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Normalization by evaluation (NbE) based on an untyped domain model is a convenient and powerful way to

normalize terms to their 𝛽𝜂 normal forms. It enables a concise technical setup and simplicity for mechaniza-

tion. Nevertheless, to date, untyped NbE has only been studied for cumulative universe hierarchies, and its

correctness proof critically relies on the cumulativity of the system. Therefore we are faced with the question:

whether untyped NbE applies to a non-cumulative universe hierarchy? As such a universe hierarchy is also

widely used by proof assistants like Agda and Lean, this question is also of practical significance.

Our work answers this question positively. One important property derived from non-cumulativity is

uniqueness: every term has a unique type. In light of the uniqueness property, we work with a Martin-Löf

type theory with explicit universe levels ascribed in the syntactic judgments. On the semantic side, universe

levels are also explicitly managed, which leads to more complexity than the semantics with a cumulative

universe hierarchy. We prove that the NbE algorithm is sound and complete, and confirm that NbE does work

with non-cumulativity. Moreover, to capture common practice more faithfully, we also show that the explicit

annotations of universe levels, though technically useful, are logically redundant: NbE remains applicable

without these annotations. As such, we provide a mechanized foundation with NbE for non-cumulativity.
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1 Introduction
Over the past decades, type theory has evolved into a mature field, providing a rigorous theoretical

foundation for many popular proof assistants (e.g., Rocq [The Coq Development Team 2024],

Agda [The Agda Team 2024], Lean [de Moura and Ullrich 2021; de Moura et al. 2015]). These proof

assistants not only formalize cutting-edge mathematics [The Mathlib Community 2020] but also

verify critical software [Leroy et al. 2016]. By the Curry–Howard correspondence, propositions are

identified with types and proofs with programs. Hence, checking proofs essentially reduces to type-

checking programs. Since dependent types allow types to embed arbitrarily complex computations, a

practical type-checker must be coupled with a reliable evaluation procedure that always terminates.

This property, known as normalization, guarantees that every well-typed program computes to a

normal form and, on the meta-theoretic side, is closely related to logical consistency.
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A key design aspect in formulating type theories is how one organizes the hierarchy of uni-

verses [Palmgren 1998]. For instance, proof assistants such as Rocq adopt a cumulative universe
hierarchy, whereby a type in a lower universe automatically inhabits any higher universe. Several

normalization proofs in cumulative settings exist and can leverage this property. Nevertheless,

proof assistants such as Agda and Lean, choose to implement non-cumulative universes. With

non-cumulative universes, each well-formed type is assigned a unique universe level instead.

An interesting property in many non-cumulativity settings is type uniqueness (up to syntactic

equivalence), which simplifies certain aspects of constraint solving [Pujet and Tabareau 2023]. Nev-

ertheless, (mechanized) normalization proofs for non-cumulative type theories are comparatively

scarce and present different challenges, as several techniques employed in cumulative settings

cannot be applied directly.

In this paper, we focus on a particular normalization proof style, normalization by evaluation

(NbE) à la Abel [2013], which achieves 𝛽𝜂-normalization and scales well to dependent type theories.

NbE refers to a class of approaches to achieve normalization that generally consists of two steps. In

the first step, well-formed programs are evaluated to domain values in a chosen computational

domain. In the second step, normal forms are read from domain values in the computational

domain back to the syntax. Properties of the computational domain are taken advantage of. The

correctness of NbE is characterized by two critical theorems: the completeness theorem stating

that two syntactically equivalent terms must have equal normal forms, and the soundness theorem

stating that a well-formed term must be equivalent to its normal form computed by the algorithm.

Thus, NbE does not need to prove confluence explicitly, resulting in a more concise technical

setup and a shorter proof than a more traditional normalization proof based on a rewrite system

and Tait’s computability method [Tait 1967]. In addition, Abel [2013]’s NbE proof, based on an

untyped domain, has one extra merit: it is easily implementable and mechanizable. Recently, Hu

et al. [2023] presented a NbE proof in Agda of a modal dependent type theory in this style with

significantly fewer lines of code than other similar works [Abel et al. 2018; Adjedj et al. 2024;

Altenkirch and Kaposi 2016a, 2017; Pujet and Tabareau 2023, etc.]. Moreover, the NbE algorithm

induces a simple equivalence checking algorithm: we first normalize two terms of the same type,

and their equivalence is decided by the equality of their normal forms.

Existing proofs for untyped NbE, such as those by Abel [2013] andHu et al. [2023], were developed

in cumulative settings. Their techniques heavily depend on cumulativity. Abel [2013]; Gratzer

et al. [2019]’s paper proofs include a key step of taking limits of universe levels to infinity due to

cumulativity, so that their subsequent proofs are oblivious to universe levels. Hu et al. [2023] use

existential quantifications to avoid limits and the exposition of universe levels in the semantics.

Nonetheless, the proof still critically relies on the semantic cumulativity lemma of universes and a

few lemmas to lift universes to a high enough level. Even though the NbE algorithm given by Abel

and Hu et al. seems to adapt to both kinds of universe hierarchies naturally, it is not immediately

clear how the dependencies of cumulativity in the proofs can be taken away.

In this paper, we develop a mechanized normalization proof for Martin-Löf Type Theory (MLTT)

equipped with a full non-cumulative universe hierarchy. One immediate consequence of non-

cumulativity is that all well-formed programs have unique types up to syntactic equivalence. Our

work adapts the untyped NbE style of Abel [2013] and Hu et al. [2023] to a setting where precise

universe levels must be tracked. Following Pujet and Tabareau [2023], we introduce explicit universe

level annotations in the syntax. These additional annotations are also mirrored in the semantic

domain, and allow us to design a PER model and logical relation that precisely track universe levels

for the completeness and soundness proof to proceed. To bring our system closer to the common

practice where no explicit universe levels are ascribed, we also show that these explicit annotations

are logically redundant. This conclusion is achieved by proving an equivalence between two MLTTs
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with and without universe level annotations. We further show that there is an NbE algorithm that

can be applied to the unascribed system directly, while maintaining its completeness and soundness.

Our contributions are as follows:

• We provide a full mechanization in Agda of MLTT with a non-cumulative universe hierarchy.

Our semantic models preserve precise universe level information, which is essential to proving

the completeness and soundness of the NbE algorithm.

• We prove the uniqueness property and further show that universe level annotations are logically

redundant by establishing an equivalence between two versions of non-cumulative MLTT—one

with annotations and the other without. Moreover, we show that NbE directly applies to the

system without annotations, thereby aligning the theory better with the common practice in

proof assistants like Agda or Lean.

• We also include a mechanization of cumulative MLTT with a similar set of features and com-

pare our mechanization of non-cumulative MLTT with it, highlighting how non-cumulativity

complicates mechanization of meta-theoretic arguments, and discuss the trade-offs involved.

The remainder of the paper is organized as follows. Sec. 2 presents an overview of the problem

setting, technical challenges and solutions. Sec. 3 formalizes the syntax of MLTT under non-

cumulativity with explicit universe level annotations. In Sec. 4, we describe our NbE algorithm and,

in Sec. 5, establish its theoretical properties. Sec. 6 discusses the additional complexities observed in

the mechanization of the non-cumulative setting, and Sec. 7 shows that explicit universe annotations

are logically redundant. We conclude with related work in Sec. 8 and final remarks in Sec. 9.

This paper includes hyperlinks to our online artifact to provide correspondence between

the text and the mechanization to the readers. The mechanization, which assumes functional

extensionality as its sole additional axiom, and extended version of this paper are also published at

Zenodo [Jiang et al. 2025].

2 Overview
This section motivates the need for studying NbE in non-cumulative dependent type systems, and

identifies the key challenges and ideas in our work.

2.1 Motivation: Cumulativity versus Non-cumulativity
In MLTT, any well-formed type must live on some universe level. There are two common structures

of universe hierarchy: cumulative and non-cumulative. Cumulativity means that a type in a lower

universe level is automatically a type in all the higher universes, while non-cumulativity refers

to the lack of such a property. For example, the type of natural numbers N lives on level 0. With

cumulativity, N also lives on all universe levels. In the works of Abel [2013] and Hu et al. [2023],

cumulativity is achieved by extending the typing judgment with a rule allowing a type from a

lower universe level to live on all higher levels.

⊢ Γ

Γ ⊢ N : Set0

Γ ⊢ 𝑇 : Set𝑖

Γ ⊢ 𝑇 : Set1+𝑖
Note that repeatedly applying the cumulativity rule lifts the universe level of N to an arbitrary

level. Another (full-blown) way to support cumulativity is to introduce universe subtyping (c.f.

Rocq and [Fridlender and Pagano 2013; Jang et al. 2025]). In contrast, non-cumulativity forces N to

live on precisely universe level 0 by removing the cumulativity rule. Bringing types from lower

universe levels to higher ones requires explicit wrapping. In Agda, this is provided by the Lift
record.

1
For example, Lift 2 N lifts N from level 0 to 2, that can be abstracted using the following

rules.

1
https://github.com/agda/agda-stdlib/blob/4b3bb5419143666554f4fc8083e9353bdfbef5b9/src/Level.agda#L19
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Γ ⊢ 𝑇 : Set𝑖

Γ ⊢ Lift𝑗 𝑇 : Set𝑗+𝑖

Γ ⊢ 𝑡 : 𝑇
Γ ⊢ lift𝑗 𝑡 : Lift𝑗 𝑇

Γ ⊢ 𝑡 : Lift𝑗 𝑇
Γ ⊢ unlift 𝑡 : 𝑇

Both styles of universe hierarchies have their ownmerits. Cumulativity is simplymore convenient,

because it saves the users from the explicit wrappings and unwrappings of Lifts. Cumulativity also

matches many users’ natural set-theoretic mindsets of universes. Non-cumulativity, on the contrary,

has the uniqueness property, which says that a well-formed term must have a unique type (up to

syntactic equivalence). The uniqueness property in turn relieves proof assistant implementers from

the needs of universe subtyping and maintaining universe level constraint solvers, resulting in

simpler implementations of proof assistants. In reality, different trade-offs are taken by different

proof assistants. For example, Rocq is cumulative, while Agda and Lean adopt non-cumulativity.

Our work justifies the usage of untyped NbE in the non-cumulative universe setting. The

technique is motivated by the recent work of Hu et al. [2023]. The main contribution of their work

is to extend MLTT with a modality and a full cumulative universe hierarchy. Their mechanization

employs NbE à la Abel [2013] and can be easily back-ported to MLTT to provide much more concise

(in terms of lines of code) normalization proof than similar works [Abel et al. 2018; Adjedj et al. 2024;

Altenkirch and Kaposi 2016a, 2017; Pujet and Tabareau 2023]. Nevertheless, the correctness proof

of the NbE algorithm critically relies on cumulativity. Removing the dependency of cumulativity is

not entirely obvious and is therefore the main challenge in our mechanization.

2.2 Proof by Keeping Track of Universe Levels
Since non-cumulativity has determined one universe level for eachwell-formed type, following Pujet

and Tabareau [2023], we explicitly ascribe types and the typing and equivalence judgments with

universe levels, so that syntactically, universe levels are constantly kept track of. For example, Π

types Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗
and the typing judgment Γ ⊢ 𝑡 :𝑖 𝑇 have universe levels annotated.

The uniqueness property has a further and more complicated implication on the semantics. With

cumulativity, the semantics of a type constructor only needs to be based on smaller types on the

same level. For example, the semantics of a Π type on level 𝑖 only depends on the semantics of

the input and output types both on level 𝑖 . However, in a non-cumulative hierarchy, the semantics

must maintain a precise account of universe levels to reflect the uniqueness property. For a Π type

on level 𝑖 , its semantics now must depend on the input and output types on distinct levels 𝑗 and 𝑘 ,

respectively, and 𝑖 = max( 𝑗, 𝑘) must hold. This precision can be seen from the typing rules:

cumulative non-cumulative

Γ ⊢ 𝑆 : Set𝑖 Γ, 𝑥 : 𝑆 ⊢ 𝑇 : Set𝑖

Γ ⊢ Π(𝑥 : 𝑆).𝑇 : Set𝑖

Γ ⊢ 𝑆 :
1+ 𝑗 Set𝑗 Γ, 𝑥 : 𝑆 ⊢ 𝑇 :

1+𝑘 Set𝑘

Γ ⊢ Π(𝑥 : 𝑆 𝑗 ).𝑇 𝑘
:
1+max( 𝑗, 𝑘 ) Setmax( 𝑗,𝑘 )

This precision in universe levels poses an increasing complication in the Partial Equivalence
Relation (PER) model, which is used to establish the completeness theorem, compared to the

cumulative hierarchy. The definition of the Kripke model for the soundness theorem becomes even

more complex, because the Kripke model is defined on top of the PER model. Our mechanization

demonstrates how exactly these models are defined in Agda to eventually prove both completeness

and soundness theorems of NbE.

Once completeness and soundness of NbE are established, we can derive several consequences,

including exactness of universe levels, injectivity of type constructors, consistency and canonicity.

One extra syntactic consequence of the non-cumulative system is the uniqueness property. Although

it is deemed obvious, its proof can only be established at this late stage. Complexity in the proofs
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primarily arises in the elimination cases, which require the injectivity of type constructors, making

this property a consequence of the NbE proof as well.

2.3 Approaching Practical Syntax: Removing Explicit Universe Levels
Explicit annotations of universe levels are important to complete the NbE proof, but in reality, they

are hardly a common practice. Empowered by the semantic models and the uniqueness property, we

further show that these annotations are indeed logically redundant. In other words, all highlighted

universe levels (such as the highlighted levels in the earlier typing rule for non-cumulative Π
types) are dropped to form an unascribed MLTT and these two versions of MLTT’s are equivalent.

To our surprise, formally establishing this conclusion is not very straightforward. The direction

going from the unascribedMLTT to the ascribedMLTT essentially re-annotates universe levels back

to types and judgments. The proof requires us to prove not only the existence of re-annotations, but

also that they these re-annotations always lead to equivalent terms. Such a stronger conclusion leads

to a significantly larger proof than what we originally anticipated. When the syntactic equivalence

between two systems is established, it allows us to transport properties proved in the ascribed

system to the unascribed system. It further allows us to develop an NbE algorithm for the unascribed

system directly and justify its soundness and completeness. Despite the complication in the proof,

the unascribed NbE algorithm itself, completely irrelevant to universe-level annotations, remains

simple and efficient.

3 Syntactic Definition of MLTT with a Non-Cumulative Universe Hierarchy
In this section, we define a version of MLTT with a non-cumulative universe hierarchy. The feature

set is standard and is a representative subset of MLTT. Universe levels are explicitly annotated in

this syntax and judgments.

3.1 Syntax

De Bruijn Indices 𝑛 ∈ N Variable Names 𝑥,𝑦, 𝑧 Universe Levels 𝑖, 𝑗, 𝑘 ∈ N
Terms, Types 𝑟, 𝑠, 𝑡, 𝑅, 𝑆,𝑇 ::= 𝑥𝑛 | 𝜆(𝑥 : 𝑆 𝑖 ).𝑡 | 𝑡 𝑠 | 0 | suc 𝑡 | rec(𝑥 .𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) 𝑡 |

lift𝑗 𝑡 | unlift 𝑡 | 𝑡 [𝜎] |
Set𝑖 | Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗 | N | Lift𝑗 𝑇 𝑖

Substitutions 𝜎, 𝜏,𝛾 ::= Id | � | 𝜎, 𝑡 : 𝑇 𝑖/𝑥0 | 𝜎 ◦ 𝜏
Normal Forms 𝑣,𝑤,𝑉 ,𝑊 ::= 𝑢 | 𝜆(𝑥 :𝑊 𝑖 ).𝑤 | 0 | suc 𝑣 | lift𝑗 𝑣 | Set𝑖 |

Π(𝑥 : 𝑉 𝑖 ).𝑊 𝑗 | N | Lift𝑗 𝑉 𝑖

Neutral Forms 𝑢 ::= 𝑥𝑛 | 𝑢 𝑣 | rec(𝑥 .𝑊 𝑖 ) 𝑣𝑧 (𝑥,𝑦.𝑣𝑠 ) 𝑢 | unlift 𝑢
Contexts Γ,Δ,Ψ ::= · | Γ, 𝑥 : 𝑇 𝑖

In our mechanization, we use de Bruijn indices to represent variables. In the text, for clarity,

we incorporate abstract names 𝑥 for readability.
2
When de Bruijn indices are significant, they are

marked as subscripts of variables 𝑥𝑛 . For example, 𝑥0 is the topmost variable in the context, and

𝑆 ⊢ 0 (where 0 is a de Bruijn index) is now represented as 𝑥 : 𝑆 ⊢ 𝑥0. Otherwise, we often omit the

subscripts to reduce noise. To avoid confusion, natural numbers in the object language are denoted

with monospaced fonts (N = 0, suc 𝑡 ), while natural numbers N in the meta-language (for variable

position, universe level, etc.) are denoted with normal fonts (0, 1, 𝑖, 𝑗, 𝑛).

2
We cannot fully adopt named representations due to the problem that our formulation of explicit substitution is defined for

de Bruijn indices only. Interested readers can refer to our mechanization for a full de-Bruijn-index representation.
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Types and terms. The syntax of types and terms is unified as often is the case for dependently

typed calculi. The highlighted superscripts
𝑖
in the syntax indicate exact positions where explicit

universe level annotations are added. Types in our system include universe types Set𝑖 , Π-types
(Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗

), whose introduction form is 𝜆-abstraction (𝜆(𝑥 : 𝑆 𝑖 ).𝑡 ) and elimination form is

function application (𝑡 𝑠). The “.” in the syntax denotes a binding structure, where variables appear

before it are bound in the term that appears after it. For example, in Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗
, 𝑥 in bound

in 𝑇 . We also introduce a type of natural numbers N whose introduction forms are (0 and suc 𝑡 )
and elimination form is the recursor rec(𝑥 .𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) 𝑡 . In the recursor, we do recursion on 𝑡 ,

which is the natural number to be recursed on. If it computes to 0, then the recursor computes

to the base case, represented by 𝑟 . If 𝑡 computes to suc 𝑡 ′ for some 𝑡 ′, then the recursor hits the

step case, represented by 𝑠 . The step case 𝑠 has two open variables, where 𝑥 is for the predecessor,

i.e., 𝑡 ′ in this case, and 𝑦 is replaced by the recursive call. Finally, the overall type of the recursion

is computed by 𝑥 .𝑇 𝑖
by replacing 𝑥 with 𝑡 . This type is often referred to as a motive [McBride

2000]. To provide a way to manually adjust the universe of types, we also have Lift𝑗 𝑇
𝑖
, whose

introduction form is lift𝑗 𝑡 and elimination form is unlift 𝑡 . Last but not least, our type theory is

given as an explicit substitution calculus, where substitutions are delayed and explicitly recorded.

Consequently, a dedicated syntax 𝑡 [𝜎] for applying a substitution 𝜎 to term 𝑡 is needed.

Normal forms and neutral forms of this system are mutually defined and standard. Neutral

forms include variables and all elimination forms where the scrutinee is a neutral form and other

components are normal forms (e.g., 𝑢 𝑣). Normal forms include all introduction forms of each

type and all types themselves, whose component are also normal forms (e.g., 𝜆(𝑥 : 𝑊 𝑖 ).𝑤 and

Π(𝑥 :𝑊 𝑖 ).𝑉 𝑗
). Neutral forms are also normal forms.

Explicit substitutions. Explicit substitution is a conventional formulation to study NbE on type

theories [Abel 2013; Altenkirch and Kaposi 2016b; Hu and Pientka 2023; Wieczorek and Biernacki

2018]. The syntax of our explicit substitutions follows that of Abadi et al. [1991] which consists

of 4 cases. Identity substitutions Id do nothing. Weakening substitutions � weaken de Bruijn

indices of all free variables by one. They extend the context with an variable on top. Substitution

extensions (𝜎, 𝑡 : 𝑇 𝑖/𝑥0) substitute the topmost variable (as indicated by 𝑥0) by 𝑡 and applies 𝜎 to

the other open variables. Since we adopt Church-style functions, context extensions also include

additional type annotations, similar to Abadi et al. [1991]. Substitution compositions 𝜎 ◦ 𝜏 compose

two substitutions. It first applies 𝜎 and then applies 𝜏 to a term. For brevity, we also introduce

notations for two commonly used composed substitutions: [𝑠 : 𝑆 𝑖/𝑥0] is short for [Id, 𝑠 : 𝑆 𝑖/𝑥0],
which substitutes 𝑠 for the topmost variable, and down-shifts de Bruijn indices of other variables by

1. The weakening of substitution q(𝑇 𝑖 , 𝜎) weakens the substitution 𝜎 by extending the domain and

co-domain contexts with type (𝑇 [𝜎])𝑖 and 𝑇 𝑖
. It is concretely expanded to (𝜎 ◦ � ), (𝑥0 : 𝑇 𝑖/𝑥0).

3.2 Typing and Equivalence
The typing and equivalence rules are defined by sixmutually defined judgments in total: context well-

formedness ⊢ Γ , typing (term well-formedness) Γ ⊢ 𝑡 :𝑖 𝑇 (Fig. 1), substitution well-formedness

Γ ⊢ 𝜎 : Δ (Fig. 2), context equivalence ⊢ Γ ≡ Δ , term equivalence Γ ⊢ 𝑠 ≡ 𝑡 :𝑖 𝑇 (Fig. 1) and

substitution equivalence Γ ⊢ 𝜎 ≡ 𝜏 : Ψ (Fig. 2). The mutual definitions of context equivalence,

substitution well-formedness and substitution equivalence are due to our choice of explicit substi-

tution, otherwise substitution well-formedness and substitution equivalence are no longer needed

and context equivalence can be defined independently later. This style of definitions follows Abel

[2013] closely. For conciseness, we only present the important rules in the paper, and defer the full

set of the rules to Appendix A.
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Γ ⊢ 𝑡 :𝑖 𝑇 𝑡 has type 𝑇 at level 𝑖 under context Γ

⊢ Γ

Γ ⊢ N :
1 Set0

⊢ Γ

Γ ⊢ Set𝑖 :2+𝑖 Set1+𝑖

Γ ⊢ 𝑇 :
1+𝑖 Set𝑖

Γ ⊢ Lift𝑗 𝑇 𝑖
:
1+ 𝑗 +𝑖 Set𝑗+𝑖

⊢ Γ 𝑥 : 𝑇 𝑖 ∈ Γ

Γ ⊢ 𝑥 :
𝑖 𝑇

Γ ⊢ 𝑆 :
1+𝑖 Set𝑖 Γ, 𝑥 : 𝑆 𝑖 ⊢ 𝑇 :

1+ 𝑗 Set𝑗

Γ ⊢ Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗
:
1+max( 𝑗, 𝑘 ) Setmax(𝑖, 𝑗 )

Γ ⊢ 𝑆 :
1+𝑖 Set𝑖 Γ, 𝑥 : 𝑆 𝑖 ⊢ 𝑡 : 𝑗 𝑇

Γ ⊢ 𝜆(𝑥 : 𝑆 𝑖 ).𝑡 :max(𝑖, 𝑗 ) Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗

Γ ⊢ 𝑆 :
1+𝑖 Set𝑖 Γ, 𝑥 : 𝑆 𝑖 ⊢ 𝑇 :

1+ 𝑗 Set𝑗 Γ ⊢ 𝑠 :max(𝑖, 𝑗 ) Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗 Γ ⊢ 𝑡 :𝑖 𝑆
Γ ⊢ 𝑠 𝑡 : 𝑗 𝑇 [𝑠 : 𝑆 𝑖/𝑥0]

Γ ⊢ 𝑡 :𝑖 𝑇
Γ ⊢ lift𝑗 𝑡 : 𝑗 +𝑖 Lift𝑗 𝑇 𝑖

Γ ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑡 : 𝑗 +𝑖 Lift𝑗 𝑇 𝑖

Γ ⊢ unlift 𝑡 :𝑖 𝑇 𝑖

⊢ Γ

Γ ⊢ 0 :
0 N

Γ ⊢ 𝑡 :0 N
Γ ⊢ suc 𝑡 :0 N

Γ, 𝑧 : N0 ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑟 :𝑖 𝑇 [0 : N0/𝑧]

Γ, 𝑥 : N0, 𝑦 : 𝑇 𝑖 ⊢ 𝑠 :𝑖 𝑇 [( �◦� ), suc 𝑥1 : N0/𝑧] Γ ⊢ 𝑡 :0 N
Γ ⊢ rec(𝑧.𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) 𝑡 :𝑖 𝑇 [𝑡 : N0/𝑧0]

Γ ⊢ 𝜎 : Δ Δ ⊢ 𝑡 :𝑖 𝑇
Γ ⊢ 𝑡 [𝜎] :𝑖 𝑇 [𝜎]

Γ ⊢ 𝑡 :𝑖 𝑆 Γ ⊢ 𝑆 ≡ 𝑇 :
1+𝑖 Set𝑖

Γ ⊢ 𝑡 :𝑖 𝑇

Γ ⊢ 𝑠 ≡ 𝑡 :𝑖 𝑇 𝑡 and 𝑠 of type 𝑇 are equivalent at level 𝑖 under context Γ

Γ ⊢ 𝑆 :
1+𝑖 Set𝑖

Γ, 𝑥 : 𝑆 𝑖 ⊢ 𝑇 :
1+ 𝑗 Set𝑗 Γ, 𝑥 : 𝑆 𝑖 ⊢ 𝑡 : 𝑗 𝑇 Γ ⊢ 𝑠 :𝑖 𝑆

Γ ⊢ (𝜆(𝑥 : 𝑆 𝑖 ).𝑡) 𝑠 ≡ 𝑡 [𝑠 : 𝑆 𝑖/𝑥] : 𝑗 𝑇 [𝑠 : 𝑆 𝑖/𝑥]
Γ ⊢ 𝑡 :𝑖 𝑇

Γ ⊢ unlift (lift𝑗 𝑡) ≡ 𝑡 :𝑖 𝑇

Γ ⊢ 𝑆 :
1+𝑖 Set𝑖 Γ, 𝑥 : 𝑆 𝑖 ⊢ 𝑇 :

1+ 𝑗 Set𝑗
Γ ⊢ 𝑡 :max(𝑖, 𝑗 ) Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗

Γ ⊢ 𝑡 ≡ 𝜆(𝑥 : 𝑆 𝑖 ).
(
(𝑡 [� ]) 𝑥

)
:
max(𝑖, 𝑗 ) Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗

Γ ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑡 : 𝑗 +𝑖 Lift𝑗 𝑇 𝑖

Γ ⊢ 𝑡 ≡ lift𝑗 (unlift 𝑡) : 𝑗 +𝑖 Lift𝑗 𝑇 𝑖

Γ, 𝑧 : N0 ⊢ 𝑇 :
1+𝑖 Set𝑖

Γ ⊢ 𝑟 :𝑖 𝑇 [0 : N0/𝑧] Γ, 𝑥 : N0, 𝑦 : 𝑇 𝑖 ⊢ 𝑠 :𝑖 𝑇 [( � ◦ � ), suc 𝑥1 : N0/𝑧]
Γ ⊢ rec(𝑧.𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) 0 ≡ 𝑟 :𝑖 𝑇 [0 : N0/𝑧]

Γ, 𝑧 : N0 ⊢ 𝑇 :
1+𝑖 Set𝑖

Γ ⊢ 𝑟 :𝑖 𝑇 [0 : N0/𝑧] Γ, 𝑥 : N0, 𝑦 : 𝑇 𝑖 ⊢ 𝑠 :𝑖 𝑇 [( � ◦ � ), suc 𝑥1 : N0/𝑧] Γ ⊢ 𝑡 :0 N
Γ ⊢ rec(𝑧.𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) (suc 𝑡) ≡ 𝑠 [𝑡 : N0/𝑥, (rec(𝑧.𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) 𝑡)𝑖/𝑦] :𝑖 𝑇 [suc 𝑡 : N0/𝑧]

Fig. 1. Typing and equivalence rules for terms.

Well-formedness of terms and substitutions. Fig. 1 presents the typing judgments for terms and

types. As explained in Sec. 2.2, we explicitly ascribe the levels of types. In other words, given

Γ ⊢ 𝑡 :𝑖 𝑇 , the universe level of𝑇 is 𝑖 . Note that the typing judgment does not include the cumulativity

rule in Sec. 2.1, and therefore the system is non-cumulative. In some rules, there are redundant

premises. For instance, in the 𝜆 rule, the well-formedness of 𝑆 is implied by the well-formedness of

𝑡 . We include these redundant premises in order to prove the presupposition lemma (Theorem 3.2)

purely syntactically, following Harper and Pfenning [2005].
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Γ ⊢ 𝜎 : Δ 𝜎 has codomain context Δ under Γ

⊢ Γ

Γ ⊢ Id : Γ

⊢ Γ,𝑇 𝑖

Γ,𝑇 𝑖 ⊢� : Γ

Γ ⊢ 𝜎 : Δ Δ ⊢ 𝜏 : Ψ

Γ ⊢ 𝜏 ◦ 𝜎 : Ψ

Γ ⊢ 𝜎 : Δ Δ ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑡 :𝑖 𝑇 [𝜎]

Γ ⊢ 𝜎, 𝑡 : 𝑇 𝑖/𝑥0 : (Δ, 𝑥 : 𝑇 𝑖 )
Γ ⊢ 𝜎 : Δ ⊢ Δ ≡ Ψ

Γ ⊢ 𝜎 : Ψ

Γ ⊢ 𝜎 ≡ 𝜏 : Δ 𝜎 and 𝜏 having codomain context Δ are equivalent substitutions under Γ

Γ ⊢ 𝜎 : Δ Δ ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑡 :𝑖 𝑇 𝜎

Γ ⊢� ◦ (𝜎, 𝑡 : 𝑇 𝑖/𝑥0) ≡ 𝜎 : Δ

Γ ⊢ 𝜎 : Γ,𝑇 𝑖

Γ ⊢ 𝜎 ≡ ( � ◦ 𝜎, 𝑥0 [𝜎] : 𝑇 𝑖/𝑥0) : Γ,𝑇 𝑖

Γ ⊢ 𝜏 : Δ Δ ⊢ 𝜎 : Ψ Ψ ⊢ 𝑇 :
1+𝑖 Set𝑖 Δ ⊢ 𝑡 :𝑖 𝑇 [𝜎]

Γ ⊢ (𝜎, 𝑡 : 𝑇 𝑖/𝑥0) ◦ 𝜏 ≡ 𝜎 ◦ 𝜏, (𝑡 [𝜏] : 𝑇 𝑖/𝑥0) : Ψ,𝑇 𝑖

Fig. 2. Typing and equivalence rules for substitutions (excerpt).

The typing rules for explicit substitutions are shown at the top of Fig. 2. Due to explicit sub-

stitutions, we must include a context conversion rule at the end to swap the result context to an

equivalent one.

Syntactic equivalence. The syntactic equivalence relation describes the equivalence relation

between terms. The type theory regards two equivalent terms "the same" and they cannot be distin-

guished within the system. Syntactic equivalence rules usually consist of three kinds of rules: PER

rules that include symmetry and transitivity, congruence rules that propagate equivalence deeper

in the syntactic structures, and computation rules that describe how computation is performed.

With explicit substitutions, there are also rules to describe how substitutions interact with terms.

For brevity, the bottom of Fig. 1 highlights the 𝛽 and 𝜂 computational rules of syntactic equivalence.

Other rules are presented in Appendix A. Note that the Lift type supports 𝜂 expansion as well,

mimicking its behavior in Agda. Finally, the bottom of Fig. 2 defines the syntactic equivalence

between substitutions. They are usually properties if substitutions are defined as operations, but

we need to list them as rules due to explicit substitutions.

Syntactic properties. Two important syntactic properties of this system are presupposition and

equivalent context theorem. The context equivalence theorem states that every judgment still

holds when we change its input context to an equivalent context. Presupposition states that each

judgment implies the well-formedness of every component.

Theorem 3.1 (Context Conversion ). Given ⊢ Γ ≡ Δ,
• If Γ ⊢ 𝑡 :𝑖 𝑇 , then Δ ⊢ 𝑡 :𝑖 𝑇 ;
• If Γ ⊢ 𝑡 ≡ 𝑠 :𝑖 𝑇 , then Δ ⊢ 𝑡 ≡ 𝑠 :𝑖 𝑇 ;
• If Γ ⊢ 𝜎 : Ψ, then Δ ⊢ 𝜎 : Ψ;
• If Γ ⊢ 𝜎 ≡ 𝜏 : Ψ, then Δ ⊢ 𝜎 ≡ 𝜏 : Ψ.

Theorem 3.2 (Presupposition ).

• If ⊢ Γ ≡ Δ, then ⊢ Γ and ⊢ Δ;
• If Γ ⊢ 𝑡 :𝑖 𝑇 , then ⊢ Γ and Γ ⊢ 𝑇 :

1+𝑖 Set𝑖 ;
• If Γ ⊢ 𝑠 ≡ 𝑡 :𝑖 𝑇 , then ⊢ Γ and Γ ⊢ 𝑠 :𝑖 𝑇 and Γ ⊢ 𝑡 :𝑖 𝑇 and Γ ⊢ 𝑇 :

1+𝑖 Set𝑖 ;
• If Γ ⊢ 𝜎 : Δ, then ⊢ Γ and ⊢ Δ;
• If Γ ⊢ 𝜎 ≡ 𝜏 : Δ, then ⊢ Γ and Γ ⊢ 𝜎 : Δ and Γ ⊢ 𝜏 : Δ and ⊢ Δ.
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D

D
nf

Exp Nf Ne

D
ne

Semantics (𝛽𝜂)

Semantics (𝛽)

Syntax

Level

Index

R
nf R

ne

↑𝐴
↓𝐵J_K

⊇⊇ 𝑥

x

|Γ |−

Fig. 3. Diagram of NbE à la Abel in a locally nameless style.

These properties are proved by induction directly. With these two properties, redundant premises

in the syntactic judgments can be derived from other premises. Hence it becomes easier to construct

a derivation tree.

4 Normalization by Evaluation
In this section, we introduce an NbE algorithm with ascribed rules for the syntax presented in the

previous section. The general definitions follow Abel et al. [2017].

Fig. 3, adapted from Abel et al. [2017], illustrates the general procedure of such an NbE algorithm.

Given a well-typed term Γ ⊢ 𝑡 : 𝑇 , the whole NbE algorithm then works in a 3-stage manner: (1)

interpreting each free de Bruijn indices 𝑥𝑖 of type 𝑇𝑖 in Γ to reflected (↑𝐴 in Fig. 3) de Bruijn levels

x |Γ |−1−𝑖 (|Γ |− in Fig. 3) to form an environment 𝜌 ; (2) evaluating (J_K in Fig. 3) 𝑡 in 𝜌 and reifying (↓𝐵
in Fig. 3) the result to a normal semantic value; (3) reading back (R

nf
in Fig. 3) the normal semantic

value into a syntactic normal form. This is more refined than the usual 2-stage description of NbE

by putting a dedicated emphasis on evaluating free variables. The exact definition of evaluation,

readback, and context evaluation will be developed in this section. Readers are welcome to refer

back to this diagram to alternate between high-level description and exact definitions.

4.1 Semantic Values
Environment 𝜌, 𝜙, 𝜃 ∈ N → D

Semantic Values (D) 𝑎, 𝑏, 𝑐, 𝑓 , ::= L𝜆𝜆𝜆𝑥 .𝑡M𝜌 | 0 | suc 𝑑 | lift𝑖 𝑎 | Set𝑖 |
𝐴, 𝐵, 𝐹 LΠΠΠ 𝐴𝑖 (𝑥 .𝑇 𝑗 )M𝜌 | N | Lift𝑗 𝐴

𝑖 | ↑𝑖
𝐴
𝑒

Neutral Semantic Values (Dne) 𝑒, 𝐸 ::= x𝑘 | 𝑒 𝑑 | Lrec (𝑧.𝑇 𝑖 ) 𝑎 (𝑥,𝑦.𝑠) 𝑒M𝜌 | unlift 𝑒

Normal Semantic Values (Dnf) 𝑑, 𝐷 ::= ↓𝑖
𝐴
𝑎

Most semantic values correspond directly to the types and introduction form of in the syn-

tax, including 0, suc 𝑑 , lift𝑖 𝑎, Set𝑖 , N and Lift𝑗 𝑎
𝑖
. Functional values (L𝜆𝜆𝜆𝑥.𝑡M𝜌 , LΠΠΠ 𝐴𝑖 (𝑥 .𝑇 𝑗 )M𝜌 )

are formulated using closures [Landin 1964]. Reflected neutral values ↑𝑖
𝐴
𝑒 are also values. Neu-

tral semantic values include variables and elimination forms blocked by neutral semantic values

(𝑒 𝑑, unlift 𝑒, Lrec (𝑧.𝑇 𝑖 ) 𝑎 (𝑥,𝑦.𝑠) 𝑒M𝜌 ). Lrec (𝑧.𝑇 𝑖 ) 𝑎 (𝑥,𝑦.𝑠) 𝑒M𝜌 is also equipped with a closure.

Closures capture all free variables used by inner terms, such that later evaluation of the body inside

the binders only depends on this exact 𝜌 . Variables x𝑘 are represented by de Bruijn levels 𝑘 . De

Bruijn levels can be viewed as an absolute name (cf. locally nameless [Charguéraud 2012]) assigned

to the variable that is invariant to context extensions. Normal semantic values only include reified

values ↓𝑖
𝐴
𝑎. Reflection ( ↑𝑖

𝐴
) and reification ( ↓𝑖

𝐴
) are markers, indicating that the actual 𝜂-expansion

still has to be performed later. Our semantic values also carry the universe level information for

two reasons: (1) these universe levels provide important information to develop a precise PER

model and logical relation on semantic values (which will be discussed in Sec. 5); (2) our normal
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forms, as a subset of the expressions, need to have universe level annotations, so carrying them in

values simplify the definition of readback. This semantic domain is untyped, as it does not preclude

construction of non-nonsensical values like suc Set𝑖 .
Environments 𝜌 : N → D are mappings from natural numbers (de Bruijn indices) to semantic

values. Consequently, environment extension (𝜌 ;𝑑) creates a newmapping where (𝜌 ;𝑑) (0) = 𝑑 and

(𝜌 ;𝑑) (1 + 𝑖) = 𝜌 (𝑖), and environment drop creates another new mapping (drop 𝜌) (𝑛) = 𝜌 (1 + 𝑛).

4.2 Evaluation and Readback Functions
Evaluation consists of five mutually defined (partial) functions: term evaluation J𝑡K𝜌 ↘ 𝑎, substitu-

tion evaluation J𝜎K𝑠 (𝜌) ↘ 𝜙 , application 𝑓 ·𝑎 ↘ 𝑏, recursion-application rec·(𝑧.𝑇 𝑖 , 𝑎, (𝑥,𝑦.𝑠), 𝑏, 𝜌) ↘

𝑐 and unlift-application unlift· 𝑎 ↘ 𝑏. Their rules are shown in Fig. 4. We present these partial

functions as relations from inputs to outputs to stay close to our formalization. It is easy to show that

these relations are indeed partial functions. We will also sometimes use them as functions, where

we implicitly assume an existential quantifier for the results. The latter three are helper relations

that handle the elimination forms in the evaluation. Definitions of these helper functions have a

similar structure: one case when the scrutinee is of each introduction form; and one case when

the scrutinee is a reflected neutral value. 𝜂-expansion happens in the last case of application and

unlift-application and is interleaved with 𝛽-reduction. With explicit substitutions, the evaluation

rule of 𝑡 [𝜎] makes the whole evaluation more aligned for terms before and after the 𝛽-reduction,

which simplifies the justification of 𝛽-equality in the semantics domain [Abel 2013].

Readback includes three mutually defined functions: R
nf

𝑛 to readback normal values, R
ne

𝑛 to

readback neutral values, and
𝑖
R
ty

𝑛 to readback normal type values at universe level 𝑖 . Their rules are

shown in Fig. 5. The number 𝑛 is needed to convert a de Bruijn level x𝑘 into its corresponding de

Bruijn index 𝑥𝑛−𝑘−1. Readback of closures triggers the evaluation of the function body. 𝜂-expansion

happens when reading back a normal value (↓𝑖
𝐴
𝑎) when 𝐴 is ΠΠΠ or Lift.

With evaluation and readback defined, our NbE algorithm follows the 3-step manner, as formally

stated in the following definition. The context is first evaluated to an environment (↑Γ). Both 𝑡 and𝑇
are evaluated in this environment (J𝑡K↑Γ and J𝑇 K↑Γ ). The semantic value of 𝑡 is type-value-directed

reified (↓𝑖J𝑇 K↑Γ
) to a normal semantic value then readback (R

nf
) to a normal form.

Definition 4.1 (NbE Algorithm). For Γ ⊢ 𝑡 :𝑖 𝑇 , NbE
𝑇 𝑖

Γ (𝑡) := R
nf

|Γ | (↓
𝑖

J𝑇 K↑Γ
J𝑡K↑Γ )

The only component that has not been formally introduced is the context evaluation (↑Γ), which
implements the first step of NbE à la Abel. This operation is inductively defined over the structure

of the context. For empty context ·, it returns an empty environment, that is defined to return

garbage (in our case, we return 0) for any de Bruijn index 𝑛. For context extension (Γ, 𝑥 : 𝑇 𝑖
), it

evaluates Γ to 𝜌 , then evaluates 𝑇 under 𝜌 to 𝐴, and creates a semantic variable with de Bruijn

level |Γ | reflected by ↑𝑖
𝐴
. Notably, although context evaluation, as a procedure, occurs before the

evaluation of 𝑡 , its definition still depends on the evaluation function.

As reification takes a universe level as input, the NbE algorithm also requires this as input.

This level (and other universe level ascriptions in 𝑡 and 𝑇 ) is propagated and used throughout the

evaluation and readback process.

During the design of evaluation and readback functions, it is tempting to add universe level

checks as a guard to ensure the correctness of the algorithm. The equations with forms like
= max(𝑖, 𝑗 )

and
= 0

in the rules in Fig. 4 and Fig. 5 reflect such checks. For example, in R
nf

𝑛 ↓𝑖 = 0

N 0 ↘ 0, or

equivalently represented as R
nf

𝑛 ↓0N0 ↘ 0, means the readback only succeeds after checking the

universe level of the reified value to be 0. All such checks are explicitly marked by dashed boxes.
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J𝑡K𝜌 ↘ 𝑎 𝑡 evaluates to 𝑎 under 𝜌

JNK𝜌 ↘ N

J𝑆K𝜌 ↘ 𝐴

JΠ(𝑥 : 𝑆 𝑖 ).𝑇 𝑗 K𝜌 ↘ LΠΠΠ 𝐴𝑖 (𝑥 .𝑇 𝑗 )M𝜌

J𝑇 K𝜌 ↘ 𝐴

JLift𝑗 𝑇 𝑖 K𝜌 ↘ Lift𝑗 𝐴
𝑖

JSet𝑖K𝜌 ↘ Set𝑖

J𝜎K𝑠 (𝜌) ↘ 𝜙 J𝑡K𝜙 ↘ 𝑎

J𝑡 [𝜎]K𝜌 ↘ 𝑎 J𝑥𝑛K𝜌 ↘ 𝜌 (𝑛) J0K𝜌 ↘ 0

J𝑡K𝜌 ↘ 𝑎

Jsuc 𝑡K𝜌 ↘ suc 𝑎

J𝑟K𝜌 ↘ 𝑎 J𝑡K𝜌 ↘ 𝑏 rec·(𝑧.𝑇 𝑖 , 𝑎, (𝑥,𝑦.𝑠), 𝑏, 𝜌) ↘ 𝑐

Jrec (𝑧.𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) 𝑡K𝜌 ↘ 𝑐

J𝜆(𝑥 : 𝑆 𝑖 ).𝑡K𝜌 ↘ L𝜆𝜆𝜆𝑥 .𝑡M𝜌

J𝑠K𝜌 ↘ 𝑓 J𝑡K𝜌 ↘ 𝑎 𝑓 · 𝑎 ↘ 𝑏

J𝑠 𝑡K𝜌 ↘ 𝑏

J𝑡K𝜌 ↘ 𝑎

Jlift𝑖 𝑡K𝜌 ↘ lift𝑖 𝑎

J𝑡K𝜌 ↘ 𝑎 unlift· 𝑎 ↘ 𝑏

Junlift 𝑡K𝜌 ↘ 𝑏

J𝜎K𝑠 (𝜌) ↘ 𝜙 𝜎 evaluates to 𝜙 under 𝜌

JIdK𝑠 (𝜌) ↘ 𝜌 J�K𝑠 (𝜌) ↘ drop 𝜌

J𝜎K𝑠 (𝜌) ↘ 𝜙

J𝑡K𝜙 ↘ 𝑑

J𝜎, 𝑡 : 𝑇 𝑖/𝑥0K𝑠 (𝜌) ↘ 𝜙 ;𝑑

J𝜏K𝑠 (𝜌) ↘ 𝜙

J𝜎K𝑠 (𝜙) ↘ 𝜃

J𝜎 ◦ 𝜏K𝑠 (𝜌) ↘ 𝜃

𝑓 · 𝑎 ↘ 𝑏 apply 𝑓 to 𝑎 is 𝑏

J𝑡K𝜌 ;𝑎 ↘ 𝑏

L𝜆𝜆𝜆𝑥0.𝑡M𝜌 · 𝑎 ↘ 𝑏

J𝑇 K𝜌,𝑎 ↘ 𝐵

↑𝑘 = max(𝑖, 𝑗 )
LΠΠΠ 𝐴𝑖 (𝑥0 .𝑇 𝑗 ) M𝜌

𝑒 · 𝑎 ↘ ↑ 𝑗
𝐵
𝑒 (↓𝑖

𝐴
𝑎)

rec·(𝑧.𝑇 𝑖 , 𝑎, (𝑥,𝑦.𝑠), 𝑏, 𝜌) ↘ 𝑐 rec-apply 𝑏 to 𝑎 and 𝑠 under 𝜌 with motive 𝑇 𝑖
is 𝑐

rec·(𝑧.𝑇 𝑖 , 𝑎, (𝑥,𝑦.𝑠), 0, 𝜌) ↘ 𝑎

rec·(𝑧.𝑇 𝑖 , 𝑎, (𝑥,𝑦.𝑠), 𝑏, 𝜌) ↘ 𝑐 J𝑠K𝜌 ;𝑏;𝑐 ↘ 𝑐′

rec·(𝑧.𝑇 𝑖 , 𝑎, (𝑥0, 𝑦1 .𝑠), suc 𝑏, 𝜌) ↘ 𝑐′

J𝑇 K
𝜌 ;↑ 𝑗

𝐴
𝑒

↘ 𝐵

rec·(𝑧0 .𝑇 𝑖 , 𝑎, (𝑥,𝑦.𝑠), ↑ 𝑗
𝐴
𝑒, 𝜌) ↘ ↑𝑖

𝐵
Lrec (𝑧0.𝑇 𝑖 ) 𝑎 (𝑥,𝑦.𝑠) 𝑒M𝜌

unlift· 𝑎 ↘ 𝑏 unlift-apply 𝑎 is 𝑏

unlift· lift𝑖 𝑎 ↘ 𝑎 unlift· ↑𝑘 = 𝑗 + 𝑖
Lift𝑗 𝐴

𝑖
𝑒 ↘ ↑𝑖

𝐴
unlift 𝑒

Fig. 4. Relational definition of evaluation functions.

However, we later find these checks are not necessary, after the establishment of NbE soundness

discussed in Sec. 5.3. That is, an NbE algorithm that fully removes all such checks is still sound and

complete.

Such relaxations are possible because we only feed the NbE algorithm with well-typed terms.

Other forms of relaxations also exist in the original NbE algorithms [Abel 2013], including relax-

ations of well-scopedness in converting de Bruijn indices and levels and equal-type-value check

in reading back reified neutrals. The algorithm can certainly do more checks, but these checks
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R
nf

𝑛 𝑑 ↘ 𝑣 Readback from normal semantic value 𝑑 to normal form 𝑣

R
ne

𝑛 𝑒 ↘ 𝑢 Readback from neutral semantic value 𝑒 to neutral form 𝑢

𝑖
R
ty

𝑛 𝐴 ↘ 𝑉 Readback from semantic value 𝐴 of types to normal form 𝑉

𝑖
R
ty

𝑛 𝐴 ↘𝑊

R
nf

𝑛 ↓ 𝑗 = 1 + 𝑖
Set𝑖

𝐴 ↘𝑊 R
nf

𝑛 ↓𝑖 = 0

N 0 ↘ 0

R
nf

𝑛 ↓𝑖 = 0

N 𝑎 ↘ 𝑤

R
nf

𝑛 ↓𝑖 = 0

N suc 𝑎 ↘ suc𝑤

𝑖
R
ty

𝑛 𝐴 ↘𝑊 𝑎 · ↑𝑖
𝐴
x𝑛 ↘ 𝑏 J𝑇 K

𝜌 ;↑𝑖
𝐴
x𝑛

↘ 𝐵 R
nf

1+𝑛 ↓ 𝑗
𝐵
𝑏 ↘ 𝑤

R
nf

𝑛 ↓𝑘 = max(𝑖, 𝑗 )
LΠΠΠ 𝐴𝑖 (𝑥0 .𝑇 𝑗 ) M𝜌

𝑎 ↘ 𝜆(𝑥0 :𝑊 𝑖 ).𝑤

unlift· 𝑎 ↘ 𝑏 R
nf

𝑛 ↓𝑖
𝐴
𝑏 ↘ 𝑤

R
nf

𝑛 ↓𝑘 = 𝑗 + 𝑖
(Lift𝑗 𝐴

𝑖 )
𝑎 ↘ lift𝑗 𝑤

R
ne

𝑛 𝑒 ↘ 𝑢

R
nf

𝑛 ↓ 𝑗 = 0

𝑁
↑𝑖𝐴𝑒 ↘ 𝑢

R
ne

𝑛 𝑒 ↘ 𝑢

R
nf

𝑛 ↓𝑘 = 𝑖

(↑ 𝑗 = 1 + 𝑖
𝐴

𝐸 )
↑𝑖
𝐴′𝑒 ↘ 𝑢

R
ne

𝑛 x𝑙 ↘ 𝑥𝑛−𝑙−1

R
ne

𝑛 𝑒 ↘ 𝑢 R
nf

𝑛 𝑑 ↘ 𝑤

R
ne

𝑛 𝑒 𝑑 ↘ 𝑢 𝑤

R
ne

𝑛 𝑒 ↘ 𝑢

R
ne

𝑛 unlift 𝑒 ↘ unlift 𝑢

J𝑇 K
𝜌 ;↑0Nx𝑛

↘ 𝐴 𝑖
R
ty

1+𝑛 𝐴 ↘𝑊 J𝑇 K𝜌 ;0 ↘ 𝐴′
R
nf

𝑛 (↓𝑖
𝐴′𝑎) ↘ 𝑤

J𝑡K
𝜌 ;↑0Nx𝑛 ;↑

𝑖

𝐴
x1+𝑛

↘ 𝑏 J𝑇 K
𝜌 ;suc(↓0

𝑁
x𝑛 )

↘ 𝐴′′
R
nf

2+𝑛 ↓𝑖
𝐴′′𝑏 ↘ 𝑤 ′

R
ne

𝑛 𝑒 ↘ 𝑢

R
ne

𝑛 Lrec (𝑧0.𝑇 𝑖 ) 𝑎 (𝑥0, 𝑦1.𝑠) 𝑒M𝜌 ↘ rec (𝑧0.𝑊 𝑖 ) 𝑤 (𝑥0.𝑦1 .𝑤 ′) 𝑢
R
ne

𝑛 𝑒 ↘ 𝑉

𝑖
R
ty

𝑛 ↓ 𝑗 = 𝑖 + 1

𝐴
𝑒 ↘ 𝑉

𝑗 = 1 + 𝑖
R
ty

𝑛 Set𝑖 ↘ Set𝑖
𝑖 = 0

R
ty

𝑛 N ↘ N

𝑖
R
ty

𝑛 𝐴 ↘ 𝑉 J𝑇 K
𝜌 ;↑𝑖

𝐴
x𝑛

↘ 𝐵 𝑗
R
ty

1+𝑛 𝐵 ↘𝑊

𝑘 = max(𝑖, 𝑗 )
R
ty

𝑛 LΠΠΠ 𝐴𝑖 (𝑥0.𝑇 𝑗 )M𝜌 ↘ Π(𝑥0 : 𝑉 𝑖 ).𝑊 𝑗

𝑖
R
ty

𝑛 𝐴 ↘𝑊

𝑘 = 𝑗 + 𝑖
R
ty

𝑛 Lift𝑗 𝐴
𝑖 ↘ Lift𝑗 𝑊

𝑖

Fig. 5. Relational Definition of Readback Functions

are always satisfied by the well-typed terms. As long as the algorithm is designed properly, these

properties will be maintained as an invariant. Though these checks affect the algorithm’s behavior

for ill-typed terms, it is not a concern both theoretically and practically. In practical type-checking

of dependent-type systems, the normalization is still invoked on sub-terms that have already been

type checked.

5 PER Model and Soundness and Completeness of NbE
This section develops an inductive-recursively defined PER model for (domain) values and a Kripke

logical relation to show the completeness and soundness of NbE. There are several changes to

adapt the definitions and proofs to the non-cumulative system: both the PER model and Kripke

logical relations are refined to ensure that exact universe level information is maintained. For

readability, definitions in this section are described in an informal mathematical language, while for

a successful mechanization, the exact formulation in Agda is of grave importance, whose simplified

signatures and more discussions are given later in Sec. 6. In this section, we no longer highlight the

universe level annotations.
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5.1 PER model
The PER model is used to justify extensionality rules in the semantics, as two terms that are

equivalent up to 𝜂 rules can be evaluated to different semantic values. We use 𝑎 ≡ 𝑎′ ∈ A to denote

that 𝑎 and 𝑎′ are related by the PER A defined on D × D. The notation 𝑎 ∈ A means that there

is some 𝑎′ such that 𝑎 ≡ 𝑎′ ∈ A. We abuse the same notation for PERs defined on D
ne × D

ne
and

D
nf × D

nf
.

The definitions start with three extreme PERs,N𝑒 ,N 𝑓 and T𝑦𝑖 .N𝑒 relates two neutral semantic

values if they can be readback to the same neutral form. N 𝑓 relates two normal semantic values if

they can be readback to the same normal form. T𝑦𝑖 relates two semantic type values if they can be

readback to the same normal-form type on universe level 𝑖 .

• 𝑒 ≡ 𝑒′ ∈ N𝑒 := ∀𝑛, ∃𝑢, Rne

𝑛 𝑒 ↘ 𝑢 and R
ne

𝑛 𝑒′ ↘ 𝑢

• 𝑑 ≡ 𝑑 ′ ∈ N 𝑓 := ∀𝑛, ∃𝑤, Rnf

𝑛 𝑑 ↘ 𝑤 and R
nf

𝑛 𝑑 ′ ↘ 𝑤

• 𝐴 ≡ 𝐴′ ∈ T𝑦𝑖 := ∀𝑛, ∃𝑉 , 𝑖Rty

𝑛 𝐴 ↘ 𝑉 and
𝑖
R
ty

𝑛 𝐴′ ↘ 𝑉

We also need a PER N𝑎𝑡 for base type N and another PER N𝑒𝑢𝑖 to relate to semantic

values reflected from neutral values. N𝑎𝑡 is defined inductively with three cases, and N𝑒𝑢𝑖 has

one.

0 ≡ 0 ∈ N𝑎𝑡

𝑎 ≡ 𝑎′ ∈ N𝑎𝑡

suc 𝑎 ∈ suc 𝑎′ ∈ N𝑎𝑡

𝑒 ≡ 𝑒′ ∈ N𝑒

↑𝑖𝐴𝑒 ≡ ↑𝑖′𝐴′𝑒
′ ∈ N𝑎𝑡

𝑒 ≡ 𝑒′ ∈ N𝑒

↑𝑖𝐴𝑒 ≡ ↑𝑖𝐴′𝑒
′ ∈ N𝑒𝑢𝑖

With the base PERs defined, we then define the PERs of semantic type values via a family of

inductive-recursive definitions [Dybjer 2000]. These definitions simultaneously define two PERs:

(1) 𝐴 ≡ 𝐵 ∈ S𝑒𝑡𝑖 , which inductively relates type values𝐴 and 𝐵, and (2) 𝑎 ≡ 𝑏 ∈ E𝑙𝑖 (D) given

D :: 𝐴 ≡ 𝐵 ∈ S𝑒𝑡𝑖 , which recursively relates two values 𝑎 and 𝑏 whose type values are 𝐴 and 𝐵. ::

assigns a name to a predicate.
3
Conventionally, we pick D, E,J for predicate names. This style of

definitions follows Abel [2013] and Abel et al. [2018]. The universe hierarchy of the PER model is

then formed by performing a well-founded recursion on the universe level 𝑖 , as we only refer to

PERs that are already defined at lower universe levels for each case. 𝐴 ≡ 𝐵 ∈ S𝑒𝑡𝑖 consists of five
cases, one for neutral types, and one for each semantic type values. The two bullet points − in each

case explain the inductively defined case and the recursion over this case respectively.

• 𝐸 ≡ 𝐸′ ∈ N𝑒
and E𝑙𝑖 (D) = N𝑒𝑢𝑖D :: ↑1+𝑖𝐴 𝐸 ≡ ↑1+𝑖𝐴′ 𝐸′ ∈ S𝑒𝑡𝑖

– Two reflected neutral type values are related on universe level 𝑖 if the reflection happens on

the next higher universe level.

– Two values of reflected neutral type values are related if they are related by N𝑒𝑢𝑖 .

•
and E𝑙𝑖 (D) = N𝑎𝑡D :: N ≡ N ∈ S𝑒𝑡𝑖=0

– Two N are related on universe level 0.

– Two values of N are related if they are related by N𝑎𝑡 .

•
and E𝑙𝑖 (D) = S𝑒𝑡 𝑗 .D :: Set𝑗 ≡ Set𝑗 ∈ S𝑒𝑡𝑖=1+𝑗

– Two Set are related on universe level 1 + 𝑗 if they are both Set𝑗 .
– Two values of Set𝑗 are related if they are related by S𝑒𝑡 𝑗 .

• D1 :: 𝐴 ≡ 𝐴′ ∈ S𝑒𝑡 𝑗
D2 :: ∀𝑎 ≡ 𝑎′ ∈ E𝑙 𝑗 (D1).J𝑇 K𝜌 ;𝑎 ≡ J𝑇 ′K𝜌 ′

;𝑎′ ∈ S𝑒𝑡𝑘
and E𝑙𝑖 (D) = P𝑖D :: LΠΠΠ 𝐴 𝑗 (𝑥0 .𝑇𝑘 )M𝜌 ≡ LΠΠΠ 𝐴′ 𝑗 (𝑥0 .𝑇 ′𝑘 )M𝜌 ′ ∈ S𝑒𝑡𝑖=max( 𝑗,𝑘 )

3
In mechanization, D represents a proof term of the judgment.
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where 𝑓 ≡ 𝑓 ′ ∈ P𝑖 := ∀(E :: 𝑎 ≡ 𝑎′ ∈ E𝑙 𝑗 (D1)), 𝑓 · 𝑎 ≡ 𝑓 ′ · 𝑎′ ∈ E𝑙 𝑗 (D2 (E)). Note that D2 is a

family of PERs parameterized over another PER.

– Two ΠΠΠ type values are related on universe level max( 𝑗, 𝑘) if (1) their input type values are
related on universe level 𝑗 ; (2) for all related values 𝑎, 𝑎′ evaluating the output type𝑇,𝑇 ′

at the

extended environments 𝜌 ;𝑎 and 𝜌 ′;𝑎′ results in two related type values on universe level 𝑘 ;

– Two values 𝑓 , 𝑓 ′ of ΠΠΠ type values are related if for all related values 𝑎, 𝑎′ of type values 𝐴 and

𝐴′
, the result of applying 𝑓 to 𝑎 and 𝑓 ′ to 𝑎′ are related. This reflects the extensionality of Π.

• D1 :: 𝐴 ≡ 𝐴′ ∈ S𝑒𝑡𝑘
and E𝑙𝑖 (D) = U𝑛𝑙𝑖D :: Lift𝑗 𝐴

𝑘 ≡ Lift𝑗 𝐴
′𝑘 ∈ S𝑒𝑡𝑖=𝑗+𝑘

where 𝑎 ≡ 𝑎′ ∈ U𝑛𝑙𝑖 := unli · 𝑎 ≡ unli · 𝑎′ ∈ E𝑙𝑘 (D1)
– Two Lift values are related on universe level 𝑗 + 𝑘 if (1) their inner type values are related on

level 𝑘 ; (2) the lifted universe levels are both 𝑗 ;

– Two values of Lift are related if the result of unlift-applying them are related. This reflects the

extensionality of Lift.
Compared with PERs for cumulative universes, the PERs here have stricter conditions on universe

levels in all cases. Type values must be related at a specific S𝑒𝑡𝑖 given by the equational side

conditions. For example, in the non-cumulative setting, N and N must be related at universe level 0

and Set𝑗 and Set𝑗 must be related at universe level 1 + 𝑗 . In contrast, the cumulative setting would

allow the former to be related at any universe level 𝑖 , and the latter to be related at any universe

level 𝑖 > 𝑗 . Meanwhile, although previous discussions suggest that the NbE algorithm might be

irrelevant to the universe level information, tracking the universe levels in values makes such a

precise PER definition possible. Otherwise it is impossible, for example, to know the universe levels

of domain and codomain in the Π case. More concretely, in the cumulative setting, in the Π-case
values no longer carry any universe level information. Domain and co-domain types are just related

at universe level 𝑖 , which is the level of Π-types themselves:

D1 :: 𝐴 ≡ 𝐴′ ∈ S𝑒𝑡𝑖
D2 :: ∀𝑎 ≡ 𝑎′ ∈ E𝑙𝑖 (D1).J𝑇 K𝜌 ;𝑎 ≡ J𝑇 ′K𝜌 ′

;𝑎′ ∈ S𝑒𝑡𝑖
and E𝑙𝑖 (D) = P𝑖D :: LΠΠΠ 𝐴 (𝑥0 .𝑇 )M𝜌 ≡ LΠΠΠ 𝐴′ (𝑥0.𝑇 ′)M𝜌 ′ ∈ S𝑒𝑡𝑖

where𝑓 ≡ 𝑓 ′ ∈ P𝑖 := ∀(E :: 𝑎 ≡ 𝑎′ ∈ E𝑙𝑖 (D1)), 𝑓 · 𝑎 ≡ 𝑓 ′ · 𝑎′ ∈ E𝑙𝑖 (D2 (E))
Several properties are expected for this PER model, including symmetry and transitivity. The

most important one is the realizability theorem. This property is also known as the “sandwiching”

property, as it shows that our PER is sandwiched between two extreme PERs, N𝑒 and N 𝑓 .

Theorem 5.1 (Realizability ). Given D :: 𝐴 ≡ 𝐴′ ∈ S𝑒𝑡𝑖
• 𝐴 ≡ 𝐴′ ∈ T𝑦𝑖 ;
• If 𝑒 ≡ 𝑒′ ∈ N𝑒 , then ↑𝑖𝐴𝑒 ≡ ↑𝑖𝐴′𝑒′ ∈ E𝑙𝑖 (D);
• If 𝑎 ≡ 𝑎′ ∈ E𝑙𝑖 (D), then ↓𝑖𝐴𝑎 ≡ ↓𝑖𝐴′𝑎′ ∈ N 𝑓 .

Finally, we can define PERs for contextsD :: Γ ≡ Δ ∈ C𝑡𝑥 and environments 𝜌 ≡ 𝜙 ∈ E𝑙Γ(D) .

The inductive-recursive definition for these two PERs is given below. The need for this induction-

recursion instead of a direct elimination on the structure of Γ isdue to proof relevance of Agda [Hu

et al. 2023].

•
and E𝑙Γ(D) = ⊤D :: · ≡ · ∈ C𝑡𝑥

where ⊤ means a trivial PER that relates everything

– Two empty contexts are related.

– Any two environments are related.
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• D1 :: Γ ≡ Γ′ ∈ C𝑡𝑥
D2 :: ∀𝜌 ≡ 𝜌 ′ ∈ E𝑙 (D1).J𝑇 K𝜌 ≡ J𝑇 K𝜌 ′ ∈ S𝑒𝑡𝑖 ,

and E𝑙Γ(D) = C𝑜𝑛𝑠D :: Γ, 𝑥0 : 𝑇
𝑖 ≡ Γ′, 𝑥0 : 𝑇 ′𝑖 ∈ C𝑡𝑥

where 𝜌 ≡ 𝜌 ′ ∈ C𝑜𝑛𝑠 := E :: (drop(𝜌) ≡ drop(𝜌 ′) ∈ E𝑙Γ(D1)) and 𝜌 (0) ≡ 𝜌 ′ (0) ∈ D2 (E)
– Γ, 𝑥0 : 𝑇

𝑖
and Γ′, 𝑥0 : 𝑇 ′𝑖′

are related if (1) 𝑖 = 𝑖′, (2) Γ and Γ′ are recursively related, and (3) 𝑇

and 𝑇 ′
are evaluated to related values in 𝜌 and 𝜌 ′ of Γ and Γ′

– 𝜌 and 𝜌 ′ of Γ,𝑇 𝑖
and Γ,𝑇 ′𝑖′

if (1) the dropped environments are recursively related, and (2) the

0-th value in them are related

Our context evaluation function creates an initial environment that is related (to itself) by the

PER induced by Γ, that is, for any D :: Γ ≡ Γ ∈ C𝑡𝑥 , ↑Γ ≡ ↑Γ ∈ E𝑙Γ(D).

5.2 Completeness
The completeness of NbE can be decomposed into two parts: (1) syntactically equal terms are

evaluated to related values; (2) related values are read back to the same normal form. (2) is already

implied by the realizability of our PER. In this section, we will develop the proof of the first part.

Given the defined PERs and their properties, we can first define semantic context equivalence

⊨ Γ ≡ Δ := Γ ≡ Δ ∈ C𝑡𝑥 . Semantic context well-formedness is defined via semantic context equiv-

alence, ⊨ Γ := ⊨ Γ ≡ Γ. The semantic judgment of equivalent terms and equivalent substitutions

are as follows.

• Γ ⊨ 𝑠 ≡ 𝑡 :𝑖 𝑇 :=

– D :: ⊨ Γ;
– For any related 𝜌 ≡ 𝜌 ′ ∈ E𝑙Γ(D).

∗ 𝑇 is evaluated to related type values: E :: J𝑇 K𝜌 ≡ J𝑇 K𝜌 ′ ∈ S𝑒𝑡𝑖 ;
∗ 𝑠 and 𝑡 are evaluated to related values: J𝑠K𝜌 ≡ J𝑡K𝜌 ′ ∈ E𝑙𝑖 (E);

• Γ ⊨ 𝜎 ≡ 𝜏 : Δ :=

– D1 :: ⊨ Γ and D2 :: ⊨ Δ;
– For any related 𝜌 ≡ 𝜌 ′ ∈ E𝑙Γ(D1),
𝜎 and 𝜏 are evaluated to related environments: J𝜎K𝑠 (𝜌) ≡ J𝜏K𝑠 (𝜌 ′) ∈ E𝑙Γ(D2);

Similarly, semantic typing and substitution typing are defined via semantic judgment of equiva-

lent terms and substitutions. Γ ⊨ 𝑡 :𝑖 𝑇 := Γ ⊨ 𝑡 ≡ 𝑡 :𝑖 𝑇 and Γ ⊨ 𝜎 : Δ := Γ ⊨ 𝜎 ≡ 𝜎 : Δ. With all

the semantic judgments defined, we can now state the fundamental theorem for completeness.

Theorem 5.2 (Fundamental Theorem for NbE Completeness ).

• If ⊢ Γ, then ⊨ Γ;
• If Γ ⊢ 𝑡 :𝑖 𝑇 , then Γ ⊨ 𝑡 :𝑖 𝑇 ;
• If Γ ⊢ 𝜎 : Δ, then Γ ⊨ 𝜎 : Δ;

• If ⊢ Γ ≡ Δ, then ⊨ Γ ≡ Δ;
• If Γ ⊢ 𝑠 ≡ 𝑡 :𝑖 𝑇 , then Γ ⊨ 𝑠 ≡ 𝑡 :𝑖 𝑇 ;
• If Γ ⊢ 𝜎 ≡ 𝜏 : Δ, then Γ ⊨ 𝜎 ≡ 𝜏 : Δ.

Combining it with the realizability of PER completes the proof of the completeness of NbE, which

states that it normalizes any two equivalent terms to the same normal form.

Theorem 5.3 (NbE Completeness ). If Γ ⊢ 𝑠 ≡ 𝑡 :𝑖 𝑇 , then∃𝑤 ,NbE𝑇
𝑖

Γ (𝑠) ↘ 𝑤 andNbE𝑇
𝑖

Γ (𝑡) ↘ 𝑤

5.3 Soundness
In this section, we establish the soundness of the NbE. As usual, the soundness proof requires a

Kripke logical relation. We need two mutually defined relations, first by recursion on universe level

𝑖 , then on D :: 𝐴 ≡ 𝐵 ∈ S𝑒𝑡𝑖 : (1) Γ ⊢ 𝑇 ®
𝑖 D between well-formed types𝑇 and type values 𝐴; (2)

Γ ⊢ 𝑡 : 𝑇 ®
𝑖𝑎 ∈ E𝑙𝑖 (D) between well-formed terms 𝑡 and values 𝑎. As this logical relation “glues”

a term 𝑡 with a semantic value 𝑎, it is also called a gluing model. As contexts may be weakened
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during the typing derivation, we need to directly encode that our logical relations are stable under

weakenings. With explicit substitutions, weakenings are characterized by a restricted form of sub-

stitutions, called weakening substitutions, denoted by 𝜅 in this section. Weakening substitutions

are substitutions syntactically equivalent to the 𝑛-th composition of � (0-th composition is Id),
whose formal definitions are shown below.

Γ ⊢ 𝜅 ≡ Id : Δ

Γ ⊢ 𝜅 : Δ

Γ ⊢ 𝜅′ : (Δ, 𝑥0 : 𝑇 𝑖 ) Γ ⊢ 𝜅 ≡ � ◦ 𝜅′ : Δ
Γ ⊢ 𝜅 : Δ

Before the definition for all type values in S𝑒𝑡𝑖 , we first need to define the logical relation

Γ ⊢ 𝑡 ® 𝑎 ∈N𝑎𝑡 for the base PER N𝑎𝑡 ,

Γ ⊢ 𝑡 ≡ 0 :
0 N

Γ ⊢ 𝑡 ® 0 ∈N𝑎𝑡

Γ ⊢ 𝑡 ≡ suc 𝑠 :0 N Γ ⊢ 𝑠 ® 𝑎 ∈N𝑎𝑡

Γ ⊢ 𝑡 ® suc 𝑎 ∈N𝑎𝑡

𝑒 ∈ N𝑒 ∀𝜅,Δ ⊢ 𝜅 : Γ → Δ ⊢ 𝑡 [𝜅] ≡ R
ne

|Δ |𝑒 :
0 N

Γ ⊢ 𝑡 ® ↑𝑖𝐴𝑒 ∈N𝑎𝑡

We define the two logical relations for each case of S𝑒𝑡𝑖 below. Similar to the definition of the

PER model, the universe levels in each case are precisely tracked and propagated.

• 𝐸 ≡ 𝐸′ ∈ N𝑒

D :: ↑1+𝑖𝐴 𝐸 ≡ ↑1+𝑖𝐴′ 𝐸′ ∈ S𝑒𝑡𝑖
– Γ ⊢ 𝑇 ®

𝑖 D :=

∗ T is well-typed: Γ ⊢ 𝑇 :
1+𝑖 Set𝑖 ;

∗ For any weakening substitution 𝜅 s.t. Δ ⊢ 𝜅 : Γ,
· 𝑇 [𝜅] is syntactically equivalent to the readback of 𝐸: Δ ⊢ 𝑇 [𝜅] ≡ R

ne

|Δ |𝐸 :
1+𝑖 Set𝑖

– Γ ⊢ 𝑡 : 𝑇 ®
𝑖 (↑𝑖𝐵𝑒) ∈ E𝑙𝑖 (D) :=

∗ 𝑇 is well-typed: Γ ⊢ 𝑇 :
1+𝑖 Set𝑖 ;

∗ 𝑡 is well-typed: Γ ⊢ 𝑡 :𝑖 𝑇 ;
∗ 𝑒 ∈ N𝑒;

∗ For any weakening substitution 𝜅 s.t. Δ ⊢ 𝜅 : Γ,
· 𝑇 [𝜅] is syntactically equivalent to the readback of 𝐸: Δ ⊢ 𝑇 [𝜅] ≡ R

ne

|Δ |𝐸 :
1+𝑖 Set𝑖

· 𝑡 [𝜅] is syntactically equivalent to the readback of 𝑒: Δ ⊢ 𝑡 [𝜅] ≡ R
ne

|Δ |𝑒 :
𝑖 𝑇 [𝜅]

•
D :: N ≡ N ∈ S𝑒𝑡𝑖=0
– Γ ⊢ 𝑇 ®

𝑖 D :=

∗ 𝑇 is syntactically equivalent to N: Γ ⊢ 𝑇 ≡ N :
1 Set0;

– Γ ⊢ 𝑡 : 𝑇 ®
𝑖𝑎 ∈ E𝑙𝑖 (D) :=

∗ 𝑇 is syntactically equivalent to N: Γ ⊢ 𝑇 ≡ N :
1 Set0;

∗ 𝑡 and 𝑎 are glued by the logical relation for N𝑎𝑡 : Γ ⊢ 𝑡 ® 𝑎 ∈N𝑎𝑡

•
D :: Set𝑗 ≡ Set𝑗 ∈ S𝑒𝑡𝑖=1+𝑗
– Γ ⊢ 𝑇 ®

𝑖 D := Γ ⊢ 𝑇 ≡ Set𝑗 :
2+𝑗 Set1+𝑗 ;

– Γ ⊢ 𝑡 : 𝑇 ®
𝑖𝑎 ∈ E𝑙𝑖 (D) :=

∗ 𝑇 is syntactically equivalent to Set𝑗 : Γ ⊢ 𝑇 ≡ Set𝑗 :
2+𝑗 Set1+𝑗 ;

∗ 𝑡 is well-typed: Γ ⊢ 𝑡 :𝑖 𝑇 ;
∗ E :: 𝑎 ∈ S𝑒𝑡 𝑗
∗ 𝑡 is a type, 𝑎 is a type value, and 𝑡 is glued with 𝑎: Γ ⊢ 𝑡 ®𝑗 E

• D1 :: 𝐴 ≡ 𝐴′ ∈ S𝑒𝑡 𝑗
D2 :: ∀𝑎 ≡ 𝑎′ ∈ E𝑙 𝑗 (D1).J𝑇 K𝜌 ;𝑎 ≡ J𝑇 ′K𝜌 ′

;𝑎′ ∈ S𝑒𝑡𝑘
D :: LΠΠΠ 𝐴 𝑗 (𝑥0 .𝑇𝑘 )M𝜌 ≡ LΠΠΠ 𝐴′ 𝑗 (𝑥0 .𝑇 ′𝑘 )M𝜌 ′ ∈ S𝑒𝑡𝑖=max( 𝑗,𝑘 )
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– Γ ⊢ 𝑇 ®
𝑖 D := ∃ types S, R

∗ 𝑆 and 𝑅 are well-typed: Γ ⊢ 𝑆 :
1+𝑗 Set𝑗 and Γ, 𝑆 𝑗 ⊢ 𝑅 :

1+𝑘 Set𝑘 ;

∗ 𝑇 is syntactically equivalent to this Π type: Γ ⊢ 𝑇 ≡ Π(𝑥 : 𝑆 𝑗 ).𝑅𝑘 :
1+max( 𝑗,𝑘 ) Setmax( 𝑗,𝑘 ) ;

∗ For any weakening substitution 𝜅 s.t. Δ ⊢ 𝜅 : Γ,
· 𝑆 [𝜅] is recursively glued with 𝐴: Δ ⊢ 𝑆 [𝜅] ®𝑗 D1:

· For any term 𝑠 and value 𝑏 s.t. E :: 𝑏 ∈ E𝑙 𝑗 (D1) and Δ ⊢ 𝑠 : 𝑆 [𝜅] ®𝑗𝑏 ∈ E𝑙 𝑗 (D1),
Δ ⊢ 𝑅 [𝜅, 𝑠 : 𝑆 𝑗 ] ®𝑘D2 (E)

– Γ ⊢ 𝑡 : 𝑇 ®
𝑖𝑎 ∈ E𝑙𝑖 (D) := ∃ types S, R

∗ 𝑆 and 𝑅 are well-typed: Γ ⊢ 𝑆 :
1+𝑗 Set𝑗 and Γ, 𝑆 𝑗 ⊢ 𝑅 :

1+𝑘 Set𝑘 ;

∗ 𝑇 is syntactically equivalent to this Π type: Γ ⊢ 𝑇 ≡ Π(𝑥 : 𝑆 𝑗 ).𝑅𝑘 :
1+𝑖 Set𝑖 ;

∗ 𝑡 is well-typed: Γ ⊢ 𝑡 :𝑖 𝑇 ;
∗ 𝑎 ∈ P𝑖 (P𝑖 is defined in Sec. 5.1);

∗ For any weakening substitution 𝜅 s.t. Δ ⊢ 𝜅 : Γ,
· Δ ⊢ 𝑆 [𝜅] ®𝑗 D1

· For any term 𝑠 and value 𝑏 s.t. E :: 𝑏 ∈ E𝑙 𝑗 (D1) and Δ ⊢ 𝑠 : 𝑆 [𝜅] ®𝑗𝑏 ∈ E𝑙 𝑗 (D1).
(𝑡 [𝜅] 𝑠) is recursively glued with (𝑎 ·𝑏): Δ ⊢ (𝑡 [𝜅]) 𝑠 : 𝑅 [𝜅, 𝑠 : 𝑆 𝑗 ] ®𝑘 (𝑎 ·𝑏) ∈ E𝑙 (D2 (E))

• D1 :: 𝐴 ≡ 𝐴′ ∈ S𝑒𝑡𝑘
D :: Lift𝑗 𝐴

𝑘 ≡ Lift𝑗 𝐴
′𝑘 ∈ S𝑒𝑡𝑖=𝑗+𝑘

– Γ ⊢ 𝑇 ®
𝑖 D := ∃ type S

∗ 𝑆 is well-typed: Γ ⊢ 𝑆 :
1+𝑘 Set𝑘

∗ 𝑇 is syntactically equivalent to this Lift type: Γ ⊢ 𝑇 ≡ Lift𝑗 𝑆
𝑘
:
1+𝑖 Set𝑖

∗ For any weakening substitution 𝜅 s.t. Δ ⊢ 𝜅 : Γ,
𝑆 [𝜅] is recursively glued with 𝐴: Δ ⊢ 𝑆 [𝜅] ®𝑘 D1

– Γ ⊢ 𝑡 : 𝑇 ®
𝑖𝑎 ∈ E𝑙𝑖 (D) := ∃ type S

∗ 𝑆 is well-typed: Γ ⊢ 𝑆 :
1+𝑘 Set𝑘

∗ 𝑇 is syntactically equivalent to this Lift type: Γ ⊢ 𝑇 ≡ Lift𝑗 𝑆
𝑘
:
1+𝑖 Set𝑖

∗ 𝑡 is well-typed: Γ ⊢ 𝑡 :𝑖 𝑇 ;
∗ 𝑎 ∈ U𝑛𝑙𝑖 (U𝑛𝑙𝑖 is defined in Sec. 5.1);

∗ For any weakening substitution 𝜅 s.t. Δ ⊢ 𝜅 : Γ,
Δ ⊢ (unlift 𝑡) [𝜅] : 𝑆 [𝜅] ®𝑘 (unli· 𝑎) ∈ E𝑙𝑘 (D1)

Realizability. After defining the logical relation, we establish its realizability. The realizability

theorem states a similar“sandwich” property, but it now requires strengthening to hold under

all extended contexts. To formalize these properties, we first introduce three definitions. Given

D :: 𝐴 ≡ 𝐵 ∈ S𝑒𝑡𝑖 .
• Γ ⊢ 𝑇 ®

𝑖 D := Γ ⊢ 𝑇 :
1+𝑖 Set𝑖 , 𝐴 ≡ 𝐵 ∈ T𝑦𝑖 and ∀𝜅 s.t. Δ ⊢ 𝜅 : Γ, Δ ⊢ 𝑇 [𝜅] ≡ 𝑖

R
ty

|Δ |𝐴 :
1+𝑖 Set𝑖

• Γ ⊢ 𝑡 : 𝑇 ®
𝑖 𝑒 ∈ E𝑙𝑖 (D) := Γ ⊢ 𝑡 :𝑖 𝑇 , Γ ⊢ 𝑇 ®

𝑖 D, 𝑒 ∈ N𝑒 , and ∀𝜅 s.t. Δ ⊢ 𝜅 : Γ,

Δ ⊢ 𝑡 [𝜅] ≡ R
ne

|Δ |𝑒 :
𝑖 𝑇 [𝜅]

• Γ ⊢ 𝑡 : 𝑇 ®

𝑖
𝑎 ∈ E𝑙𝑖 (D) := Γ ⊢ 𝑡 :𝑖 𝑇 , Γ ⊢ 𝑇 ®

𝑖 D, ↓𝑖𝐴𝑎 ≡ ↓𝑖𝐵𝑎 ∈ N 𝑓 and ∀𝜅 s.t. Δ ⊢ 𝜅 : Γ,

Δ ⊢ 𝑡 [𝜅] ≡ R
nf

|Δ | (↓
𝑖
𝐴𝑎) :𝑖 𝑇 [𝜅]

Theorem 5.4 (Realizability ). Given D :: 𝐴 ≡ 𝐵 ∈ S𝑒𝑡𝑖
• If Γ ⊢ 𝑇 ®𝑖 D, then Γ ⊢ 𝑇 ®𝑖 D;
• If Γ ⊢ 𝑡 : 𝑇 ®𝑖 𝑒 ∈ E𝑙𝑖 (D), then Γ ⊢ 𝑡 : 𝑇 ®𝑖 (↑𝑖𝐴𝑒) ∈ E𝑙𝑖 (D);
• If Γ ⊢ 𝑡 : 𝑇 ®𝑖𝑎 ∈ E𝑙𝑖 (D), then Γ ⊢ 𝑡 : 𝑇 ®𝑖

𝑎 ∈ E𝑙𝑖 (D).
Realizability implies that if Γ ⊢ 𝑡 : 𝑇 ®

𝑖𝑎 ∈ E𝑙𝑖 (D), then 𝑡 is syntactically equal to the normal

form obtained by reading back from 𝑎 (in all extended contexts from Γ). The last step is to define
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the logical relation that glues a substitution with an environment. Again, this is done by another

inductive-recursive definition of semantic context well-formedness D :: ⊩ Γ and a substitution

gluing model Γ ⊢ 𝜎 ® 𝜌 : E𝑙P(D) . Here, the recursion is a bit different from previous ones as it

returns a predicate on Γ, 𝜎 and 𝜌 instead of a PER. 𝜎 is glued with 𝜌 (under Γ) should be understood
as Γ, 𝜎, 𝜌 satisfy the predicate returned by E𝑙P(D).
•

and E𝑙P(D) = P𝑁𝑖𝑙D :: ⊩ ·
where P𝑁𝑖𝑙 (Δ, 𝜏, 𝜙) := Δ ⊢ 𝜏 : ·.

• D1 :: ⊩ Γ
Γ ⊢ 𝑇 :

1+𝑖 Set𝑖
∀Δ ⊢ 𝜎 ® 𝜌 : E𝑙P(D), E :: J𝑇 K𝜌 ∈ S𝑒𝑡𝑖 and Δ ⊢ 𝑇 [𝜎] ®𝑖 E

and E𝑙P(D) = P𝐶𝑜𝑛𝑠D :: ⊩ Γ, 𝑥0 : 𝑇
𝑖

where P𝐶𝑜𝑛𝑠 (Δ, 𝜏, 𝜙) := ∃ substitution 𝛾 and term 𝑡 ,

– 𝜏 has the codomain context (Γ, 𝑥0 : 𝑇 𝑖 ): Δ ⊢ 𝜏 : (Γ, 𝑥0 : 𝑇 𝑖 );
– � ◦ 𝜏 is syntactically equivalent to 𝛾 : Δ ⊢ � ◦ 𝜏 ≡ 𝛾 : Γ;
– 𝑡 is syntactically equivalent to the topmost term in (Γ, 𝑥0 : 𝑇 𝑖 ): Δ ⊢ 𝑥0 [𝜏] ≡ 𝑡 :𝑖 𝑇 [𝜏];
– Evaluation of 𝑇 is related in S𝑒𝑡𝑖 : E :: J𝑇 K(drop 𝜙 ) ∈ S𝑒𝑡𝑖 ;
– 𝑡 is recursively glued with 𝜙 (0): Δ ⊢ 𝑡 : 𝑇 [𝛾] ®𝑖𝜙 (0) ∈ E𝑙𝑖 (E);
– 𝛾 is recursively glued with (drop 𝜙): Δ ⊢ 𝛾 ® (drop 𝜙) : E𝑙P(D1).
With all the setup in place, we are now ready to define the semantic well-formedness judgment

of terms and substitutions and to state the fundamental theorem, which asserts that syntactic

well-formedness implies semantic well-formedness.

• Γ ⊩ 𝑡 :𝑖 𝑇 :=

– D :: ⊩ Γ;
– For any Δ 𝜎 𝜌 s.t. Δ ⊢ 𝜎 ® 𝜌 : E𝑙P(D),

∗ E :: J𝑇 K𝜌 ∈ S𝑒𝑡𝑖 ;
∗ 𝑡 [𝜎] and J𝑡K𝜌 are glued: Δ ⊢ 𝑡 [𝜎] : 𝑇 [𝜎] ®𝑖J𝑡K𝜌 ∈ E𝑙𝑖 (E)

• Γ ⊩ 𝜎 : Δ :=

– D1 :: ⊩ Γ and D2 :: ⊩ Δ;
– For any Ψ 𝜏 𝜌 s.t. Ψ ⊢ 𝜏 ® 𝜌 : E𝑙P(D1),

∗ 𝜏 ◦ 𝜎 and J𝜎K𝑠 (𝜌) are glued: Δ ⊢ 𝜏 ◦ 𝜎 ® J𝜎K𝑠 (𝜌) : E𝑙P(D2).

Theorem 5.5 (Fundamental Theorem for NbE Soundness ).

• If ⊢ Γ, then ⊩ Γ;
• If Γ ⊢ 𝑡 :𝑖 𝑇 , then Γ ⊩ 𝑡 :𝑖 𝑇 ;
• If Γ ⊢ 𝜎 : Σ, then Γ ⊩ 𝜎 : Δ.

Theorem 5.6 (NbE Soundness ). If Γ ⊢ 𝑡 :𝑖 𝑇 , then ∃𝑤, NbE𝑇
𝑖

Γ (𝑡) ↘ 𝑤 and Γ ⊢ 𝑡 ≡ 𝑤 :
𝑖 𝑇 .

The soundness theorem is a corollary of the fundamental theorem. By applying the fundamental

theorem, we know D :: Γ ⊩ 𝑡 :𝑖 𝑇 whose first conclusion is E :: ⊩ Γ. Let 𝜎 = Id in the second

conclusion ofD. Since Γ ⊢ Id® ↑Γ : E𝑙P(E), we know 𝑡 [Id] and J𝑡K↑Γ are related in E𝑙𝑖 (J𝑇 [Id]K↑Γ ).
The goal can then be concluded by applying the realizability theorem.

5.4 Consequences
Soundness and completeness justify the equivalence relation presented in Sec. 3, as they demonstrate

that our NbE algorithm provides a decision procedure for checking this equivalence by normalizing
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two terms and comparing the normal forms syntactically. These two theorems also imply additional

properties of the system. The following universe level exactness is a consequence of completeness.

Theorem 5.7 (Universe Level Exactness ).

• If Γ ⊢ Set𝑖 ≡ Set𝑖′ :
𝑘 Set𝑗 , then 𝑖 = 𝑖′, 𝑗 = 1 + 𝑖 , and 𝑘 = 1 + 𝑗 ;

• If Γ ⊢ N ≡ N :
𝑗 Set𝑖 , then 𝑖 = 0 and 𝑗 = 1.

Injectivity of type constructors states that the syntactical equivalence of constructed types can

be inverted to the equivalence of their components. This property cannot be established by a

simple syntactic proof, mainly due to the presence of the transitivity rule. Although it is listed as a

consequence, this property may not necessarily depend on the normalizing property of the system.

Theorem 5.8 (Injectivity of Type Constructors ).

• If Γ ⊢ Π(𝑥 : 𝑆𝑖 ).𝑇 𝑗 ≡ Π(𝑥 : 𝑆 ′𝑖
′ ).𝑇 ′ 𝑗 ′

:
1+𝑘 Set𝑘 , then 𝑖 = 𝑖′, 𝑗 = 𝑗 ′, 𝑘 = max(𝑖, 𝑗) and

Γ ⊢ 𝑆 ≡ 𝑆 ′ :1+𝑖 Set𝑖 , and Γ, 𝑆𝑖 ⊢ 𝑇 ≡ 𝑇 ′
:
1+𝑗 Set𝑗 ;

• If Γ ⊢ Lift𝑗 𝑇 𝑖 ≡ Lift𝑗 ′ 𝑇
𝑖′
:
1+𝑘 Set𝑘 , then 𝑖 = 𝑖′, 𝑗 = 𝑗 ′, 𝑘 = 𝑗 + 𝑘 and Γ ⊢ 𝑇 ≡ 𝑇 ′

:
1+𝑖 Set𝑖 .

Since we add sufficient type annotations to terms (specifically, by adding argument types to 𝜆-

abstractions), and each type in this system has a unique universe level, we expect that a single term

can only be typed with equivalent types at a unique universe level. With explicit substitutions, it

needs to be proved together with another theorem that states each substitution produces equivalent

codomain contexts. These two theorems are formally stated below.

Theorem 5.9 (Typing Uniqeness ).

• If Γ ⊢ 𝑡 :𝑖 𝑇 and Γ ⊢ 𝑡 :𝑖′ 𝑇 ′, then 𝑖 = 𝑖′ and Γ ⊢ 𝑇 ≡ 𝑇 ′
:
1+𝑖 Set𝑖 ;

• If Γ ⊢ 𝜎 : Δ and Γ ⊢ 𝜎 : Δ′, then ⊢ Δ ≡ Δ′.

Proof by direct induction on this theorem almost works except for two elimination cases

of Π and Lift types cases: application (Γ ⊢ 𝑡 𝑠 :𝑖 𝑇 ) and unlift (Γ ⊢ unlift 𝑡 :𝑖 𝑇 . The situation

of these two cases is similar. Take the unlift case as an example. Given Γ ⊢ 𝑡 :𝑗+𝑖 Lift𝑗 𝑇 𝑖
and

Γ ⊢ 𝑡 :𝑗 ′+𝑖′ Lift𝑗 ′𝑇 ′𝑖′
, the induction hypothesis only shows Γ ⊢ Lift𝑗 𝑇 𝑖 ≡ Lift𝑗 ′ 𝑇

′𝑖′
:
1+𝑗+𝑖 Set𝑗+𝑖 .

To conclude Γ ⊢ 𝑇 𝑖 ≡ 𝑇 ′𝑖′
:
1+𝑖 Set𝑖 , we need Thm. 5.8. The application case is the same situa-

tion. This dependency suggests that there could not be a simple syntactic proof to conclude this

uniqueness theorem.

The other usual consequences of normalization are logical consistency and canonicity. Both proofs
use standard techniques based on the soundness and completeness of NbE. Our consistency is

phrased as there are some uninhabited types in the empty context. This phrasing does not put

forward require one explicit “false” type.
4

Theorem 5.10 (Consistency ). · ⊢ 𝑡 :1+𝑖 Π(𝑥 : Set1+𝑖𝑖 ).𝑥𝑖 is false.

The following theorem shows that a closed term 𝑡 of type N must be equivalent to a term

constructed by the introduction form of N (i.e., 0 and suc) only.

Theorem 5.11 (Canonicity of N ). If · ⊢ 𝑡 :0 N, then · ⊢ 𝑡 ≡ suc𝑛 0 :
0 N for some 𝑛 ∈ N.

6 Comparison between Cumulativity and Non-cumulativity
In previous sections, we have described the models in an informal mathematical language. However,

the description has taken various shortcuts for conciseness. To ensure rigor, we mechanize all

our results in Agda. Our mechanization consists of two systems, an MLTT with a non-cumulative

universe, the system described in this paper, and anMLTTwith a cumulative universe, for comparing

4
The impredicative version of the chosen type is an encoding of the usual “false” type
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definitions and mechanization. The cumulative version can be viewed as a back-port of Hu et al.

[2023]’s mechanization by removingmodality-related features. Due to non-cumulativity, we observe

significantly more complications in mechanization. Consequently, we must tame various details

like proof relevance in Agda to make sure that the proofs of completeness and soundness remain

manageable. As a quantitative indicator, the type-checking time increases from 2 minutes to 9

minutes in Agda comparing these two versions.

6.1 Differences in PER Models
Compared to mechanization of the cumulative universe, the uniqueness property induced by

non-cumulativity has led to the need for explicit management of universe levels. The distinction

between cumulativity and non-cumulativity has become evident from the type signatures of the

PER models:

-- Cumulative
module PERDef (i : N) (Univ : ∀ {j} → j < i → D → D → Set) where

mutual
data U : D → D → Set
El : ∀ {A B} → U A B → D → D → Set

-- Non-cumulative
module PERDef where

mutual
data U i (Univ : ∀ {j} → j < i → D → D → Set) : D → D → Set
El : ∀ {A B} i (Univ : ∀ {j} → j < i → D → D → Set) →

U i Univ A B → D → D → Set

The PER models are defined in their respective PERDef modules. With cumulativity, the module is

parameterized by two arguments: i : N fixing the universe level, and Univ for well-foundedness of
U. In particular, U : D → D → Set is a binary relation between semantic types, so Univ allows

us to have access to all previous U j for j < i. El relates two semantic values given a relation

between two semantic types. Univ is eventually provided by a proof of well-foundedness for both

kinds of hierarchies:

U : N → D → D → Set
U i = PERDef.U i {- omitted proof via a well-founded induction -}

The main difference in the PER models is the placement of i and Univ: with cumulativity, they

are fixed parameters to the module, while non-cumulativity requires us to manage them in the

definitions. The impact of this difference is significant in cases where multiple types with potentially

different levels are involved, e.g., Π types, whose pen-and-paper definitions are given in Sec. 5.1,

for both non-cumulative and cumulative settings.

-- Cumulative
Π : (iA : U A A′) →

(∀ {a a′} → El iA a a′ → ΠRT T (𝜌 ↦→ a) T′ (𝜌′ ↦→ a′) U) →
U (Π A T 𝜌) (Π A′ T′ 𝜌′)

In this definition, ΠRT is a predicate that evaluates T and T′ in extended environments 𝜌 ↦→ a
(representing 𝜌 ;𝑎 in Agda) and 𝜌 ′ ↦→ a′ respectively, and relates resulting semantic types by U.

Specifically, it is always the same U involved, because with cumulativity, semantics of types on a

lower level also exist on all higher levels, i.e., i. On the other hand, with non-cumulativity, we need

to manage not only the universe levels, but also proofs of Univ, due to proof relevance in Agda:

-- Non-cumulative
Π : ∀ {j k} →
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let Univj : ∀ {l} → l < j → D → D → Set -- definition omitted
Univk : ∀ {l} → l < k → D → D → Set -- definition omitted

in (iA : U j Univj A A′) →
(∀ {a a′} → El j Univj iA a a′ → ΠRT T (𝜌 ↦→ a) T′ (𝜌′ ↦→ a′) (U k Univk)) →
U (max j k) Univ (Π j A (T ↙ k) 𝜌) (Π j′ A′ (T′ ↙ k′) 𝜌′)

Compared to the minimal semantics of Π with cumulativity, in the non-cumulative case, we must

carry two proofs Univj and Univk, because the input types live on level j and the output types on

k, which are both different from max j k, the level of Π.
Worse yet, this complication further propagates throughout the proofs of various properties of

the PER model. Since both i and Univ are fixed as module parameters in the cumulative setting, sub-

sequent proofs about the PER model are completely oblivious to the details about well-foundedness

in Univ after some small technical efforts. On the other hand, the same technique does not seem

to work with non-cumulativity. Difficult properties often require to directly work on PERDef.U
instead of the top-level U, causing much more effort in managing proof relevance. Proofs appear

less clean than the cumulative case. Type-checking time also increases, because extra parameters

drive Agda to perform non-trivial higher-order unifications in the proofs.

6.2 Challenges in Kripke Models
If the complication in the PER model is moderate, then problems in the Kripke model have reached

a new next level. Since cumulativity allows us to isolate the details about well-foundedness of

universe levels, we are able to give definitions of the Kripke model by a direct recursion on the

top-level PER model U:

-- Cumulative
module Glu i (rec : ∀ {j} → j < i → ∀ {A B} → Ctx → Typ → U j A B → Set) where

mutual
_⊢_®_ : Ctx → Typ → U i A B → Set
_⊢_ : _®_∈El_ : Ctx → Exp → Typ → D → U i A B → Set

Here, _⊢_®_ gives the Kripke relation for types and _⊢_ : _®_∈El_ for terms. They are both defined

by recursion on U i A B. The parameter rec is similar to Univ in the PER model to express well-

foundedness of the Kripke model and is filled in by a well-foundedness proof, which we omit for

brevity. With non-cumulativity, the Kripke model is defined in a similar manner to the PER model

by propagating rec inwards. In fact, the actual definition is more complex, because to successfully

recurse on the PER model, we must work with a general Univ:

-- Non-cumulative
module Glu where
mutual

J_,_,_K_⊢_®_ : ∀ i (rec : ∀ {j} (j<i : j < i) (univ : ∀ {l} → l < j → D → D → Set) {A B} →
Ctx → Typ → PERDef.U j univ A B → Set) →

(Univ : ∀ {j} → j < i → D → D → Set) →
Ctx → Typ → PERDef.U i Univ A B → Set

J_,_,_K_⊢_ : _®_∈El_ : ∀ i (rec : ∀ {j} (j<i : j < i)
(univ : ∀ {l} → l < j → D → D → Set) {A B} →
Ctx → Typ → PERDef.U j univ A B → Set)

(Univ : ∀ {j} → j < i → D → D → Set) →
Ctx → Exp → Typ → D → PERDef.U i Univ A B → Set

The type signatures are much more complex now. First, i is the given universe level. We then

need rec for well-foundedness of the model in i. However, rec has a longer type due to the

need to directly work with PERDef.U and an extra parameter univ that is passed to PERDef.U.

This extra parameter is to capture the fact that the overall model is parameterized by Univ, the
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well-foundedness predicate to the input PERDef.U. The types after Univ are the desired types that

we would like the Kripke predicates to possess, which are what cumulativity would have brought

us. The definitions thus proceed by recursion on PERDef.U i Univ A B. For each case, we suffer

from the need of maintaining equality between proofs due to proof relevance in Agda and how the

PER model is defined. The definitions are too verbose to put in the paper, so we refer interested

readers to our accompanying artifact.

Challenges continue to escalate as we establish properties about the Kripke model. Not being

able to isolate the well-foundedness proof entirely has been the top problem during proving. It

leads to longer lemma statements, longer proofs, more difficult unification problems for Agda to

solve, and hence much longer type-checking time.

Despite that the choice between cumulativity and non-cumulativity often results in a debate, we

see that, at least in terms of mechanization of NbE, cumulativity provides significant simplifications,

which might contribute to a critical factor of consideration at the early stage of design. We are

not sure whether our mechanization of non-cumulative MLTT can be further improved, so that it

becomes less resource-consuming. We leave this problem as a future work.

7 The Unascribed System
As the uniqueness theorem suggests, levels are entirely determined by typing derivations. This

naturally raises the question of whether these level annotations can be removed. In this section,

we prove that removing all level annotations yields a system that is sound and complete with

respect to the original one. We refer to the original system as the ascribed system and the new

system as the unascribed system. This transformation also brings the system closer to the practical

syntax and rules of practical proof assistants like Agda. The syntax and rules of the unascribed

system are identical to those of the ascribed system presented in Sec. 3, except that all universe

level annotations
𝑖
are removed. For brevity, in this section, we use different colors to distinguish

contexts, terms, types, substitutions, and judgments in the two systems. Specifically, we use Γ, 𝑡,𝑇 , 𝜎
to denote elements of the unascribed system and Γ, 𝑡,𝑇 , 𝜎 for those in the ascribed system.

7.1 Syntactic Soundness and Completeness
Since the syntax of the two systems differs, we first need to define an appropriate way to relate

contexts, expressions/types, and substitutions. As the only difference between the two systems is

the presence of universe level annotations, an erasure function, denoted as ⌊ _ ⌋ , which removes

all these annotations in terms while preserving the remaining structure serves as a suitable relation.

For example, Π(𝑥 : Set1+𝑖𝑖 ).𝑥𝑖 is erased to Π(𝑥 : Set𝑖 ).𝑥 . This function is many to one. The same

erasure function can be naturally extended to each syntactic category, and we reuse the same

notion for them, e.g. ⌊Γ⌋ erases universe level annotations in Γ. The definitions of these functions
are straightforward and are omitted here. For brevity, we sometimes omit the erasure function and

instead use the same symbol in different colors to indicate erasure, e.g., 𝑡 and 𝑡 in the same textual

context indicate ⌊𝑡⌋ = 𝑡 .

Completeness. The completeness proof follows straightforwardly by induction on the derivations

of the ascribed system. Thanks to the totality of erasure functions, they can be applied to any

contexts, terms, types, substitutions without requiring knowledge of their well-formedness/well-

typedness.

Theorem 7.1 (Syntactic Completeness ).

• If ⊢ Γ, then ⊢ Γ;
• If Γ ⊢ 𝑡 :𝑖 𝑇 , then Γ ⊢ 𝑡 : 𝑇 ;
• If Γ ⊢ 𝜎 : Δ, then Γ ⊢ 𝜎 : Δ;

• If ⊢ Γ ≡ Δ, then ⊢ Γ ≡ Δ;
• If Γ ⊢ 𝑠 ≡ 𝑡 :𝑖 𝑇 , then Γ ⊢ 𝑠 ≡ 𝑡 : 𝑇 ;
• If Γ ⊢ 𝜎 ≡ 𝜏 : Δ, then Γ ⊢ 𝜎 ≡ 𝜏 : Δ.
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Soundness. However, the soundness requires “reconstructing” such levels. That is, prove the

existence of such levels. Even if we have properties of the ascribed system, the conclusion given by

the existential quantifier is too weak. For example, to prove the Π case, the induction hypothesis will

give us Γ1 ⊢ 𝑆1 :1+𝑖 Set𝑖 and Γ2, 𝑆2 ⊢ 𝑇 :
1+𝑗 Set𝑗 . We know nothing about the relationship between

Γ1 and Γ2 and between 𝑆1 and 𝑆2 except that they are both erased to the same thing. The proof is

thus blocked. To prove the soundness by induction, we need stronger conclusions to relate two

contexts, expressions and substitutions given by the existential quantifier. The proper relation is

defined as follows.

• Γ⌊≡⌋Γ′ := ∀Γ1 𝑛, ⌊Γ1⌋ = (drop n Γ′), and ⊢ Γ1, then ⊢ (drop n Γ) ≡ Γ1

• Γ ⊢ 𝑡 ⌊≡⌋𝑡 ′ :=∀𝑖1 𝑡1 𝑇1, ⌊𝑡1⌋ = 𝑡 ′, and Γ ⊢ 𝑡1 :𝑖1 𝑇1, then Γ ⊢ 𝑡 ≡ 𝑡1 :
𝑖1 𝑇1

• Γ ⊢ 𝜎 ⌊≡⌋𝜎 ′
:= ∀𝜎1 Δ1, if ⌊𝜎1⌋ = 𝜎 ′

, and Γ ⊢ 𝜎1 : Δ1, then Γ ⊢ 𝜎 ≡ 𝜎1 : Δ1

These relations state that all possible Γ1, 𝑡1, 𝜎1 that are well-formed and erased to Γ′, 𝑡 ′, 𝜎 ′
are

equivalent and thus they are “interchangeable” with the specific Γ, 𝑡, 𝜎 given by the existential

quantifier. There are two interesting points about these auxiliary relations. Firstly, Γ⌊≡⌋Γ′ talks
about all the prefixes of Γ and Γ′, achieved by the additional quantification of 𝑛 and an ordinary

list-drop operation. This generalization is essential for the formation and equivalence cases of � .
Secondly, Γ ⊢ 𝑡 ⌊≡⌋𝑡 ′ does not include the type of 𝑡 or 𝑡 ′. The quantified 𝑡1 can be well-typed under

any level 𝑖1 and type 𝑇1. On one hand, this is necessary for the cons case of context equivalence

⊢ Γ1,𝑇1 ≡ Γ2,𝑇2 . Since we do not have the information, from inverting the erasure operation, that

two types 𝑇1 and 𝑇2 are at the same level, the premise must be general enough to reason about

this. On the other hand, this is feasible as expressions contain enough information to recover

types. By strengthening the original soundness theorem with the help of these relations, the final

fundamental theorem to prove by induction is:

Theorem 7.2 ((Fundamental Theorem for) Syntactic Soundness ).

• If ⊢ Γ, then ∃Γ, s.t. ⌊Γ⌋ = Γ and ⊢ Γ, and Γ⌊≡⌋Γ;
• If Γ ⊢ 𝑡 : 𝑇 , then ∃𝑖, Γ, 𝑡,𝑇 , s.t. ⌊Γ⌋ = Γ, ⌊𝑡⌋ = 𝑡, ⌊𝑇 ⌋ = 𝑇 and Γ ⊢ 𝑡 :𝑖 𝑇 , and Γ⌊≡⌋Γ and Γ ⊢ 𝑡 ⌊≡⌋𝑡 ;
• If Γ ⊢ 𝜎 : Δ, then ∃Γ, 𝜎,Δ, s.t. ⌊Γ⌋ = Γ, ⌊𝜎⌋ = 𝜎, ⌊Δ⌋ = Δ and Γ ⊢ 𝜎 : Δ, and Γ⌊≡⌋Γ, Γ ⊢ 𝜎 ⌊≡⌋𝜎 ,
and Δ⌊≡⌋Δ;

• If ⊢ Γ ≡ Δ, then ∃Γ,Δ, s.t. ⌊Γ⌋ = Γ, ⌊Δ⌋ = Δ and ⊢ Γ ≡ Δ, and Γ⌊≡⌋Γ and Δ⌊≡⌋Δ;
• If Γ ⊢ 𝑠 ≡ 𝑡 : 𝑇 , then ∃𝑖, Γ, 𝑡, 𝑠,𝑇 , s.t. ⌊Γ⌋ = Γ, ⌊𝑠⌋ = 𝑠, ⌊𝑡⌋ = 𝑡, ⌊𝑇 ⌋ = 𝑇 and Γ ⊢ 𝑠 ≡ 𝑡 :𝑖 𝑇 , and
Γ⌊≡⌋Γ, Γ ⊢ 𝑠 ⌊≡⌋𝑠 , and Γ ⊢ 𝑡 ⌊≡⌋𝑡 ;

• If Γ ⊢ 𝜎 ≡ 𝜏 : Δ, then ∃Γ, 𝜎, 𝜏,Δ, s.t. ⌊Γ⌋ = Γ, ⌊𝜎⌋ = 𝜎, ⌊𝜏⌋ = 𝜏, ⌊Δ⌋ = Δ and Γ ⊢ 𝜎 ≡ 𝜏 : Δ, and
Γ⌊≡⌋Γ, Γ ⊢ 𝜎 ⌊≡⌋𝜎 , Γ ⊢ 𝜏 ⌊≡⌋𝜏 and Δ⌊≡⌋Δ.

The unascribed soundness theorem is a direct corollary of this fundamental theorem by removing

the extra strengthened conclusions.

With unascribed soundness and completeness, properties in the ascribed system can be trans-

ported to this unascribed system, with logical consistency being an example.

Theorem 7.3 (Consistency ). · ⊢ 𝑡 : Π(𝑥 : Set𝑖 ) .𝑥 is false.

Proof. Assuming · ⊢ 𝑡 : Π(𝑥 : Set𝑖 ).𝑥 is derivable and applying the unascribed soundness theo-

rem, we get · ⊢ 𝑡 :𝑗1 Π(𝑥 : Set𝑗2
𝑖
).𝑥 𝑗3

for some 𝑗1, 𝑗2, 𝑗3. By the presupposition lemma of the ascribed

system, we can conclude · ⊢ Π(𝑥 : Set𝑗2
𝑖
).𝑥 𝑗3

:
1+𝑗1 Set𝑗1 . The only possible case for this typing to

hold is 𝑗1 = 1 + 𝑖 , 𝑗2 = 1 + 𝑖 and 𝑗3 = 𝑖 . However, this case is also impossible according to the

consistency of the ascribed system. □
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Other examples of transported theorems are context conversion (Thm. 3.1) and presupposition

(Thm. 3.2). The proof strategy is straightforward by using both unascribed soundness and complete-

ness.
5
With presupposition theorems, the additional well-formedness premises marked in Fig. 1

can also be eliminated for the unascribed system.

7.2 NbE of the Unascribed System
Despite the syntactic equivalence of these two systems, the NbE algorithm for the ascribed system

cannot be applied to the unascribed system directly. The algorithm still takes ascribed terms

as inputs, and performs additional checks based on the level information. Although based on

previous discussions, most checks can be eliminated and the NbE algorithm should be universe-

level irrelevant, it is not immediately obvious that there is an NbE algorithm that works in the

unascribed system directly and enjoys desirable properties of soundness and completeness.

A promising and simple candidate of such an NbE algorithm is the algorithm that resembles the

ascribed NbE algorithm, but removes all checks and processing related to universe levels. That

is, the NbE algorithm takes terms and types of the unascribed syntax as input, evaluates them

to unascribed domain values and read back to unascribed normal forms. The definition of the

unascribed domain and evaluation /read-back functions of this NbE can be roughly understood

as those presented in Sec. 4 by removing all universe-level related annotations and are omitted here

for brevity. The detailed definitions can be found in Appendix B. This algorithm is no more complex

or less efficient than its cumulative counterpart, as no additional universe level information is kept,

not to mention any checks on them. In the remaining section, we will establish the soundness and

completeness of this NbE algorithm with respect to the unascribed system.

The proof starts by proving the output completeness of the unascribed NbE to the ascribed NbE.

The theorem means that if the ascribed NbE produces a result for some 𝑡 of type 𝑇 (of universe

level 𝑖) in Γ, this unascribed NbE also produces a result for input term 𝑡 of type 𝑇 in Γ, and their

resulting normal forms match up to erasure. We first extend the definition of erasure function to

(normal, neutral) semantic values ⌊𝑎⌋, ⌊𝑑⌋, ⌊𝑒⌋ and environments ⌊𝜌⌋, in a straightforward way.

The output completeness of the unascribed NbE is a composition of the following two theorems.

Note that, since we do not track the universe level information anymore, type readback function

R
ty

𝑛 of the unascribed NbE neither takes it as an input.

Theorem 7.4 (Output Completeness of the Unascribed Evaluation ).

• If J𝑡K𝜌 ↘ 𝑎, then J𝑡K𝜌 ↘ 𝑎;
• If J𝜎K𝑠 (𝜌) ↘ 𝜙 , then J𝜎K𝑠 (𝜌) ↘ 𝜙 ;
• If 𝑓 · 𝑎 ↘ 𝑏, then 𝑓 · 𝑎 ↘ 𝑏;
• If rec·(𝑧.𝑇 𝑖 , 𝑎, (𝑥,𝑦.𝑠), 𝑏, 𝜌) ↘ 𝑐 , then rec·(𝑧.𝑇 , 𝑎, (𝑥,𝑦.𝑠), 𝑏, 𝜌) ↘ 𝑐 ;
• If unlift· 𝑎 ↘ 𝑏, then unlift· 𝑎 ↘ 𝑏.

Theorem 7.5 (Output Completeness of the Unascribed Readback ).

• If Rnf

𝑛 𝑑 ↘ 𝑣 , then R
nf

𝑛 𝑑 ↘ 𝑣 ;
• If Rne

𝑛 𝑒 ↘ 𝑢, then R
ne

𝑛 𝑒 ↘ 𝑢;
• If 𝑖Rty

𝑛 𝑉 ↘ 𝐴, then R
ty

𝑛 𝑉 ↘ 𝐴.

Their proof is done by direct induction. Combining them together, we have the completeness of

the unascribed NbE to the ascribed one, whose meaning is described above. This theorem holds for

all Γ, 𝑡 and 𝑇 , regardless of their well-formedness. Again, this is thanks to the fact that we adopt

the untyped domain model for NbE.

5
For context conversion, we need to apply the fundamental theorem of unascribed soundness directly once.
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Ascribed System
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Unascribed System
Presupposition

Consistency
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Fig. 6. Overall proof structure. Arrows indicate soundness and completeness. Properties in dashed boxes and
represented by dashed arrows are proved indirectly.

Theorem 7.6 (Output Completeness of the Unascribed NbE ). If NbE𝑇
𝑖

Γ (𝑡) ↘ 𝑤 , then
NbE

𝑇
Γ (𝑡) ↘ 𝑤 .

With the output completeness of the unascribed NbE to the ascribed NbE (only this single direc-

tion is needed), we can immediately conclude the soundness and completeness of the unascribed

NbE algorithm with respect to the unascribed system.

Theorem 7.7 (Soundness and Completeness of the Unascribed NbE).

• If Γ ⊢ 𝑡 : 𝑇 , then ∃𝑤, NbE𝑇Γ (𝑡) ↘ 𝑤 and Γ ⊢ 𝑡 ≡ 𝑤 : 𝑇 ;
• If Γ ⊢ 𝑠 ≡ 𝑡 : 𝑇 , then ∃𝑤 , NbE𝑇Γ (𝑠) ↘ 𝑤 and NbE𝑇Γ (𝑡) ↘ 𝑤 .

Proof. Take soundness as an example. Give Γ ⊢ 𝑡 : 𝑇 , the proof takes 4 steps: (1) applying

the unascribed soundness theorem (Thm. 7.2) to conclude Γ ⊢ 𝑡 :𝑖 𝑇 for some 𝑖; (2) applying the

soundness theorem of the ascribed NbE (Thm. 5.6) to conclude NbE
𝑇 𝑖

Γ (𝑡) ↘ 𝑤 and Γ ⊢ 𝑡 ≡ 𝑤 :
𝑖 𝑇

for some 𝑤 ; (3) applying the output completeness theorem of the unascribed NbE (Thm. 7.6) to

conclude NbE
𝑇
Γ (𝑡) ↘ 𝑤 ; (4) applying the unascribed completeness theorem (Thm. 7.1) to conclude

Γ ⊢ 𝑡 ≡ 𝑤 : 𝑇 . □

In summary, this result largely closes some of the gap between the system and the NbE algorithm

we study and the practical ones used in proof assistants like Agda. As shown in Fig. 6, all the proofs

in the unascribed system are achieved by using the ascribed system as an intermediate system,

proving properties in it and then transporting all the properties back to the unascribed system

using syntactical soundness and completeness. Though current proof takes a large roundtrip, it is

suspicious if we can skip the ascribed system and directly prove the soundness and completeness of

the unascribed NbE algorithm with respect to the unascribed system. Without the precise universe

level given by the ascribed system, we have to use an existential quantifier to get the level 𝑖 in

the semantic proof (as the case of the cumulative proof). However, for the non-cumulative case,

we cannot use the trick to lift all related values to a high-enough universe level. Instead, we must

further prove that two 𝑖’s given by the existential quantifiers are the same. Strengthening the

logical relation may be possible, but it is not obvious, and will further complicate the already

complex mechanization. Note, even if such a new proof strategy is feasible, the need for the precise

PER model presented in Sec. 5 (and consequently the technical challenges mentioned in Sec. 6)

can hardly be exempted, as non-cumulativity forces relating type values at the the one and only

correct universe level. In retrospect, this ascribed then unascribed proof strategy makes the whole

mechanization more modular and manageable as all the uniqueness related proofs are done in the

syntactic level and conceptually coincides with the common practice to prove properties in an

“elaborated” system [Ferreira and Pientka 2014; Gundry 2013; Pottier 2014], although we did not

foresee this from the beginning.
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8 Related Work
Our work is mostly related to Hu et al. [2023], who mechanized an NbE algorithm for MLTT with

modal types and a full universe hierarchy in Agda. They adjusted models used by Abel [2013]’s pen

and paper proof, so that the universe levels are explicitly maintained and a limit-taking operation of

universe levels is no longer needed. They also altered several definitions in order to work with the

proof relevance and termination checking in Agda. Our work refines their PER model to contain

precise universe level information, enabling reasoning for non-cumulativity. The remaining of this

section focuses on related works about NbE and mechanized dependent type systems.

8.1 Normalization by Evaluation
We start with other works on formalized NbE for dependent type systems. Wieczorek and Biernacki

[2018] mechanized a similar-style NbE algorithm forMLTTwith one universe in Rocq by universally

quantifying over the impredicative Prop to interpret dependent function types. On the other

hand, intrinsically-typed NbE for dependent type systems is challenging. Danielsson [2006] first

formalized an NbE algorithm for dependent type systems in AgdaLight. However, he did not cover

large elimination and his formalization was later identified to use non-positive predicates [Chapman

2008]. One recent advance was done by Altenkirch and Kaposi [2016a], where they make use of

quotient inductive inductive types (QIIT) [Altenkirch and Kaposi 2016c] to represent syntax of

well-typed terms. Their system was still quite simple, with no support of inductive types, universe

hierarchy or large elimination. Another concern about their formalization is that the meta-theory

of QIIT itself remains to be established. Sterling [2022] describes a dependent type theory with

a non-cumulative hierarchy and an NbE algorithm in a presheaf formulation. As opposed to our

observation in Sec. 6 where cumulativity induces simpler formulation, non-cumulativity is more

natural for a presheaf formulation. In fact, Coquand [2018] include extra structures to achieve

cumulativity intrinsically. Therefore, which hierarchy is more complex depends on the style of

the NbE algorithm. Our understanding of this situation is that an untyped domain model does not

keep track of universe level information, so its models necessarily need to maintain more accurate

universe levels in non-cumulativity than in cumulativity. Whereas in intrinsically typed syntax,

universe levels are encoded as part of the syntax, so this information essentially induces no cost.

Achieving cumulativity contrarily requires some "relaxation" structure in the universe levels. For

more sophisticated systems like Calculus of Inductive Constructions (CIC), correctness of NbE (in

any style) remains open. Other than dependent type systems, NbE has been investigated on type

systems including System 𝐹 [Altenkirch et al. 1995] and System 𝐹𝜔 [Abel 2009].

8.2 Mechanization of Dependent Type Systems
A central focus of mechanized dependent type systems is still the normalization proof. Early work,

such as that by Barras and Werner [1997], demonstrated strong normalization for the calculus

of constructions in Rocq using reducibility candidates. Anand and Rahli [2014] mechanized the

metatheory of a Nuprl-like type system in Rocq using a PER model to directly establish its con-

sistency relative to Rocq’s consistency. Abel et al. [2018] mechanized the decidability proof of

conversion checking for the Martin-Löf Type Theory with dependent functions, natural numbers

and one universe. Their algorithm first reduces terms to weak head normal forms and is sound and

complete with respect to standard equivalence rules. Pujet and Tabareau [2022] extended the work

of Abel et al. [2018] by mechanizing observational equality and a two-level cumulative universe

hierarchy. This approach was further refined by Pujet and Tabareau [2023] when mechanizing

impredicative observational equality. Adjedj et al. [2024] proved normalization of a Rocq’s pred-

icative fragment with dependent sum, dependent product, identity type, but one universe level.
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They proved both normalization and decidability of bidirectional type checking. Liu et al. [2025]

formalized the normalization of a dependent type system with indistinguishability for dependency

tracking in Rocq. Their system also supports a full cumulative universe hierarchy with several

other features. Some other mechanizations proved lighter properties than normalization. Sozeau

et al. [2019] formalized the type-checking and erasure of Rocq in Rocq by assuming the correctness

of Rocq’s metatheory. Liesnikov and Cockx [2024] formalized a subset of Agda’s syntax and a

sound type-checker that ensures type safety (but not logical soundness).

9 Conclusion
This work explores normalization by evaluation using an untyped domain model in MLTT with

a non-cumulative universe hierarchy. Previous works put strong emphasis on applying untyped

NbE to cumulative universe hierarchies, whereas practical proof assistants like Agda and Lean

are non-cumulative by default. In this work, we prove that NbE does work for non-cumulativity.

We establish this conclusion in two steps. First, we work with a system with explicit universe

level annotations. These annotations help us to take into account the unique universe levels of

well-formed types and keep track of the universe levels both in the syntax and in the semantics.

After establishing the completeness and soundness of NbE, we further show that these annotations

are logically redundant, yielding a system and an NbE algorithm that are closer to real practice.

Our work closes the theoretical gap of applying untyped NbE in non-cumulative settings by

focusing on isolating the key trade-offs between cumulative and non-cumulative universe hierar-

chies. We expect that it shall not be too difficult to extend our work to support dependent sums, a

false type and a unit type. We hope that future work can build on top of our work to bridge the gap

in terms of features to practical proof assistants like Agda or Lean that also adopt a non-cumulative

universe hierarchy. Practical proof assistants incorporate much richer type-theoretic features and

more implementation optimization, including but not limited to custom inductive types [Sozeau

et al. 2019], universe polymorphism [Bezem et al. 2022; Sozeau and Tabareau 2014], termination-

checking [Abel 2024] instead of recursor based recursion, and efficient conversion checking (often

via weak head normalization [Abel et al. 2018]). Studying and mechanizing these features and

their interactions are all interesting but challenging research questions, both theoretically and

technically.
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A Complete Rules
Fig. 7 and 8 show the complete rules of term and type equivalence. Fig. 9 shows the complete rules

of substitution equivalence. Fig. 10 shows the rules of context equivalence.

Γ ⊢ 𝑡 ≡ 𝑠 :𝑖 𝑇 𝑡 and 𝑠 of type 𝑇 are equivalent at level 𝑖 under context Γ

Γ ⊢ 𝑆 :
1+𝑖 Set𝑖 Γ, 𝑥 : 𝑆 𝑖 ⊢ 𝑇 :

1+ 𝑗 Set𝑗 Γ, 𝑥 : 𝑆 𝑖 ⊢ 𝑡 : 𝑗 𝑇 Γ ⊢ 𝑠 :𝑖 𝑆
Γ ⊢ (𝜆(𝑥 : 𝑆 𝑖 ) .𝑡) 𝑠 ≡ 𝑡 [𝑠 : 𝑆 𝑖 ] : 𝑗 𝑇 [𝑠 : 𝑆 𝑖 /𝑥]

Γ ⊢ 𝑡 :𝑖 𝑇
Γ ⊢ unlift(lift𝑗 𝑡) ≡ 𝑡 :𝑖 𝑇

Γ, 𝑧 : N0 ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑟 :𝑖 𝑇 [0 : N0/𝑧] Γ, 𝑥 : N0, 𝑦 : 𝑇 𝑖 ⊢ 𝑠 :𝑖 𝑇 [(� ◦ � ), suc 𝑥1 : N0/𝑧]

Γ ⊢ rec(𝑧.𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) 0 ≡ 𝑠 :𝑖 𝑇 [0 : N0/𝑧]

Γ, 𝑧 : N0 ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑟 :𝑖 𝑇 [0 : N0/𝑧]

Γ, 𝑥 : N0, 𝑦 : 𝑇 𝑖 ⊢ 𝑠 :𝑖 𝑇 [(� ◦ � ), suc 𝑥1 : N0/𝑧] Γ ⊢ 𝑡 :0 N

Γ ⊢ rec(𝑧.𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) (suc 𝑡) ≡ 𝑠 [𝑡 : N0/𝑥, (rec(𝑧.𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) 𝑡)𝑖 /𝑦] :𝑖 𝑇 [suc 𝑡 : N0/𝑧]

Γ ⊢ 𝑆 :
1+𝑖 Set𝑖 Γ, 𝑆 𝑖 ⊢ 𝑇 :

1+ 𝑗 Set𝑗 Γ ⊢ 𝑡 :max(𝑖, 𝑗 ) Π(𝑥 : 𝑆 𝑖 ) .𝑇 𝑗

Γ ⊢ 𝑡 ≡ 𝜆(𝑥 : 𝑆 𝑖 ).
(
(𝑡 [� ]) 𝑥

)
:
max(𝑖, 𝑗 ) Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗

Γ ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑡 : 𝑗 +𝑖 Lift𝑗 𝑇 𝑖

Γ ⊢ 𝑡 ≡ lift𝑗 (unlift 𝑡) : 𝑗 +𝑖 Lift𝑗 𝑇 𝑖

Γ ⊢ 𝑆 :
1+𝑖 Set𝑖 Γ ⊢ 𝑆 ≡ 𝑆 ′ :1+𝑖 Set𝑖 Γ, 𝑆 𝑖 ⊢ 𝑇 ≡ 𝑇 ′

:
1+ 𝑗 Set𝑗

Γ ⊢ Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗 ≡ Π(𝑥 : 𝑆 ′𝑖 ) .𝑇 ′ 𝑗
:
1+max(𝑖, 𝑗 ) Set

max(𝑖, 𝑗 )

Γ ⊢ 𝑇 ≡ 𝑇 ′
:
1+𝑖 Set𝑖

Γ ⊢ Lift𝑗 𝑇 𝑖 ≡ Lift𝑗 𝑇
′𝑖

:
1+ 𝑗 +𝑖 Set𝑗+𝑖

⊢ Γ 𝑥 : 𝑇 𝑖 ∈ Γ

Γ ⊢ 𝑥 ≡ 𝑥 :
𝑖 𝑇

Γ ⊢ 𝐴 :
1+𝑖 Set𝑖 Γ, 𝑆 𝑖 ⊢ 𝑇 :

1+ 𝑗 Set𝑗 Γ ⊢ 𝑠 ≡ 𝑠′ :max(𝑖, 𝑗 ) Π(𝑆 :
𝑖 ).𝑇 𝑗 Γ ⊢ 𝑡 ≡ 𝑡 ′ :𝑖 𝑆

Γ ⊢ 𝑠 𝑡 ≡ 𝑠′ 𝑡 ′ : 𝑗 𝑇 [𝑠 : 𝑆 𝑖 ]

Γ ⊢ 𝑆 :
1+𝑖 Set𝑖 Γ ⊢ 𝑆 ≡ 𝑆 ′ :1+ 𝑗 Set𝑗 Γ, 𝑆 𝑖 ⊢ 𝑡 ≡ 𝑡 ′ : 𝑗 𝑇

Γ ⊢ 𝜆(𝑥 : 𝑆 𝑖 ) .𝑡 ≡ 𝜆(𝑥 : 𝑆 ′𝑖 ) .𝑡 ′ :max(𝑖, 𝑗 ) Π(𝑆 :
𝑖 ) .𝑇 𝑗

Γ ⊢ 𝜎 ≡ 𝜎′ : Δ Δ ⊢ 𝑡 ≡ 𝑡 ′ :𝑖 𝑇

Γ ⊢ 𝑡 [𝜎] ≡ 𝑡 [𝜎′] :𝑖 𝑇 [𝜎]

⊢ Γ

Γ ⊢ 0 ≡ 0 :
0 N

Γ ⊢ 𝑡 ≡ 𝑡 ′ :0 N

Γ ⊢ suc 𝑡 ≡ suc 𝑡 ′ :0 N

Γ, N0 ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ, N0 ⊢ 𝑇 ≡ 𝑇 ′

:
1+𝑖 Set𝑖 Γ ⊢ 𝑟 ≡ 𝑟 ′ :𝑖 𝑇 [0 : N0]

Γ, N0,𝑇 𝑖 ⊢ 𝑠 ≡ 𝑠′ :𝑖 𝑇 [(� ◦ � ), suc𝑥1 : N0] Γ ⊢ 𝑡 ≡ 𝑡 ′ :𝑖 N

Γ ⊢ rec 𝑇 𝑖 𝑟 𝑠 𝑡 ≡ rec 𝑇 ′𝑖 𝑟 ′ 𝑠′ 𝑡 ′ :𝑖 𝑇 [𝑡 : N0]

Γ ⊢ 𝑡 ≡ 𝑡 ′ :𝑖 𝑇

Γ ⊢ lift𝑗 𝑡 ≡ lift𝑗 𝑡
′
:
𝑗 +𝑖 Lift𝑗 𝑇 𝑖

Γ ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑡 ≡ 𝑡 ′ : 𝑗 +𝑖 Lift𝑗 𝑇 𝑖

Γ ⊢ unlift 𝑡 ≡ unlift 𝑡 ′ :𝑖 𝑇

Γ ⊢ 𝜎 : Δ

Γ ⊢ N[𝜎] ≡ N :
1 Set0

Γ ⊢ 𝜎 : Δ

Γ ⊢ Set𝑖 [𝜎] ≡ Set𝑖 :
2+𝑖 Set1+𝑖

Γ ⊢ 𝜎 : Δ Δ ⊢ 𝑡 :0 N

Γ ⊢ (suc 𝑡) [𝜎] ≡ suc (𝑡 [𝜎]) :0 N

Fig. 7. Term equivalence rules (part 1 of 2)
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Γ ⊢ 𝜎 : Δ

Γ ⊢ 0[𝜎] ≡ 0 :
0 N

Γ ⊢ 𝜎 : Δ Δ ⊢ 𝐴 :
1+𝑖 Set𝑖

Γ ⊢ (Lift𝑗 𝑇 𝑖 ) [𝜎] ≡ Lift𝑗 (𝑇 [𝜎])𝑖 :1+ 𝑗 +𝑖 Set𝑗+𝑖

Γ ⊢ 𝜎 : Δ Δ ⊢ 𝑆 :
1+𝑖 Set𝑖 Δ, 𝑆 𝑖 ⊢ 𝑇 :

1+ 𝑗 Set𝑗

Γ ⊢ (Π(𝑥 : 𝑆 𝑖 ).𝑇 𝑗 ) [𝜎] ≡ Π(𝑥 :

(
𝑆 [𝜎]

) 𝑖 ). (𝑇 [q 𝑆 𝑖𝜎]) 𝑗 :1+max(𝑖, 𝑗 ) Set
max(𝑖, 𝑗 )

Γ ⊢ 𝜎 : Δ Δ, 𝑧 : N0 ⊢ 𝑇 :
1+𝑖 Set𝑖 Δ ⊢ 𝑠 :𝑖 𝑇 [ze : N0/𝑧]

Δ, 𝑥 : N0, 𝑦 : 𝑇 𝑖 ⊢ 𝑟 :𝑖 𝑇 [(� ◦ � ), suc 𝑥1 : N0] Δ ⊢ 𝑡 :0 N

Γ ⊢ (rec (𝑧.𝑇 𝑖 ) 𝑟 (𝑥,𝑦.𝑠) 𝑡) [𝜎] ≡ rec
(
𝑧.𝑇 [q N0𝜎]

) 𝑖 (𝑟 [𝜎]) (𝑥,𝑦.𝑠 [q 𝑇 𝑖 (q N0𝜎)]) (𝑡 [𝜎]) :𝑖 𝑇 [𝜎, 𝑡 [𝜎] : N0/𝑧]

Γ ⊢ 𝑡 :𝑖 𝑇
Γ ⊢ 𝑡 ≡ 𝑡 [Id] :𝑖 𝑇

𝑥𝑛 : 𝑇 𝑖 ∈ Γ Γ ⊢ 𝑆 :
1+ 𝑗 Set𝑗

Γ, 𝑆 𝑗 ⊢ 𝑥𝑛 [� ] ≡ 𝑥1+𝑛 :
𝑖 𝑇 [� ]

Γ ⊢ 𝜏 : Δ Δ ⊢ 𝜎 : Ψ Ψ ⊢ 𝑡 :𝑖 𝑇
Γ ⊢ 𝑡 [𝜎] [𝜏] ≡ 𝑡 [𝜎 ◦ 𝜏] :𝑖 𝑇 [𝜎 ◦ 𝜏]

Γ ⊢ 𝜎 : Δ Δ ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑡 :𝑖 𝑇 [𝜎]

Γ ⊢ 𝑥0 [𝜎, 𝑡 : 𝑇 𝑖 ] ≡ 𝑡 :𝑖 𝑇 [𝜎]
Γ ⊢ 𝜎 : Δ Δ ⊢ 𝑇 :

1+𝑖 Set𝑖 Γ ⊢ 𝑡 :𝑖 𝑇 [𝜎] x𝑑 : 𝑆 𝑗 ∈ Δ

Γ ⊢ 𝑥1+𝑛 [𝜎, 𝑡 : 𝑇 𝑖 ] ≡ 𝑥𝑛 [𝜎] : 𝑗 𝑆 [𝜎]

Γ ⊢ 𝑡 :𝑖 𝑇
Γ ⊢ 𝑡 ≡ 𝑡 :𝑖 𝑇

Γ ⊢ 𝑡 ≡ 𝑠 :𝑖 𝑇

Γ ⊢ 𝑠 ≡ 𝑡 :𝑖 𝑇

Γ ⊢ 𝑡 ≡ 𝑠 :𝑖 𝑇 Γ ⊢ 𝑠 ≡ 𝑟 :𝑖 𝑇

Γ ⊢ 𝑡 ≡ 𝑟 :𝑖 𝑇

Fig. 8. Term equivalence rules (part 2 of 2)

Γ ⊢ 𝜎 : Δ Δ ⊢ 𝑇 :
1+𝑖 Set𝑖 Γ ⊢ 𝑡 :𝑖 𝑇 𝜎

Γ ⊢� ◦ (𝜎, 𝑡 : 𝑇 𝑖/𝑥0) ≡ 𝜎 : Δ

Γ ⊢ 𝜎 : Γ,𝑇 𝑖

Γ ⊢ 𝜎 ≡ ( � ◦ 𝜎, 𝑥0 [𝜎] : 𝑇 𝑖/𝑥0) : Γ,𝑇 𝑖

Γ ⊢ 𝜏 : Δ Δ ⊢ 𝜎 : Ψ Ψ ⊢ 𝑇 :
1+𝑖 Set𝑖 Δ ⊢ 𝑡 :𝑖 𝑇 [𝜎]

Γ ⊢ (𝜎, 𝑡 : 𝑇 𝑖/𝑥0) ◦ 𝜏 ≡ 𝜎 ◦ 𝜏, (𝑡 [𝜏] : 𝑇 𝑖/𝑥0) : Ψ,𝑇 𝑖

Γ ⊢ 𝜎 : Δ

Γ ⊢ Id ◦ 𝜎 ≡ 𝜎 : Δ

Γ ⊢ 𝜎 : Δ

Γ ⊢ 𝜎 ◦ Id ≡ 𝜎 : Δ

⊢ Γ

Γ ⊢ Id ≡ Id : Γ

⊢ Γ,𝑇 𝑖

Γ,𝑇 𝑖 ⊢ � ≡ � : Γ

Γ ⊢ 𝜎 ≡ 𝜎 ′
: Δ Δ ⊢ 𝜏 ≡ 𝜏 ′ : Ψ

Γ ⊢ 𝜏 ◦ 𝜎 ≡ 𝜏 ′ ◦ 𝜎 ′
: Ψ

Γ ⊢ 𝜎 ≡ 𝜎 ′
: Δ Δ ⊢ 𝑇 :

1+𝑖 Set𝑖 Δ ⊢ 𝑇 ≡ 𝑇 ′
:
1+𝑖 Set𝑖 Γ ⊢ 𝜏 ≡ 𝜏 ′ : Δ

Γ ⊢ 𝜎, 𝜏 : 𝑇 𝑖/𝑥0 ≡ 𝜎 ′, 𝜏 ′ : 𝑇 ′𝑖/𝑥0 : (Δ,𝑇 𝑖 )
Γ ⊢ 𝛾 : Δ Δ ⊢ 𝜏 : Ψ Ψ ⊢ 𝜎 : Ψ′

Γ ⊢ (𝜎 ◦ 𝜏) ◦ 𝛾 ≡ 𝜎 ◦ (𝜏 ◦ 𝛾) : Ψ′
Γ ⊢ 𝜎 : Δ

Γ ⊢ 𝜎 ≡ 𝜎 : Δ

Γ ⊢ 𝜎 ≡ 𝜏 : Δ

Γ ⊢ 𝜏 ≡ 𝜎 : Δ

Γ ⊢ 𝜎 ≡ 𝜏 : Δ Γ ⊢ 𝜏 ≡ 𝛾 : Δ

Γ ⊢ 𝜎 ≡ 𝛾 : Δ

Fig. 9. Substitution equivalence rules

⊢ Γ ≡ Δ Γ and Δ are equivalent

⊢ · ≡ ·
⊢ Γ ≡ Δ Γ ⊢ 𝑇 :

1+𝑖 Set𝑖 Δ ⊢ 𝑇 ′
:
1+𝑖 Set𝑖 Γ ⊢ 𝑇 ≡ 𝑇 ′

:
1+𝑖 Set𝑖 Δ ⊢ 𝑇 ≡ 𝑇 ′

:
1+𝑖 Set𝑖

⊢ Γ, 𝑥 : 𝑇 𝑖 ≡ Δ, 𝑥 : 𝑇 ′𝑖

Fig. 10. Context equivalence rules
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B NbE for the Unascribed System
We present the normalization by evaluation algorithm for the unascribed system, as discussed in

Sec. 7. In contrast to the ascribed NbE (described in Sec. 4), the only difference is the absence of

universe level annotations.

J𝑡K𝜌 ↘ 𝑎 𝑡 evaluates to 𝑎 under 𝜌

JNK𝜌 ↘ N

J𝑆K𝜌 ↘ 𝐴

JΠ(𝑥 : 𝑆).𝑇 K𝜌 ↘ LΠΠΠ 𝐴 𝑇 M𝜌

J𝑇 K𝜌 ↘ 𝑉

JLift𝑗 𝑇 K𝜌 ↘ Lift𝑗 𝑎 JSet𝑖K𝜌 ↘ Set𝑖

J𝑥𝑛K𝜌 ↘ 𝜌 (𝑛) J0K𝜌 ↘ 0

J𝑡K𝜌 ↘ 𝑎

Jsuc 𝑡K𝜌 ↘ suc 𝑎

J𝑠K𝜌 ↘ 𝑎 J𝑡K𝜌 ↘ 𝑏 rec·(𝑧.𝑇 , 𝑎, 𝑥,𝑦.𝑟, 𝑏, 𝜌) ↘ 𝑐

Jrec 𝑧.𝑇 𝑠 𝑥,𝑦.𝑟 𝑡K𝜌 ↘ 𝑐 J𝜆(𝑥 : 𝑆) .𝑡K𝜌 ↘ L𝜆𝜆𝜆𝑡M𝜌
J𝑠K𝜌 ↘ 𝑓 J𝑡K𝜌 ↘ 𝑎 𝑓 · 𝑎 ↘ 𝑏

J𝑠 𝑡K𝜌 ↘ 𝑏

J𝑡K𝜌 ↘ 𝑎

Jlift𝑖 𝑡K𝜌 ↘ lift𝑖 𝑎

J𝑡K𝜌 ↘ 𝑎 unlift· 𝑎 ↘ 𝑏

Junlift 𝑡K𝜌 ↘ 𝑏

J𝜎K𝑠 (𝜌) ↘ 𝜙 J𝑡K𝜙 ↘ 𝑎

J𝑡 [𝜎]K𝜌 ↘ 𝑎

J𝜎K𝑠 (𝜌) ↘ 𝜙 𝜌 is updated to 𝜙

JIdK𝑠 (𝜌) ↘ 𝜌 J�K𝑠 (𝜌) ↘ drop 𝜌

J𝜎K𝑠 (𝜌) ↘ 𝜙 J𝑡K𝜙 ↘ 𝑑

J𝜎, 𝑡 : 𝑇 K𝑠 (𝜌) ↘ 𝜙 ;𝑑

J𝜏K𝑠 (𝜌) ↘ 𝜙 J𝜎K𝑠 (𝜙) ↘ 𝜃

J𝜎 ◦ 𝜏K𝑠 (𝜌) ↘ 𝜃

𝑓 · 𝑎 ↘ 𝑏 apply 𝑓 to 𝑎 is 𝑏

J𝑡K𝜌 ;𝑎 ↘ 𝑏

L𝜆𝜆𝜆𝑡M𝜌 · 𝑎 ↘ 𝑏

J𝑇 K𝜌,𝑎 ↘ 𝐵

↑LΠΠΠ 𝐴 𝑇 M𝜌
𝑒 · 𝑎 ↘ ↑𝐵𝑒 (↓𝐴𝑎)

rec·(𝑇, 𝑎, 𝑠, 𝑏, 𝜌) ↘ 𝑐 rec-apply 𝑏 to 𝑎 and 𝑟 under 𝜌 is 𝑐

rec·(𝑧.𝑇 , 𝑎, 𝑥,𝑦.𝑟, 0, 𝜌) ↘ 𝑎

rec·(𝑧.𝑇 , 𝑎, 𝑥,𝑦.𝑠, 𝑏, 𝜌) ↘ 𝑐 J𝑠K𝜌 ;𝑏;𝑐 ↘ 𝑐′

rec·(𝑧.𝑇 , 𝑎, 𝑥,𝑦.𝑠, suc 𝑏, 𝜌) ↘ 𝑐′

J𝑇 K𝜌 ;↑𝐴𝑒 ↘ 𝐵

rec·(𝑧.𝑇 , 𝑎, 𝑥,𝑦.𝑠, ↑𝐴𝑒, 𝜌) ↘ ↑𝐵Lrec 𝑧.𝑇 𝑎 (𝑥,𝑦.𝑠) 𝑒M𝜌

unlift· 𝑎 ↘ 𝑏 unlift-apply 𝑎 is 𝑏

unlift· lift𝑗 𝑎 ↘ 𝑎 unlift· ↑Lift𝑗 𝐴
𝑒 ↘ ↑𝐴unlift 𝑒

Fig. 11. Relational definitions of evaluations for the unascribed system
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R
nf

𝑛 𝑑 ↘ 𝑣 Readback from normal semantic value 𝑑 to normal form 𝑣

R
ne

𝑛 𝑒 ↘ 𝑢 Readback from neutral semantic value 𝑒 to neutral form 𝑢

R
ty

𝑛 𝐴 ↘ 𝑉 Readback from semantic value 𝐴 of types to normal form 𝑉

𝑖
R
ty

𝑛 𝐴 ↘𝑊

R
nf

𝑛 ↓Set𝑖𝐴 ↘𝑊 R
nf

𝑛 ↓𝑁 0 ↘ 0

R
nf

𝑛 ↓𝑁𝑎 ↘ 𝑤

R
nf

𝑛 ↓𝑁 suc 𝑎 ↘ suc𝑤

R
ty

𝑛 𝐴 ↘𝑊 𝑎 · ↑𝐴x𝑛 ↘ 𝑏 J𝑇 K𝜌 ;↑𝐴x𝑛 ↘ 𝐵 R
nf

1+𝑛 ↓𝐵𝑏 ↘ 𝑤

R
nf

𝑛 ↓LΠΠΠ 𝐴 𝑇 M𝜌𝜌
𝑎 ↘ 𝜆(𝑥0 :𝑊 ) .𝑤

unlift· 𝑎 ↘ 𝑏 R
nf

𝑛 ↓𝐴𝑏 ↘ 𝑤

R
nf

𝑛 ↓(Lift𝑗𝐴)𝑎
↘ Lift𝑗 𝑤

R
ne

𝑛 𝑒 ↘ 𝑢

R
nf

𝑛 ↓𝑁 ↑𝐴𝑒 ↘ 𝑢

R
ne

𝑛 𝑒 ↘ 𝑢

R
nf

𝑛 ↓(↑𝐴𝐸 )↑𝐴′𝑒 ↘ 𝑢

R
ne

𝑛 𝑥𝑙 ↘ x𝑛−𝑙−1

R
ne

𝑛 𝑒 ↘ 𝑢 R
nf

𝑛 𝑑 ↘ 𝑤

R
ne

𝑛 𝑒 𝑑 ↘ 𝑢 𝑤

R
ne

𝑛 𝑒 ↘ 𝑢

R
ne

𝑛 unlift 𝑒 ↘ unlift 𝑢

J𝑇 K
𝜌 ;↑0Nx𝑛

↘ 𝐴 R
ty

1+𝑛 𝐴 ↘𝑊 J𝑇 K𝜌 ;0 ↘ 𝐴′

R
nf

𝑛 (↓𝐴′𝑎) ↘ 𝑤 J𝑡K𝜌 ;↑Nx𝑛 ;↑𝐴x1+𝑛 ↘ 𝑏 J𝑇 K𝜌 ;suc(↓𝑁 x𝑛 ) ↘ 𝐴′′
R
nf

2+𝑛 ↓𝐴′′𝑏 ↘ 𝑤 ′
R
ne

𝑛 𝑒 ↘ 𝑢

R
ne

𝑛 Lrec 𝑧.𝑇 𝑎 (𝑥,𝑦.𝑠) 𝑒M𝜌 ↘ rec (𝑧0 .𝑊 ) 𝑤 (𝑥0 .𝑦1 .𝑤 ′) 𝑢

R
ne

𝑛 𝑒 ↘ 𝑉

R
ty

𝑛 ↓𝐴𝑒 ↘ 𝑉 R
ty

𝑛 Set 𝑖 ↘ Set𝑖 R
ty

𝑛 N ↘ N

R
ty

𝑛 𝐴 ↘ 𝑉 J𝑇 K𝜌 ;↑𝐴x𝑛 ↘ 𝐵 R
ty

1+𝑛 𝐵 ↘𝑊

R
ty

𝑛 LΠΠΠ 𝐴 𝑇 M𝜌 ↘ Π(𝑥0 : 𝑉 ) .𝑊

R
ty

𝑛 𝐴 ↘𝑊

R
ty

𝑛 Lift𝑗 𝐴 ↘ Lift𝑗 𝑊

Fig. 12. Relational Definition of Readback Functions (Unascribed System)
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