝛿 : Γ′

Γ ⊢ (𝜎,𝑀/𝑥0) ◦ 𝛿 ≈ (𝜎 ◦ 𝛿), 𝑀 [𝛿]/𝑥0 : Γ′′, 𝑥 : 𝐴

⊢ Δ′

Γ ⊢ 𝜎 ≈ 𝜎 ′ : Δ ⊢ Δ ⊆ Δ′

Γ ⊢ 𝜎 ≈ 𝜎 ′ : Δ′

Γ ⊢ 𝜎 : Δ Δ ⊢ 𝐴 : Type@𝑖 Γ ⊢ 𝑀 : 𝐴[𝜎]
Γ ⊢ wk ◦ (𝜎,𝑀/𝑥0) ≈ 𝜎 : Δ

Γ ⊢ 𝜎 : Γ′, 𝑥 : 𝐴
Γ ⊢ 𝜎 ≈ (wk ◦ 𝜎), 𝑥 [𝜎]/𝑥0 : Γ, 𝑥 : 𝐴

Γ ⊢ 𝐴 ⊆ 𝐵 𝐴 is a subtype of 𝐵.

Γ ⊢ 𝐵 : Type@𝑖

Γ ⊢ 𝐴 ≈ 𝐵 : Type@𝑖

Γ ⊢ 𝐴 ⊆ 𝐵

Γ ⊢ 𝐴 ⊆ 𝐴′

Γ ⊢ 𝐴′ ⊆ 𝐴′′

Γ ⊢ 𝐴 ⊆ 𝐴′′
⊢ Γ 𝑖 < 𝑗

Γ ⊢ Type@𝑖 ⊆ Type@ 𝑗

Γ ⊢ 𝐴 : Type@𝑖 Γ ⊢ 𝐴′ : Type@𝑖 Γ ⊢ 𝐴 ≈ 𝐴′ : Type@𝑖

Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type@𝑖 Γ, 𝑥 : 𝐴′ ⊢ 𝐵′ : Type@𝑖 Γ, 𝑥 : 𝐴′ ⊢ 𝐵 ⊆ 𝐵′

Γ ⊢ Π(𝑥 : 𝐴).𝐵 ⊆ Π(𝑥 : 𝐴′).𝐵′

⊢ Γ ⊆ Δ Γ is a sub-context of Δ.

⊢ · ⊆ ·

⊢ Γ ⊆ Γ′ Γ ⊢ 𝐴 : Type@𝑖

Γ′ ⊢ 𝐴′ : Type@𝑖 Γ ⊢ 𝐴 ⊆ 𝐴′

⊢ Γ, 𝑥 : 𝐴 ⊆ Γ′, 𝑥 : 𝐴′

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

McTT: A Verified Kernel for a Proof Assistant 242:31

A.2 Semantic definition
A.2.1 Domain. We recall the definition of the domain for convenience:

De Bruijn levels N ∋ 𝑧

Neutral domain values D
Ne ∋ 𝑣 ::= 𝑙𝑧 | rec(𝐴,𝑏,𝑀succ, 𝜌, 𝑣) | 𝑣 𝑤

Domain values D ∋ 𝑎, 𝑏,𝑚, 𝑛 ::= ↑𝑎 (𝑣) | N | U@𝑖 | Π(𝑎, 𝐵, 𝜌)
| ze | su(𝑎) | Λ(𝑀, 𝜌)

Normal domain values D
Nf ∋ 𝑤 ::= ↓𝑎 (𝑚)

Evaluation environments Env ∋ 𝜌

A.2.2 Evaluation.

J_K(_) :: Exp ⇀ Env ⇀ D

J𝑥𝑑K(𝜌) := 𝜌 (𝑑)
JΠ(𝑥 : 𝐴).𝐵K(𝜌) := Π(J𝐴K(𝜌), 𝐵, 𝜌)

Jrec𝑥.𝐴 𝑀zero (𝑦, 𝑟 .𝑀succ) 𝑁 K(𝜌) := rec · (𝐴, J𝑀zeroK(𝜌), 𝑀succ, 𝜌, J𝑁 K(𝜌))
J𝜆(𝑥 : 𝐴).𝑀K(𝜌) := Λ(𝑀, 𝜌)

J𝑀 𝑁 K(𝜌) := J𝑀K(𝜌) · J𝑁 K(𝜌)
J𝑡 [𝜎]K(𝜌) := J𝑡K(J𝜎K(𝜌))

J_K(_) :: Subst ⇀ Env ⇀ Env

JidK(𝜌) := 𝜌

JwkK(𝜌) := drop(𝜌)
J𝜎,𝑀/𝑥0K(𝜌) := ext(J𝜎K(𝜌), J𝑀K(𝜌))

J𝜎 ◦ 𝛿K(𝜌) := J𝜎K(J𝛿K(𝜌))

_ · _ :: D ⇀ D ⇀ D

(Λ(𝑀, 𝜌)) · 𝑎 := J𝑀K(ext(𝜌, 𝑎))
(↑Π (𝑎,𝐵,𝜌) (𝑣)) ·𝑚 := ↑J𝐵K(ext(𝜌,𝑚)) (𝑣 ↓𝑎 (𝑚))

rec · (_, _, _, _, _) :: Exp ⇀ D ⇀ Exp ⇀ Env ⇀ D ⇀ D

rec · (𝐴,𝑚zero, 𝑀succ, 𝜌, ze) :=𝑚zero

rec · (𝐴,𝑚zero, 𝑀succ, 𝜌, su(𝑚)) := J𝑀succK(ext(𝜌,𝑚, rec · (𝐴,𝑚zero, 𝑀succ, 𝜌,𝑚)))
rec · (𝐴,𝑚zero, 𝑀succ, 𝜌, ↑𝑏 (𝑣)) := ↑J𝐴K(ext(𝜌,↑𝑏 (𝑣))) (rec(𝐴,𝑚zero, 𝑀succ, 𝜌, 𝑣))

A.2.3 Readback.

R
Nf :: N ⇀ D

Nf ⇀ Nf

R
Nf

𝑧 (↓𝑎 (↑𝑏 (𝑣))) := R
Ne

𝑧 (𝑣) (where 𝑎 = ↑𝑎′ (𝑐) or N)
R
Nf

𝑧 (↓U@𝑖 (𝑎)) := R
Ty

𝑧 (𝑎)
R
Nf

𝑧 (↓Π (𝑎,𝐵,𝜌) (𝑚)) := 𝜆(𝑥 : RTy

𝑧 (𝑎)) .RNf

1+𝑧 (↓J𝐵K(ext(𝜌,↑𝑎 (𝑙𝑧))) (𝑚· ↑𝑎 (𝑙𝑧)))
R
Ty :: N ⇀ D ⇀ Nf

R
Ty

𝑧 (Π(𝑎, 𝐵, 𝜌)) := Π(𝑥 : RTy

𝑧 (𝑎)) .RTy

1+𝑧 (J𝐵K(ext(𝜌, ↑𝑎 (𝑙𝑧))))
R
Ty

𝑧 (↑𝑎 (𝑣)) := R
Ne

𝑧 (𝑣)
R
Ne :: N ⇀ D

Ne ⇀ Ne

R
Ne

𝑧′ (𝑙𝑧) := 𝑥max(𝑧′−𝑧−1,0)
R
Ne

𝑧 (rec(𝐴,𝑏,𝑀succ, 𝜌, 𝑣)) := rec𝑥.𝑊 R
Nf

𝑧 (↓J𝐴K(ext(𝜌,ze)) (𝑏)) (𝑥,𝑦.𝑊succ) RNe

𝑧 (𝑣)
(where 𝑎 := J𝐴K(ext(𝜌, ↑N (𝑙𝑧))),𝑊 := R

Ty

1+𝑧 (𝑎), and)
(𝑎′ := J𝐴K(ext(𝜌, su(↑N (𝑙𝑧)))),𝑚 := J𝑀succK(ext(𝜌, ↑N (𝑙𝑧), ↑𝑎 (𝑙1+𝑧))),𝑊succ := R

Nf

2+𝑧 (↓𝑎
′ (𝑚)))

R
Ne

𝑧 (𝑣 𝑤) := R
Ne

𝑧 (𝑣) RNf

𝑧 (𝑤)

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#domain_ne
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#domain
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#domain_nf
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Domain.html#env
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html#eval_exp
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html#eval_sub
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html#eval_app
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Evaluation.Definitions.html#eval_natrec
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Readback.Definitions.html#read_nf
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Readback.Definitions.html#read_typ
https://beluga-lang.github.io/McTT/icfp25/Mctt.Core.Semantic.Readback.Definitions.html#read_ne

242:32 Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka

A.3 Algorithmic judgements

⊢Nf
𝐴

𝑊 ⊆𝑊 ′ Algorithmic subtyping between normal types

𝑊 is not a universe or a Π type

⊢Nf𝐴 𝑊 ⊆𝑊

𝑖 ≤ 𝑗

⊢Nf𝐴 Type@𝑖 ⊆ Type@ 𝑗

⊢Nf𝐴 𝑊2 ⊆𝑊 ′
2

⊢Nf𝐴 Π(𝑥 :𝑊1).𝑊2 ⊆ Π(𝑥 :𝑊1).𝑊 ′
2

Γ ⊢𝐴 𝐴 ⊆ 𝐵 Algorithmic subtyping between well-formed types

⊢Nf𝐴 nbeΓ (𝐴) ⊆ nbeΓ (𝐵)
Γ ⊢𝐴 𝐴 ⊆ 𝐵

Γ ⊢𝐴 𝑀 ⇐ 𝐴 Term𝑀 is checked against type 𝐴

Γ ⊢𝐴 𝑀 ⇒𝑊 Γ ⊢𝐴 𝐴 ⊆ 𝐵

Γ ⊢𝐴 𝑀 ⇐ 𝐵

Γ ⊢𝐴 𝑀 ⇒𝑊 𝑊 is an inferred normal type of term𝑀

𝑥 : 𝐴 ∈ Γ

Γ ⊢𝐴 𝑥 ⇒ nbeΓ (𝐴) Γ ⊢𝐴 Type@𝑖 ⇒ Type@(1 + 𝑖) Γ ⊢𝐴 Nat ⇒ Type@0

Γ ⊢𝐴 zero ⇒ Nat

Γ ⊢𝐴 𝑀 ⇐ Nat

Γ ⊢𝐴 succ𝑀 ⇒ Nat

Γ, 𝑥 : Nat ⊢𝐴 𝐴 ⇒ Type@𝑖 Γ ⊢𝐴 𝑀zero ⇐ 𝐴[id, zero/𝑥]
Γ, 𝑦 : Nat, 𝑟 : 𝐴 ⊢𝐴 𝑀succ ⇐ 𝐴[(wk ◦ wk), succ 𝑦/𝑥] Γ ⊢𝐴 𝑁 ⇐ Nat

Γ ⊢𝐴 rec𝑥.𝐴 𝑀zero (𝑦, 𝑟 .𝑀succ) 𝑁 ⇒ nbeΓ (𝐴[id, 𝑁 /𝑥])
Γ ⊢𝐴 𝐴 ⇒ Type@𝑖 Γ, 𝑥 : 𝐴 ⊢𝐴 𝐵 ⇒ Type@ 𝑗

Γ ⊢𝐴 Π(𝑥 : 𝐴).𝐵 ⇒ Type@max(𝑖, 𝑗)
Γ ⊢𝐴 𝐴 ⇒ Type@𝑖 Γ, 𝑥 : 𝐴 ⊢𝐴 𝑀 ⇒𝑊

Γ ⊢𝐴 𝜆(𝑥 : 𝐴).𝑀 ⇒ Π(𝑥 : nbeΓ (𝐴)).𝑊
Γ ⊢𝐴 𝑀 ⇒ Π(𝑥 :𝑊).𝑊 ′ Γ ⊢𝐴 𝑁 ⇐𝑊

Γ ⊢𝐴 𝑀 𝑁 ⇒ nbeΓ (𝑊 ′[id, 𝑁 /𝑥])

Received 2025-02-27; accepted 2025-06-27

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 242. Publication date: August 2025.

	Abstract
	1 Introduction
	2 The McTT Infrastructure
	2.1 Theoretical Component in Rocq
	2.2 Algorithmic Component in Rocq
	2.3 Integration into the Compilation Pipeline

	3 A Core Martin-Löf Type Theory with Universe Hierarchy and Universe Subtyping
	3.1 Syntactic Definitions of MLTT
	3.2 Semantics of MLTT
	3.3 Normalization by Evaluation for MLTT

	4 Completeness and Soundness of NbE
	4.1 Partial Equivalence Relation (PER) Model
	4.2 Properties of the PER Model
	4.3 Completeness
	4.4 Kripke Gluing Model
	4.5 Properties of the Kripke Gluing Model
	4.6 Soundness
	4.7 Key Corollaries

	5 Algorithmic Component
	6 Implementation and Extraction
	7 Related Work
	7.1 Mechanization of Type Theories
	7.2 Verified Proof Checking Kernels

	8 Conclusion
	References
	A Definition of Martin-Löf type theory
	A.1 Syntactic definition
	A.2 Semantic definition
	A.3 Algorithmic judgements

