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and the decidability of convertibility using Kripke logical relations.
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1 Introduction

Today, many proof assistants (PAs) support meta-programming in practice (e.g. Agda [van der
Walt and Swierstra 2012], Idris [Christiansen and Brady 2016], MetaCoq [Anand et al. 2018; Sozeau
et al. 2020], or Lean [Ebner et al. 2017]). This is done by reflecting the syntax of the type theory in
the given PA, so that users can directly write and reason about meta-programs that construct and
manipulate the syntactic objects in the dependent type theory itself. However, the reflected syntactic
object only provides access to an untyped, low-level syntax tree, where variables are modeled by
de Bruijn indices. Therefore, meta-programs generally do not guarantee the well-scopedness or
the well-formedness of these syntax trees. As a consequence, errors in meta-programs can only be
found when evaluating the syntactic objects for execution rather than when generating them. This
is unfortunate, since the PA itself has the capability to express stronger properties.
To provide stronger static guarantees for meta-programs, Mtac [Kaiser et al. 2018; Ziliani et al.

2015] extends Coq with a monadic type M A, representing the type of Mtac tactics that, when
applied, may diverge or fail, but if they terminate successfully, will produce a Coq term of type A.
Further, to support practical tactic development, Mtac provides support for capturing the proof
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state and analyzing it via pattern matching. While this approach provides more static guarantees
than reflection, it remains unclear how this extension fits within Coq’s type theory, and it violates
important type-theoretic properties such as confluence and normalization.

Despite the intense engineering effort invested in meta-programming in PAs, these tools do not
have type-theoretic foundations. In this paper, we are interested in a more fundamental question:

What is a suitable dependent type theory for meta-programming that allows us to
quote objects as code, compose code, recursively analyze code, and evaluate code?

We take as a starting point the work by Davies and Pfenning [2001]; Pfenning and Davies [2001]
which provides a simply-typed foundation for meta-programming based on the modal logic 𝑆4. In
this work, the necessity modality □𝑇 is interpreted as closed code of type 𝑇 . Meta-programs are
then programs that generate objects of type□𝑇 . Subsequently, Nanevski et al. [2008] generalize this
work to capture open code using the contextual type (□(Γ ⊢ 𝑇 )) that describes open code of type𝑇
in a context Γ. For example, the code object box (x. x + 2) has the contextual type □(x:Nat ⊢ Nat).
This line of work has been, for example, extended to System F [Jang et al. 2022], but it has been
challenging to extend this work to a dependent type theory that supports intensional code analysis.
In this paper, we describe DeLaM, a Dependent Layered Modal type theory, which enables

meta-programming in Martin-Löf type theory (MLTT) with recursion principles on open code.
Following Hu and Pientka [2024b], DeLaM exploits the matryoshka principle: sub-languages at
higher layers subsume those at lower layers. The principle is formally captured by two guiding

lemmas: even though the static code lemma proves that code objects do not compute, via the lifting
lemma, code objects may compute after being lifted to higher layers.

Specifically, DeLaM includes three layers: code objects (c), the dependent type theory of MLTT
(d), and meta-programs (m), such that c < d < m. Syntactically, the layer c describes static code
objects of MLTT with no computation; contrarily, the layer d corresponds to the dependent type
theory of pure MLTT and allows computation. The meta-programming layer m extends MLTT with
contextual types, code objects and recursion principles over them. Hence the expressive power
of sub-languages strictly increases as we move up one layer, as well as the computational power.
As proved by the static code lemma, code objects at layer c are static and do not compute, but
their types do and live at the higher layer d. To illustrate, consider the constructor for an empty
list nil : (A : Ty) → List A, where Ty is the type for the universe. Then box (nil ((𝜆 x. x) Nat)) and
box (nil Nat) represent two distinct code objects at layer c, so they are not equivalent. In particular,
the 𝛽 redex in the first code object does not compute at layer c. However, both contextual types
□ ( ⊢ List ((𝜆 x. x) Nat)) and □ ( ⊢ List Nat) are equivalent and are equally valid types for the
code objects. The 𝛽 redex in the first contextual type now appears on the type level due to dependent
types and computes. This action of bringing code (c) to the type level (d) is a special instance of
the lifting lemma, which we call code promotion.
Finally, the meta-programming layer m extends MLTT with constructs to support an explicit

way to execute code. Particularly, to execute the code object box ((𝜆 x. x) 0), we first use letbox to
bind it to a meta-variable u and then refer to u: letbox u ← box ((𝜆 x. x) 0) in u ≈ (𝜆 x. x) 0 ≈ 0.
The first equivalence substitutes u for the code object and is another instance of the lifting lemma,
where the code object at layer c is lifted to layer m, which we refer to as code execution.

Layered type theories such as DeLaM share many similarities with two-level type theories,
where a more powerful language sits on top of weaker ones (e.g. Allais [2024]; Kovács [2022];
Pientka et al. [2019]). Nevertheless, there are also significant differences. For example, 2LTT by
Allais [2024]; Kovács [2022] lacks the ability to intensionally analyze code and the fine-grained
control over computation of code types. In Cocon [Pientka et al. 2019], MLTT sits on top of the
logical framework LF [Harper et al. 1993], where we define object languages using higher-order
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abstract syntax (HOAS) [Pfenning and Elliott 1988]. The LF objects are wrapped in contextual
types on the upper MLTT level, where we can write recursive programs to analyze them. However,
the flexibility in defining object languages in LF comes at a cost: though we can write functions
to evaluate LF objects in MLTT, such evaluation functions do not exist for all object languages.
Moreover, Cocon also lacks the fine-grained control of equivalences that is built into DeLaM. In
Cocon, contextual objects and contextual types only describe static syntax. Type-level equivalence
such as □ ( ⊢ List ((𝜆 x. x) Nat)) and □ ( ⊢ List Nat) needs to be reasoned about explicitly. The
ability to exploit equivalences at different layers is particularly important when working with rich
type theories such as MLTT.

In this paper, we show that DeLaM is a suitable dependent type theory for meta-programming
that allows us to quote objects as code, compose code, recursively analyze code objects, and execute
code. It is a significant step towards a type theory suitable for daily meta-programming in PAs and
provides a fresh perspective of practical meta-programming systems in today’s PAs. Concretely
our contributions in this paper are:

• Wedescribe a syntactic theory for DeLaM (Sec. 3), a dependent layeredmodal type theorywith
a non-cumulative, Tarski-style universe hierarchy that supports execution of and recursion
on code of MLTT. In DeLaM, code objects are represented as static syntax trees at layer c
and do not compute. Their types live at a higher layer d, which corresponds to pure MLTT
and allows computation. The meta-programming layer m extends MLTT with the support
for quoting, composing, and recursively analyzing code.
• We illustrate the power of DeLaM with two common tactics: an equality checker and a
general solver tactic (see Sec. 2). The generated code is guaranteed to be well-formed thanks
to modelling code types as contextual types.
• We prove DeLaM’s weak normalization and the decidability of convertibility based on Kripke
logical relations (Sec. 5 and 6) à la Abel et al. [2018]; We present a simpler form of the logical
relations than those by Abel et al. [2018], based on partial equivalence relations (PERs), which
cut the length of proofs by approximately half.

Due to space limitations, we focus on describing the main idea in this paper and readers can find
many omitted details in our technical report [Hu and Pientka 2024a].

2 DeLaM by Examples

DeLaM supports quotation of static MLTT code objects in box and composition of code objects.
These code objects can be further analyzed by recursion and eventually be executed to obtain
MLTT programs. These features allow us to write widely used tactics, and the generated proofs are
guaranteed well-formed as ascribed by their types.

2.1 Recursion on Code Objects describing MLTT Terms

As a first example, we implement a tactic, which checks whether two expressions are equal up to
associativity and commutativity (AC). This functionality is frequently desired in a proof assistant.
For example, both Isabelle/HOL [Wenzel et al. 2024, Sec. 9.3.3] and Lean provide such AC solvers.
To fit the tactic in the available space, we concentrate on an AC checker for summations of

expressions of natural numbers. In addition, we assume that the addition operation +, its associativity
and commutativity, and transitivity and Leibniz substitution of equality have been defined at the
layer c, so we have access to these definitions in a code object. Finally, we assume that a summation
is written in the right-associated form, i.e. of the form a1 + (a2 + ... + (an + an+1)) and ai is an
object of type Nat. In practice, this can always be achieved using a preprocessor.
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15:4 Jason Z. S. Hu and Brigitte Pientka

ac -check : (g : Ctx) ⇒
(a b : □ (g ⊢ Nat)) →
letbox a' ← a; b' ← b in

Option (□ (g ⊢ Eq Nat a' b'))

ac -check g (box (a 1 + a 2 )) b =

letbox b' ← b in

search g (box a 1 ) (box b')

>>=𝜆 (c, pf 1 ).

letbox c' ← c in

ac -check g (box a 2 ) (box c')

>>=𝜆 pf 2 .

letbox pf 1 ' ← pf 1 ;

pf 2 ' ← pf 2 in

Some (box (trans

(cong (a 1 +_) pf 2 ')

(sym pf 1 ')))

ac -check g (box a') b =

letbox b' ← b in

if eq? (box a') (box b')

then Some (box refl) else None

search : (g : Ctx) ⇒
(a b : □ (g ⊢ Nat)) →
letbox a' ← a; b' ← b in

Option (Σ (c : □ (g ⊢ Nat)).

letbox c' ← c in

□ (g ⊢ Eq Nat b' (a' + c')))

search g a (box (b 1 + b 2 )) =

letbox a' ← a in

if eq? (box b 1 ) (box a')

then Some (box b 2 , box refl)

else if eq? (box b 2 ) (box a')

then Some (box b 1 , box (comm b 1 b 2 ))

else search g (box a') (box b 2 )

>>=𝜆 (c, pf).

letbox c' ← c; pf' ← pf in

Some ( box (b 1 + c')

, box (trans (cong (b 1 ' +_) pf ')

(pull b 1 ' a' c')))

search g a (box b') = letbox a' ← a in None

Fig. 1. An implementation of an equality checker modulo associativity and commutativity (AC)

The main idea of this tactic is simple: to compare a1 + ... + (an + an+1) with b, we match all ai ’s
with addends in b until an+1, and then we just compare an+1 with the rest of b for syntactic equality.
The tactic is implemented as the ac-check function in Fig. 1 in an Agda-like surface syntax. In the
type of ac-check, a fat arrow⇒ denotes ameta-function. The ac-check function is polymorphic in the
context g, so it applies for any regular context. Next, it takes two pieces of code a and b as inputs,
with their open variables in g. The return type should express the equality between a and b.

To do that, we first use letbox to unpack a and b to obtain meta-variables that we can subsequently
use in the contextual type (□ (g ⊢ Eq Nat a' b'))1. This contextual type describes the proof that a'
and b' are equal where Eq refers to propositional equality. The actual return type of ac-check is an
Option, as we might not be able to prove the equality.

The ac-check function is defined by recursion on the input a.

(1) If a is box (a1 + a2), then a1 and a2 are pattern variables representing open code of addends of
a in the parametric context g. We use the search function to look for a1 in b. It optionally returns
code c with an equality proof of b = a1 + c. Hence c describes the remainder of b excluding a1

and we recursively compare a2 with c. We use the bind operation (>>=) to short-circuit the un-
interesting None case. If the recursion is successful, then we obtain two proofs: pf1 for b = a1 + c

and pf2 for a2 = c. The proof obligation of ac-check requires the code that proves a1 + a2 = b, i.e.
□ (g ⊢ Eq Nat (a1 + a2) b'). This obligation can be filled in by following a sequence of equalities:
a1 + a2 = a1 + c = b. More concretely, we first use letbox to obtain meta-variables pf1', which rep-
resents code of g ⊢ Eq Nat b' (a1 + c'), and pf2', which represents code of g ⊢ Eq Nat a2 c'. To
simulate the sequence of equalities above, we begin with transitivity of equality, which chains
two equality proofs. In the first equality proof, we apply the congruence of addition to obtain
g ⊢ Eq Nat (a1 + a2) (a1 + c') from pf2'. The second equality proof requires g ⊢ Eq Nat (a1 + c') b',
which is just a symmetrized version of pf1'.

1A practical front-end would insert letbox’s smartly, but in this paper, we would like to make the mechanism explicit.
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Agda users might find the last step familiar. Indeed, providing the proof obligations in DeLaM
resembles filling in holes manually in Agda in many aspects. The critical difference however, is
that in DeLaM, proof obligations are fulfilled by (meta-)programs.
(2) If a is not an addition at all, then the only possibility for it to be equal to b is that both

syntactically describe the same code. The function eq? tests the syntactic equality between two
code objects by recursively comparing sub-structures.
The search function is the main driver of the algorithm. It recurses on b to look for an ad-

dend syntactically identical to a. If b has no addition, then search fails and returns None. If b is
box (b1 + b2), the first two ifs compare a with b1 and b2. If either comparison succeeds, then we
have found this addend. Otherwise, in the last else branch, the recursive search continues to look
for a in b2. If successful, we obtain some c and a proof pf of b2 = a + c. Finally, we should re-
turn b1 + c and a proof of b1 + b2 = a + (b1 + c). Similar to ac-check, we also begin with a letbox

to obtain meta-variables c' and pf', which represents code of g ⊢ Eq Nat b2 (a' + c'). The proof
obligation is established by again a transitivity. First, by the congruence of addition, the first
equality proves g ⊢ Eq Nat (b1 + b2) (b1 + (a' + c')). Now the second equality requires a proof
of g ⊢ Eq Nat (b1 + (a' + c')) (a' + (b1 + c')). This equality is established by an invocation of
pull: pull b1' a' c', which swaps b1 and a'. This property is called left commutativity, and is often
required in an AC solver, e.g. in Isabelle/HOL and in Lean. Left commutativity can be proved by a
sequence of associativity, commutativity and again associativity in MLTT.
We can use ac-check to algorithmically derive proofs for many tedious equations about natural

numbers. The following lemma is one example which we would like to avoid proving manually:

lem : (x y z : Nat) → Eq Nat (x + (y + z)) (y + (z + x))

lem x y z = let Some pf ← ac-check (a : Nat , b : Nat , c : Nat) -- context

(box (a + (b + c))) (box (b + (c + a)))

in letbox u ← pf in u[x/a,y/b,z/c]

The first argument to ac-check is the ambient context a : Nat, b : Nat, c : Nat and unrelated
to the function arguments x, y and z. The next two arguments are code objects describing both
sides of the equation in the ambient context above. Since the invocation of ac-check is closed,
it will return Some pf where pf is a code object denoting the equality proof of the code type
□(a:Nat,b:Nat,c:Nat ⊢Eq Nat (a + (b + c)) (b + (c + a))). Note that pf is guaranteed to be a well-
formed equality proof of the given contextual type. To use the equality proof pf at the layer
m, we use letbox to bind it to the meta-variable u. Subsequently, in the body of letbox, we use u with
a substitution to substitute x, y and z for a, b and c, respectively. This pattern of extracting a proof
from code is an instance of code execution, which is justified by the lifting lemma.

Finally, definitions like Option, Eq and >>= are defined in MLTT, but the meta-programming layer
m also has access to them, due to the uniform syntax of DeLaM for all layers and the lifting lemma.
Hence, users of DeLaM only need to learn one language for proving and meta-programming.

2.2 Recursion on Code Objects describing MLTT Types

In DeLaM, code objects describe not only MLTT terms, but also MLTT types. A code object
representing a MLTT type has a contextual type □ (g ⊢ @l) where @l denotes the universe level
l of the type. Hence, DeLaM supports recursion on the shape of a code object of types. Being
able to write meta-programs that recursively analyze the code describing MLTT types is key to
implementing tactics.
To illustrate, consider a goal of the following form: it is either a universally quantified formula

(x : Nat) → F', a conjunction F1 ∧ F2, or an equality between arithmetic expressions. When quoting
such a goal, we obtain a contextual code object F : □ (g ⊢ @0). Below we implement the crush
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15:6 Jason Z. S. Hu and Brigitte Pientka

tactic which takes in F as an input and constructs a code object describing the proof for F, if it finds
it. The tactic is implemented as a meta-program in DeLaM by pattern matching on the shape of F
and leverages the previous AC checker to crush equalities between arithmetic expressions.

crush : (g : Ctx) ⇒ (F : □ (g ⊢ @0)) → letbox F' ← F in Option (□ (g ⊢ F'))

crush g (box (Eq Nat a b)) = ac-check g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = crush g (box F 1 ) >>= 𝜆 (r 1 : □ (g ⊢ F 1 )).

crush g (box F 2 ) >>= 𝜆 (r 2 : □ (g ⊢ F 2 )).

letbox pf 1 ← r 1 ; pf 2 ← r 2 in Some (box (pf 1 , pf 2 ))

crush g (box ((x : Nat) → F)) = crush (g, x : Nat) (box F) >>= 𝜆 (r : □ (g,x : Nat ⊢ F)).

letbox pf ← r in Some (box (𝜆 x. pf))

crush g (box _) = None

In the first case, if the goal formula is simply the equality between arithmetic expressions a and
b, we call ac-check. Otherwise, if the goal is a conjunction, then we crush both components and
compose their proofs at the end. We again use the bind operation (>>=) for convenience. If the goal is
a universal quantification, then we extend the regular context with the parameter x :Nat and recurse
on box F. In general, abstracting over contexts is crucial for recursion on binders that extend regular
contexts (see also [Pientka et al. 2019]). When we have found a proof for F, we return a proof for
(x : Nat) → F by embedding it in a 𝜆. The last case captures all other shapes of formulas and returns
None. We can now use this meta-program to solve more complex goals such as the following:

lem2 : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (y + (z + x)))

lem2 = let Some pf ←
crush () (box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧

((z : Nat) → Eq Nat (x + (y + z)) (y + (z + x)))))

in letbox u ← pf in u

This tactic follows the same pattern as in the last example.

3 Syntax of DeLaM

Starting this section, we define DeLaM formally. DeLaM includes multiple layers: the layer c
accommodates static code objects, whereas the layer d corresponds to the dependent type theory
of MLTT. The topmost layer m extends MLTT with contextual types and other constructs for
composition, execution, and recursion on code. While the syntax of DeLaM (see Fig. 2) is uniform
and thus users only need to learn one language, layers are distinguished on the judgmental level,
where we define well-formed objects and valid computational bahaviors. We will dissect the syntax
gradually and discuss our design decisions. Readers might find hyperlinks in the text convenient.

3.1 Explicit Universe Polymorphism

DeLaM supports universe polymorphism following Bezem et al. [2022]. Universes (𝑙) form an
idempotent commutative monoid, where 𝑙 ⊔ 𝑙 ′ takes the maximum of 𝑙 and 𝑙 ′. The 𝜔 level is added
to support universe-polymorphic functions. A universe level 𝑙 is well-formed if all variables in 𝑙

appear in 𝐿 and 𝑙 contains no 𝜔 . Similar to Agda, universes respect a number of equalities: identity
(0⊔ 𝑙 = 𝑙 ), distributivity (1+ (𝑙 ⊔ 𝑙 ′) = (1+ 𝑙) ⊔ (1+ 𝑙 ′)), absorption (𝑙 ⊔ (1+ 𝑙) = 1+ 𝑙 ), commutativity,
associativity and idempotence. Given two well-formed universes 𝑙 and 𝑙 ′, whether 𝑙 = 𝑙 ′ is decidable
as implemented in Agda. One possible algorithm is to compare the universe level associated with
each universe variable in 𝑙 and 𝑙 ′. Moreover, universes form a partial order (𝑙 ≤ 𝑙 ′ := 𝑙 ′ = 𝑙 ⊔ 𝑙 ′) and
a strict order (𝑙 < 𝑙 ′ := 1 + 𝑙 ≤ 𝑙 ′). The strict order is well-founded. This fact will be used to define
the logical relations to prove weak normalization and decidability of convertibility.
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𝑖, 𝑗, 𝑘 ∈ {v, c, d,m} (Layers, where v < c < d < m)
𝑥,𝑢, ℓ (Regular, meta-, universe variables, resp.)

𝑙 := ℓ | 0 | 1 + 𝑙 | 𝑙 ⊔ 𝑙 ′ | 𝜔 (Universe levels)
𝐿 := · | 𝐿, ℓ (Universe contexts)

Φ,Ψ := · | Φ, 𝑢 : 𝐸 (Meta-contexts)
Γ,Δ := · | 𝑢 | Γ, 𝑥 : 𝑇 @ 𝑙 (Regular contexts)

𝛿 := · | wk | 𝛿, 𝑡/𝑥 (Regular substitutions)
𝐸 := Ctx | (Γ ⊢𝑖 @ 𝑙) | (Γ ⊢𝑖 𝑇 @ 𝑙) (Contextual kinds)
𝑒 := Γ | 𝑇 | 𝑡 (Contextual objects)

𝑀, 𝑆,𝑇 := Ty𝑙 | Nat | Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 | 𝑢𝛿 | −→ℓ ⇒𝑙 𝑇 | (𝑢 : 𝐸) ⇒𝑙 𝑇 | □𝐸 | El𝑙 𝑡 (Types)
𝑠, 𝑡 := Ty𝑙 | Nat | Π𝑙,𝑙 ′ (𝑥 : 𝑠).𝑡 | 𝑥 | 𝑢𝛿 | zero | succ 𝑡 (Terms)

| 𝜆𝑙,𝑙 ′ (𝑥 : 𝑆).𝑡 | (𝑡 : Π𝑙,𝑙 ′ (𝑥 : 𝑆) .𝑇 ) 𝑠 | Λ𝑙 𝑢.𝑡 | 𝑡 $ 𝑒 | Λ𝑙 −→ℓ .𝑡 | 𝑡 $ −→𝑙
| box 𝑒 | letbox𝑙

𝑥 .𝑀
𝑢 ← (𝑠 : □𝐸) in 𝑡 | elim𝑙1,𝑙2

−→
𝑀
−→
𝑏 (𝑡 : □𝐸)

−→
𝑀 := (ℓ,𝑢Γ, 𝑥𝑇 .𝑀Typ) (ℓ,𝑢Γ, 𝑢𝑇 , 𝑥𝑡 .𝑀Trm) (Two motives for recursion on code)
−→
𝑏 :=

−→
𝑏 Typ

−→
𝑏 Trm (Branches for recursion on code)

𝑏Typ := (ℓ,𝑢Γ .𝑡Ty) | (𝑢Γ .𝑡Nat) | (ℓ, ℓ ′, 𝑢Γ, 𝑢𝑆 , 𝑢𝑇 , 𝑥𝑆 , 𝑥𝑇 .𝑡Π) | (ℓ,𝑢Γ, 𝑢𝑡 , 𝑥𝑡 .𝑡El)
(Branches for code of MLTT types)

𝑏Trm := (ℓ,𝑢Γ .𝑡 ′Ty) | (𝑢Γ .𝑡 ′Nat) | (ℓ, ℓ ′, 𝑢Γ, 𝑢𝑠 , 𝑢𝑡 , 𝑥𝑠 , 𝑥𝑡 .𝑡 ′Π) | (ℓ,𝑢Γ, 𝑢𝑇 , 𝑢𝑥 .𝑡𝑥 ) | (𝑢Γ .𝑡zero)
| (𝑢Γ, 𝑢𝑡 , 𝑥𝑡 .𝑡succ) | (ℓ, ℓ ′, 𝑢Γ, 𝑢𝑆 , 𝑢𝑇 , 𝑢𝑡 , 𝑥𝑆 , 𝑥𝑡 .𝑡𝜆) | (ℓ, ℓ ′, 𝑢Γ, 𝑢𝑆 , 𝑢𝑇 , 𝑢𝑡 , 𝑢𝑠 , 𝑥𝑆 , 𝑥𝑇 , 𝑥𝑡 , 𝑥𝑠 .𝑡app)

(Branches for code of MLTT terms)
Fig. 2. Syntax of DeLaM

DeLaM supports a universe polymorphic function space (−→ℓ ⇒𝑙 𝑇 ); this type is introduced by
abstractions (Λ𝑙 −→ℓ .𝑡 ) and used by applications (𝑡 $

−→
𝑙 ).

3.2 Variables, Contexts and Substitutions

DeLaM distinguishes regular regular variables (𝑥) and meta-variables (𝑢), which represent holes
in code. Meta-variables for types and terms are associated with a regular substitution 𝛿 . We may
omit writing the regular substitution if it is the identity id. To support universe polymorphism,
we use ℓ to range over all universe variables. Three kinds of variables are stored in three kinds of
contexts: regular contexts (Γ), meta-contexts (Ψ), and universe contexts (𝐿). Universe contexts are
just collections of universe variables. Meta-contexts bind meta-variables 𝑢 to a contextual kind
(𝐸) which describes either a regular context or a contextual object for types or for terms. Due
to context polymorphism, there are two base cases for a regular context: empty (·) or a context
variable (𝑢 : Ctx) bound in meta-contexts. Correspondingly, there are also two base cases for a
regular substitution. The empty substitution · maps to an empty context, while the weakening wk
is the base case for context variables (c.f. Sec. 4.1).

3.3 Tarski-style Universes and Types

Instead of a more common Russell-style universe hierarchy, DeLaM employs a Tarski-style hi-
erarchy [Palmgren 1998]. The Tarski style brings the syntax closer to the semantics than the
Russell style and simplifies our semantic development. In the Tarski-style formulation, types and
terms belong to two different but mutually defined grammars. Dependent types are achieved by
introducing a decoder El, which decodes an encoding of a type. For example, El0 Nat decodes to
the type Nat. As a consequence, Ty, Nat, and Π types are present both as types and as terms and
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we are overloading their syntax. In addition, types also include universe-polymorphic functions
(−→ℓ ⇒𝑙 𝑇 ), meta-functions ((𝑢 : 𝐸) ⇒𝑙 𝑇 ), and contextual types (□𝐸) describing well-typed open
code. As shown in Sec. 2, meta-functions are typically used to set up preliminaries in the typing
context in order to describe contextual types, which denotes the actual code to manipulate.

Since we employ a non-cumulative universe hierarchy, following Pujet and Tabareau [2023], we
use @ 𝑙 to mark the universe levels in contextual kinds and other places explicitly.

3.4 Dissecting Types and Terms of DeLaM

In the grammar of DeLaM (see Fig. 2) we distinguish between three different contextual objects
𝑒: MLTT contexts Γ, MLTT terms 𝑡 , and MLTT types 𝑇 . Contextual objects of MLTT types and
terms are only meaningful w.r.t. a regular context. Unlike in prior work (e.g. [Cave and Pientka
2012; Pientka et al. 2019]), we omit the regular contexts associated with contextual objects as they
are uniquely determined by the types of the contextual objects. Though we use abstract names in
the presentation, under the hood, we assume de Bruijn indices for variables, so we avoid issues of
𝛼-renaming.

Disregarding universe levels for a moment, terms in DeLaM include MLTT objects like the
encodings of types (e.g. natural numbers (Nat) and function types (Π(𝑥 : 𝑠).𝑡 )), function abstractions
(𝜆(𝑥 : 𝑆).𝑡 ), and function applications ((𝑡 : Π(𝑥 : 𝑆).𝑇 ) 𝑠). Note that in a function application we
include the type annotation of 𝑡 . This is necessary for quotation of terms and obtaining sufficient
typing information of 𝑡 . Without this annotation, we cannot generally derive what 𝑇 is given only
the overall type of the application. A recursor for natural numbers can be added in the usual way,
but we omit it here for a more compact presentation.
Inspired by Cocon [Pientka et al. 2019], we include abstractions over contextual objects (Λ 𝑢.𝑡 )

to introduce meta-functions and applications of meta-functions (𝑡 $ 𝑒). In addition, following Hu
and Pientka [2024b], we add the capability to quote code (box 𝑒), to compose and execute code
using letbox, and to recurse over code objects using elim.
Both letbox and the recursor are defined to account for possible type dependencies. As a

consequence, we annotate both constructs with the overall type of the expression (a.k.a. the motive
𝑀). In particular, letbox carries a motive annotation 𝑥 .𝑀 . In the case of elim, we need two motive
annotations

−→
𝑀 , as it defines a mutual recursion principle over code objects of MLTT types and

terms at the same time. The mutual recursion also leads to two sets of branches
−→
𝑏 Typ and

−→
𝑏 Trm. It

may be surprising to see that we define one recursor which includes two mutually defined recursion
principles: one for types and one for terms. This comes from the fact that types and terms in DeLaM
are also mutually defined due to the Tarski-style universe hierarchy. Hence, when we analyze a
function application (𝑡 : Π(𝑥 : 𝑆).𝑇 ) 𝑠 , we may recursively analyze not only the terms 𝑡 and 𝑠 , but
also the types 𝑇 and 𝑆 . Similarly, when we analyze a type of the form El𝑙 𝑡 , we may recursively
analyze the term 𝑡 . This mutual dependency is the source of the complication in the recursor.
Intuitively, the branches in

−→
𝑏 Trm cover all possible MLTT terms and those in

−→
𝑏 Typ cover all

possible MLTT types.
−→
𝑏 then collects both kinds of branches. In

−→
𝑏 Typ, we cover the following cases:

when we encounter the code of a universe, we choose branch 𝑡Ty; when we encounter the type
Nat, we choose branch 𝑡Nat; when we encounter a Π type, we choose the branch 𝑡Π ; and when we
encounter a decoder El, we choose the branch 𝑡El. In

−→
𝑏 Trm, we have cases for variables (𝑡𝑥 ), natural

numbers (𝑡zero and 𝑡succ), function abstractions (𝑡𝜆), function applications (𝑡app), and the encodings
of types (𝑡 ′Ty, 𝑡

′
Nat and 𝑡 ′Π). In each branch, we list the pattern variables 𝑢 of the pattern being

considered. For example, in the branch 𝑡succ, the pattern variable 𝑢𝑡 describes the pattern variable in
the pattern succ 𝑢𝑡 . Similarly, in the branch 𝑡app, the pattern would be (𝑢𝑡 : Π(𝑥 : 𝑢𝑆 ).𝑢𝑇 ) 𝑢𝑠 , so we
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have pattern variables for the function 𝑢𝑡 and the argument 𝑢𝑠 , as well as for the type annotations
𝑢𝑆 and 𝑢𝑇 . Since the regular context might grow in the Π case and in the 𝜆 case, each branch
maintains a context variable 𝑢Γ . Finally, each branch includes recursion variables 𝑥 for recursive
calls. In the succ case, 𝑥𝑡 refers to the recursive call over 𝑢𝑡 when we encounter the pattern succ 𝑢𝑡 .
In the application case, we have four recursive calls: 𝑥𝑡 corresponds to the recursive call on the
function 𝑢𝑡 ; 𝑥𝑠 corresponds to the recursive call on the argument 𝑢𝑠 ; and 𝑥𝑇 and 𝑥𝑆 correspond
to the recursive calls on the types 𝑢𝑆 and 𝑢𝑇 respectively. Last, each branch introduces universe
variables to quantify the universe levels of pattern variables. The variables in the branches

−→
𝑏 Typ

are organized in a similar principle.

4 Syntactic Judgments in DeLaM

Though layers do not impact the uniform syntax of DeLaM, they do make a significant difference
in the judgments. Most syntactic judgments in DeLaM are parameterized by a layer 𝑖 . Through the
layer 𝑖 , we can define rules that generically hold at multiple layers and rules that only exist at a
specific layer. For each layer, we control not only the validity of objects, but also the computational
behaviors. In this way, we cleanly distinguish the layer c for code objects, the layer d for pure MLTT,
and the layer m of meta-programming. Following Cave and Pientka [2012]; Pientka et al. [2019],
we further introduce the layer v, which only describes static code objects for MLTT variables.
This layer only appears in the pattern variable when we hit the case for variables (𝑡𝑥 ) during a
recursion on code of terms. Based on the matryoshka principle, these layers form a strict order:
v < c < d < m. As explained in Sec. 1, the computational power strictly increases as the layer
ascends. In particular, code objects at layer c do not compute, so that the recursion principles are
applied to the syntactic shapes of code. On the other hand, code promotion may bring a code object
to its type at layer d, where computation may occur. The topmost layer m further extends the layer
d with computational constructs that composes, executes and does recursion on code.

Most syntactic judgments are defined parametrically in layer 𝑖 . Here the layer 𝑖 refers to the layer
which the principal object lives at. For example, 𝐿 | Ψ; Γ ⊢𝑖 𝑡 : 𝑇 @ 𝑙 defines that 𝑡 is well-typed at
layer 𝑖 . In this case, the regular context Γ and the type𝑇 live at a higher layer than 𝑖 . For example, if
𝑖 = c, then 𝑡 is a code object, and therefore its type𝑇 lives at layer d. We define the function ⇑ (𝑖) to
compute the layer of the surrounding typing environment when the principal object lives at layer 𝑖 .
It is defined as ⇑ (m) := m, and ⇑ (𝑖) := d if 𝑖 ≠ m. Presupposition illustrates the purpose of ⇑ (𝑖)
(c.f. Lemma 4.3). We discuss below a few selected rules for each judgment in DeLaM. We highlight
the principal object in the informal explanation for each judgment in shades . For conciseness, we
assume all parameterized universes 𝑙 to be well-formed.

4.1 Well-formed Regular and Meta-Contexts

We begin with the discussion on the well-formedness of meta- and regular contexts w.r.t. a universe
context 𝐿. A meta-context Ψ is well-formed, if every contextual kind 𝐸 in Ψ is well-formed at layer
𝑖 . Here 𝑖 determines the well-formedness of contextual kind 𝐸. A regular context Γ is well-formed,
if every type declaration 𝑥 : 𝑇 @ 𝑙 in Γ is well formed.

𝐿 ⊢ Ψ Meta-context Ψ is wf 𝐿 | Ψ ⊢𝑖 Γ At layer 𝑖 the regular context Γ is wf

𝐿 ⊢ ·
𝐿 | Ψ ⊢𝑖 𝐸
𝐿 ⊢ Ψ, 𝑢 : 𝐸

𝐿 ⊢ Ψ
𝐿 | Ψ ⊢𝑖 ·

𝐿 ⊢ Ψ 𝑢 : Ctx ∈ Ψ
𝐿 | Ψ ⊢𝑖 𝑢

𝐿 | Ψ ⊢𝑖 Γ 𝐿 | Ψ; Γ ⊢𝑖 𝑇 @ 𝑙

𝐿 | Ψ ⊢𝑖 Γ, 𝑥 : 𝑇 @ 𝑙
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A regular substitution 𝛿 is well-formed, if all terms within are well-formed.

𝐿 | Ψ; Γ ⊢𝑖 𝛿 : Δ At layer 𝑖 regular substitution 𝛿 substitutes variables in Δ with terms in Γ

𝐿 | Ψ ⊢⇑(𝑖) Γ
𝐿 | Ψ; Γ ⊢𝑖 · : ·

𝐿 | Ψ ⊢⇑(𝑖) (𝑢, Γ)
𝐿 | Ψ;𝑢, Γ ⊢𝑖 wk : 𝑢

𝐿 | Ψ; Γ ⊢𝑖 𝛿 : Δ
𝐿 | Ψ;Δ ⊢⇑(𝑖) 𝑇 @ 𝑙 𝐿 | Ψ; Γ ⊢𝑖 𝑡 : 𝑇 [𝛿]@ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝛿, 𝑡/𝑥 : Δ, 𝑥 : 𝑇 @ 𝑙

4.2 Contextual Kinds and Contextual Objects

We have three different possible contextual objects and kinds: MLTT contexts, MLTT types and
MLTT terms. We use the layer 𝑖 to control which contextual objects and kinds are accessible
at a given layer. For example, Ctx is only well-formed at layer d. The well-formedness of □𝐸 is
defined such that we do not have □Ctx, i.e. we cannot return a code object of context. However,
meta-functions (𝑢 : Ctx) ⇒𝑙 𝑇 where we abstract over contexts are valid. Code objects include
both contextual MLTT terms 𝑡 of kind (Γ ⊢𝑖 𝑇 @ 𝑙) and contextual MLTT types 𝑇 of kind (Γ ⊢𝑖 @ 𝑙).
Both are available at layer c, so we have access to code of types and terms.

𝐿 | Ψ ⊢𝑖 𝐸 At layer 𝑖 the contextual kind 𝐸 is well-formed

𝐿 ⊢ Ψ
𝐿 | Ψ ⊢d Ctx

𝐿 | Ψ ⊢⇑(𝑖) Γ 𝑖 ∈ {c, d}
𝐿 | Ψ ⊢𝑖 (Γ ⊢𝑖 @ 𝑙)

𝐿 | Ψ; Γ ⊢⇑(𝑖) 𝑇 @ 𝑙 𝑖 ∈ {v, c}
𝐿 | Ψ ⊢𝑖 (Γ ⊢𝑖 𝑇 @ 𝑙)

𝐿 | Ψ ⊢𝑖 𝑒 : 𝐸 At layer 𝑖 contextual object 𝑒 has contextual kind 𝐸

𝐿 | Ψ ⊢d Γ

𝐿 | Ψ ⊢d Γ : Ctx
𝐿 | Ψ; Γ ⊢𝑖 𝑇 @ 𝑙 𝑖 ∈ {c, d}

𝐿 | Ψ ⊢𝑖 𝑇 : (Γ ⊢𝑖 @ 𝑙)
𝐿 | Ψ; Γ ⊢𝑖 𝑡 : 𝑇 @ 𝑙 𝑖 ∈ {v, c}

𝐿 | Ψ ⊢𝑖 𝑡 : (Γ ⊢𝑖 𝑇 @ 𝑙)

4.3 Types and Terms

We first define the well-formedness of types 𝑇 at layer 𝑖 . By controlling layer 𝑖 , we control what
types are available. For example, □𝐸 is only available at layer m and hence all lower layers (v, c, d)
only have access to MLTT terms and types.
In the rules for types, due to Tarski universes à la Palmgren [1998], El𝑙 𝑡 decodes the encoding

𝑡 : Ty𝑙 to an actual type. The parameter 𝑖 means that El is available at all c, d and m. Rules for
types like □𝐸 are only available at layer m. Note that □𝐸 lives on universe level 0 regardless of the
universe of the type or the term in 𝐸. This is because □𝐸 encodes an intrinsically typed syntax of
MLTT at layer m, which corresponds to a logically stronger sub-language than MLTT, so universe
level 0 is large enough to encode all well-formed types and terms of MLTT. This observation is
modeled in the semantics (c.f. Sec. 5.5), where □𝐸 need not to refer to other semantics at layer m,
so its semantics can be placed on level 0.

𝐿 | Ψ; Γ ⊢𝑖 𝑇 @ 𝑙 At layer 𝑖 type 𝑇 is wf on universe level 𝑙 𝐿 | Ψ; Γ ⊢𝑖 𝑡 : Ty𝑙 @ 1 + 𝑙

𝐿 | Ψ; Γ ⊢𝑖 El𝑙 𝑡 @ 𝑙

𝐿 | Ψ ⊢m Γ 𝐿 | Ψ ⊢c 𝐸
𝐿 | Ψ; Γ ⊢m □𝐸@ 0

𝐿 | Ψ ⊢d 𝐸 𝐿 | Ψ, 𝑢 : 𝐸; Γ ⊢m 𝑇 @ 𝑙

𝐿 | Ψ; Γ ⊢m (𝑢 : 𝐸) ⇒𝑙 𝑇 @ 𝑙

𝐿,
−→
ℓ | Ψ; Γ ⊢m 𝑇 @ 𝑙

𝐿 | Ψ; Γ ⊢m
−→
ℓ ⇒𝑙 𝑇 @ 𝜔

Following the same principle, well-typed terms in vanilla MLTT are defined parametrically in
layer 𝑖 . These terms include encodings of types, natural numbers, functions, and variables. When
referring to a meta-variable𝑢, we need to supply a regular substitution 𝛿 to fill in the open variables.
The premise 𝑖 ′ ≤ 𝑖 builds the lifting lemma into the typing rule by allowing to use meta-variables
from a lower layer at a higher one. Terms related to meta-programming are only available at layer
m, e.g. the box constructor and letbox. The core syntax of letbox requires a motive 𝑥 .𝑀 , which
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computes the result type. The letbox body 𝑡 lives in an extended meta-context with 𝑢 and has
type𝑀 with 𝑥 substituted by box 𝑢 id, where id is the identity regular substitution.

𝐿 | Ψ; Γ ⊢𝑖 𝑡 : 𝑇 @ 𝑙 At layer 𝑖 term 𝑡 has type 𝑇 at universe level 𝑙

𝐿 | Ψ ⊢⇑(𝑖) Γ
𝐿 | Ψ; Γ ⊢𝑖 Ty𝑙 : Ty1+𝑙 @ 2 + 𝑙

𝑢 : (Δ ⊢𝑖′ 𝑇 @ 𝑙) ∈ Ψ 𝑖 ′ ≤ 𝑖 𝐿 | Ψ; Γ ⊢𝑖 𝛿 : Δ

𝐿 | Ψ; Γ ⊢𝑖 𝑢𝛿 : 𝑇 [𝛿]@ 𝑙

𝐿 | Ψ ⊢⇑(𝑖) Γ 𝑥 : 𝑇 @ 𝑙 ∈ Γ
𝐿 | Ψ; Γ ⊢𝑖 𝑥 : 𝑇 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑆 @ 𝑙 𝐿 | Ψ; Γ, 𝑥 : 𝑆 @ 𝑙 ⊢𝑖 𝑡 : 𝑇 @ 𝑙 ′

𝐿 | Ψ; Γ ⊢𝑖 𝜆𝑙,𝑙
′ (𝑥 : 𝑆).𝑡 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 @ 𝑙 ⊔ 𝑙 ′

𝐿 | Ψ; Γ ⊢𝑖 𝑆 @ 𝑙 𝐿 | Ψ; Γ, 𝑥 : 𝑆 @ 𝑙 ⊢𝑖 𝑇 @ 𝑙 ′

𝐿 | Ψ; Γ ⊢𝑖 𝑡 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 @ 𝑙 ⊔ 𝑙 ′ 𝐿 | Ψ; Γ ⊢𝑖 𝑠 : 𝑆 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 (𝑡 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ) 𝑠 : 𝑇 [𝑠/𝑥]@ 𝑙 ′

𝐿 | Ψ ⊢m Γ 𝐿 | Ψ ⊢c 𝑒 : 𝐸
𝐿 | Ψ; Γ ⊢m box 𝑒 : □𝐸@ 0

𝐿 | Ψ; Γ, 𝑥 : □𝐸@ 0 ⊢m 𝑀 @ 𝑙 𝐿 | Ψ; Γ ⊢m 𝑠 : □𝐸@ 0 𝐿 | Ψ, 𝑢 : 𝐸; Γ ⊢m 𝑡 : 𝑀 [box 𝑢 id/𝑥]@ 𝑙

𝐿 | Ψ; Γ ⊢m letbox𝑙𝑥 .𝑀 𝑢 ← (𝑠 : □𝐸) in 𝑡 : 𝑀 [𝑠/𝑥]@ 𝑙

Finally, we discuss some selected equivalence rules. We focus here on term equivalences and omit
the equivalences for types 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 . All equivalence judgments include symmetry,
transitivity, and naturally derived congruence rules at all layers. We omit these rules in the interest
of space. We show here two 𝛽 equivalence rules. In DeLaM, no computation rule is available at
layers v and c. Computation rules for terms in MLTT like the 𝛽 rule for functions are available at
both layers d and m to handle both code promotion and code execution. Rules for meta-programs
like the 𝛽 rule for letbox and for recursors are only available at layer m.

𝐿 | Ψ; Γ ⊢𝑖 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 At layer 𝑖 the term 𝑡 is equivalent to the term 𝑡 ′

𝑖 ∈ {d,m} 𝐿 | Ψ; Γ ⊢𝑖 𝑆 @ 𝑙

𝐿 | Ψ; Γ, 𝑥 : 𝑆 @ 𝑙 ⊢𝑖 𝑇 @ 𝑙 ′ 𝐿 | Ψ; Γ, 𝑥 : 𝑆 @ 𝑙 ⊢𝑖 𝑡 : 𝑇 @ 𝑙 ′ 𝐿 | Ψ; Γ ⊢𝑖 𝑠 : 𝑆 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 (𝜆𝑙,𝑙
′ (𝑥 : 𝑆).𝑡 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ) 𝑠 ≈ 𝑡 [𝑠/𝑥] : 𝑇 [𝑠/𝑥]@ 𝑙 ′

𝐿 | Ψ ⊢m Γ 𝐿 | Ψ ⊢c 𝑒 : 𝐸 𝐿 | Ψ; Γ, 𝑥 : □𝐸@ 0 ⊢m 𝑀 @ 𝑙 𝐿 | Ψ, 𝑢 : 𝐸; Γ ⊢m 𝑡 : 𝑀 [box 𝑢 id/𝑥]@ 𝑙

𝐿 | Ψ; Γ ⊢m letbox𝑙𝑥 .𝑀 𝑢 ← (box 𝑒 : □𝐸) in 𝑡 ≈ 𝑡 [𝑒/𝑢] : 𝑀 [box 𝑒/𝑥]@ 𝑙

4.4 Static Code and Lifting Lemma

Two guiding lemmas of DeLaM are the lifting lemma and the static code lemma. The first one says
that a well-typed term at a lower layer is also well-typed at higher layers. The latter states that
equivalence between code objects is syntactic equality. For space, lemmas in this paper are not
fully stated. Please see our technical report for details.

Lemma 4.1 (Lifting). If 𝑖 ≤ 𝑖 ′, and

• 𝐿 | Ψ; Γ ⊢𝑖 𝑇 @ 𝑙 , then 𝐿 | Ψ; Γ ⊢𝑖′ 𝑇 @ 𝑙 ;

• 𝐿 | Ψ; Γ ⊢𝑖 𝑡 : 𝑇 @ 𝑙 , then 𝐿 | Ψ; Γ ⊢𝑖′ 𝑡 : 𝑇 @ 𝑙 .

Lemma 4.2 (Static Code). If 𝑖 ∈ {v, c}, and
• 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 , then 𝑇 = 𝑇 ′;
• 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 , then 𝑡 = 𝑡 ′;

A consequence of the lifting lemma is that code objects at layer c can be lifted to layers d and m
for free. It justifies code execution by using the lifting lemma to execute a code object of layer c at
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layer m. It also enables code promotion, which allows us to promote the syntactic representation of
a code object at layer c to layer d to allow us to capture all equivalences of MLTT at layer d.
One consequence of the static code lemma is no interesting computational behavior at layers

v and c, so terms at both layers describe the static syntax of code objects. This is a necessary
condition to intensionally analyze code from layer c and v.
Presupposition is another important lemma that holds about our syntactic typing rules. It says

that if the principal object is being defined at layer 𝑖 , regular contexts and types live at layer ⇑ (𝑖).

Lemma 4.3 (Presupposition).

• If 𝐿 | Ψ; Γ ⊢𝑖 𝑇 @ 𝑙 , then 𝐿 | Ψ ⊢⇑(𝑖) Γ.
• If 𝐿 | Ψ; Γ ⊢𝑖 𝑡 : 𝑇 @ 𝑙 , then 𝐿 | Ψ ⊢⇑(𝑖) Γ and 𝐿 | Ψ; Γ ⊢⇑(𝑖) 𝑇 @ 𝑙 .

4.5 Weak-head Reductions

We follow Abel et al. [2018] to establish the proofs of weak normalization and the decidability
of convertibility, so we need a description of weak-head normal forms (WHNFs) and a notion of
weak-head reductions. Their definitions are entirely standard. WHNFs for types (𝑊 ) are either type
constructors, or neutral types (𝑉 ), which are meta-variables (𝑢𝛿 ) or a decoding of neutral terms
(El𝑙 𝜈). WHNFs for terms (𝑤 ) are either in introduction forms, or neutral terms (𝜈), which are either
variables or elimination forms blocked by other neutrals. Weak normalization then proves that all
well-formed types and terms must reach their WHNFs in finite steps of reductions.

The untyped one-step reductions for types (𝑇 ⇝ 𝑇 ′) and terms (𝑡 ⇝ 𝑡 ′) are also standard. In
general, reductions are divided into two groups, one for reductions in head positions, and the other
for actual computation. For types, head reductions only occur for El:

El0 Nat⇝ Nat El1+𝑙 Ty𝑙 ⇝ Ty𝑙 El𝑙⊔𝑙
′
Π𝑙,𝑙 ′ (𝑥 : 𝑠).𝑡 ⇝ Π𝑙,𝑙 ′ (𝑥 : El𝑙 𝑠).El𝑙 ′ 𝑡

𝑡 ⇝ 𝑡 ′

El𝑙 𝑡 ⇝ El𝑙 𝑡 ′

Reductions for terms also follow the same principle. One-step reductions enjoy typical properties
like determinacy and preservation, and respect all substitutions. One-step reductions are generalized
to multi-step reductions for types (𝑇 ⇝∗ 𝑇 ′) and for terms (𝑡 ⇝∗ 𝑡 ′). If multi-step reductions step
to WHNFs, then determinacy ensures that WHNFs are unique.
Typed reductions 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇝ 𝑇 ′@ 𝑙, 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ⇝ 𝑡 ′ : 𝑇 @ 𝑙 and their multi-step variants

are obtained by pairing untyped reductions with corresponding typing judgments.

4.6 Recursion on Code

Finally, we describe the rules for the recursors for code (elim𝑙1,𝑙2
−→
𝑀
−→
𝑏 (𝑡 : □𝐸)). We have listed the

syntax towards the end of Fig. 2. As mentioned before, this term encompasses in fact two mutually
defined recursion principles: one for code of types and the other for code of terms. Therefore, we
have two motives𝑀Typ and𝑀Trm in

−→
𝑀 . They describe the return types of the recursion principles

on code of types and of terms respectively. The branches also fall into two categories: the branches
for recursively analyzing types (𝑏Typ) and terms (𝑏Trm).

As the recursor describes two recursion principles, they give rise to two typing rules. We focus
on the rule for the recursor for code of terms. We abbreviate the well-formedness of branches as
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−→
𝑏 wf and concentrate on checking well-formedness of motives𝑀Typ and𝑀Trm and the scrutinee 𝑡 .

𝐿, ℓ | Ψ, 𝑢Γ : Ctx; Γ, 𝑥𝑇 : □(𝑢Γ ⊢c @ ℓ)@ 0 ⊢m 𝑀Typ@ 𝑙1

𝐿, ℓ | Ψ, 𝑢Γ : Ctx, 𝑢𝑇 : (𝑢Γ ⊢d @ ℓ); Γ, 𝑥𝑡 : □(𝑢Γ ⊢c 𝑢𝑇 @ ℓ)@ 0 ⊢m 𝑀Trm@ 𝑙2−→
𝑏 wf 𝐿 | Ψ; Γ ⊢m 𝑡 : □(Δ ⊢c 𝑇 @ 𝑙)@ 0 𝐿 | Ψ;Δ ⊢d 𝑇 @ 𝑙

𝐿 | Ψ; Γ ⊢m elim
𝑙1,𝑙2 −→𝑀 −→𝑏 (𝑡 : □(Δ ⊢c 𝑇 @ 𝑙)) : 𝑀Trm [𝑙/ℓ,Δ/𝑢Γ,𝑇 /𝑢𝑇 , 𝑡/𝑥𝑡 ]@ 𝑙2

The motives𝑀Typ and𝑀Trm abstract over the context variable 𝑢Γ , which might change during
recursion. As the return type might also depend on the scrutinee, the motives also abstract over
𝑥𝑇 (the scrutinee as code of type) or 𝑥𝑡 (the scrutinee as code of term). In the latter case, we
also keep track of the type of the scrutinee, denoted by 𝑢𝑇 . The overall type of the recursion
is 𝑀Trm [𝑙/ℓ,Δ/𝑢Γ,𝑇 /𝑢𝑇 , 𝑡/𝑥𝑡 ] where we replace 𝑢Γ with the concrete regular context Δ of the
scrutinee, 𝑢𝑇 with the type 𝑇 of the scrutinee, and we instantiate 𝑥𝑡 with the scrutinee 𝑡 itself in
𝑀Trm.

Notice that 𝑇 lives at layer d, which supports computation, while the term eventually computed
by 𝑡 will be a static contextual code object describing the syntax of an MLTT term. As a consequence,
if 𝑇 is for example (𝜆𝑥.𝑥) Nat, it is equivalent to Nat. In other words, it captures the fact that we
are only interested in analyzing a code object of type Nat and the exact shape of the type 𝑇 is
unimportant. On the other hand, if the code object 𝑡 contains (𝜆𝑥 .𝑥) Nat as a sub-code, the redex
would remain, because this code object represents a different static syntax tree from that of code
Nat due to the static code lemma.

Now let us consider the well-formedness of branches. As described earlier in Sec. 3.4 we distin-
guish branches for types (𝑏Typ) and terms (𝑏Trm). We use the branch for function applications 𝑡app as
a running example and other branches can be derived naturally following the same principle (see
all the branches in [Hu and Pientka 2024a, Sec. 4.6] and [Hu 2024, Appendix F]). To facilitate the
discussion, we use colors to differentiate contexts, universe variables, types and terms in the pattern
and the scrutinee. For more readability, we simply write𝑢 for𝑢 id when a meta-variable is associated
with the identity substitution. In this branch, the scrutinee is the code of (𝑡 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ) 𝑠 and is
matched against the pattern (𝑢𝑡 : Πℓ,ℓ′ (𝑥 : 𝑢𝑆 ).𝑢𝑇 ) 𝑢𝑠 . Each sub-structure in the scrutinee is matched
by a pattern variable. These pattern variables are meta-variables 𝑢 extended to the meta-context Ψ
and with matching subscripts of the sub-structures. The well-formedness conditions of the pattern
variables record the ambient contexts, and the types if the pattern variables are for code of terms.
When we line up the pattern variables and the sub-structures, we find a correspondence not only
between them, but also between their well-formedness conditions. For example, the typing of the
pattern variable 𝑢𝑠 encodes the well-formedness of its matching sub-structure 𝑠 .

Regular Context Code Object Well-formedness
Sub-structures Γ 𝑠 𝐿 | Ψ; Γ ⊢c 𝑠 : 𝑆 @ 𝑙

Pattern variables 𝑢Γ 𝑢𝑠 𝑢𝑠 : (𝑢Γ ⊢c 𝑢𝑆 @ ℓ)
In addition to the pattern variables, there are two new universe variables ℓ and ℓ ′ to capture

the universes of 𝑆 and 𝑇 . Finally, each meta-variable gives rise to a recursive call. The recursive
calls are regular variables 𝑥 extended to the regular context with matching subscripts of the sub-
structures. The recursive calls on code of MLTT types such as 𝑢𝑆 and 𝑢𝑇 have the corresponding
type𝑀Typ appropriately refined. In particular, the scrutinee 𝑥𝑇 in𝑀Typ is instantiated with box 𝑢𝑆
and box 𝑢𝑇 , respectively. Since 𝑢𝑇 has a longer regular context than 𝑢𝑆 , this fact is reflected in the
variable 𝑢Γ in𝑀Typ. Recursive calls on code of terms such as 𝑢𝑡 and 𝑢𝑠 have the corresponding type
𝑀Trm appropriately instantiated. Here we replace the scrutinee 𝑥𝑡 in𝑀Trm with box 𝑢𝑠 and box 𝑢𝑡 ,
respectively. In addition to the regular context for each of 𝑢𝑡 and 𝑢𝑠 , we also refine the type 𝑢𝑇 in

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 15. Publication date: January 2025.



15:14 Jason Z. S. Hu and Brigitte Pientka

𝑀Trm with a Π type and 𝑢𝑆 , respectively. Collecting all additional assumptions in the contexts gives
rise to the following well-formedness condition for the branch 𝑡app for function applications:

𝐿, ℓ, ℓ ′ | Ψ, 𝑢Γ : Ctx
, 𝑢𝑆 : (𝑢Γ ⊢c @ ℓ), 𝑢𝑇 : (𝑢Γ, 𝑥 : 𝑢𝑆 @ ℓ ⊢c @ ℓ ′)

}
Pattern variables

, 𝑢𝑡 : (𝑢Γ ⊢c Πℓ,ℓ′ (𝑥 : 𝑢𝑆 ) .𝑢𝑇 @ ℓ ⊔ ℓ ′), 𝑢𝑠 : (𝑢Γ ⊢c 𝑢𝑆 @ ℓ)
; Γ, 𝑥𝑆 : 𝑀Typ [ℓ/ℓ,𝑢Γ/𝑢Γ, box 𝑢𝑆/𝑥𝑇 ]@ 𝑙1

, 𝑥𝑇 : 𝑀Typ [ℓ ′/ℓ, (𝑢Γ, 𝑥 : 𝑢𝑆 @ ℓ)/𝑢Γ, box 𝑢𝑇 /𝑥𝑇 ]@ 𝑙1

, 𝑥𝑡 : 𝑀Trm [ℓ ⊔ ℓ ′/ℓ,𝑢Γ/𝑢Γ,Πℓ,ℓ′ (𝑥 : 𝑢𝑆 ).𝑢𝑇 /𝑢𝑇 , box 𝑢𝑡/𝑥𝑡 ]@ 𝑙2

Recursive Calls, 𝑥𝑠 : 𝑀Trm [ℓ/ℓ,𝑢Γ/𝑢Γ, 𝑢𝑆/𝑢𝑇 , box 𝑢𝑠/𝑥𝑡 ]@ 𝑙2

⊢m 𝑡app : 𝑀Trm [ℓ ′/ℓ,𝑢Γ/𝑢Γ, 𝑢𝑇 id,𝑢𝑠/𝑥/𝑢𝑇 , box ((𝑢𝑡 : Πℓ,ℓ′ (𝑥 : 𝑢𝑆 ).𝑢𝑇 ) 𝑢𝑠 )/𝑥𝑡 ]@ 𝑙2

Since recursions only occur for syntactic sub-terms, it informally justifies the recursors and
their termination. This informal observation is made precise when we give semantics to code in
Sec. 5.3. The reduction rule is straightforward. We replace each component with the appropriate
instantiation. Here we focus on the rule for one-step reductions to save space; the equivalence rule
is naturally derived from the reduction rule. In this rule, we require the type of the code to be𝑊 ,
i.e. in WHNF, for determinacy.

elim
𝑙1,𝑙2 −→𝑀 −→𝑏 (box ((𝑡 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ) 𝑠) : □(Γ ⊢c 𝑊 @ 𝑙)) ⇝ 𝑡app [𝑙/ℓ, 𝑙 ′/ℓ ′, 𝜎, 𝛿]

where 𝜎 = Γ/𝑢Γ, 𝑆/𝑢𝑆 ,𝑇 /𝑢𝑇 , 𝑡/𝑢𝑡 , 𝑠/𝑢𝑠 is the meta-substitution which instantiates all pattern vari-
ables, and 𝛿 builds all recursive calls. It is defined as:

𝛿 = elim
𝑙1,𝑙2
−→
𝑀
−→
𝑏 (box 𝑆 : □(Γ ⊢c @ 𝑙)) /𝑥𝑆

, elim𝑙1,𝑙2
−→
𝑀
−→
𝑏 (box 𝑇 : □(Γ, 𝑥 : 𝑆 @ 𝑙 ⊢c @ 𝑙 ′)) /𝑥𝑇

, elim𝑙1,𝑙2
−→
𝑀
−→
𝑏 (box 𝑡 : □(Γ ⊢c Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 @ 𝑙 ⊔ 𝑙 ′))/𝑥𝑡

, elim𝑙1,𝑙2
−→
𝑀
−→
𝑏 (box 𝑠 : □(Γ ⊢c 𝑆 @ 𝑙)) /𝑥𝑠

To end the discussion on syntax, we recapitulate the difference between letbox and elim. Based
on Hu and Pientka [2024b], the former is responsible for code composition and running, while
the latter is for intensional analysis. They differ specifically in their computational behavior. In
particular, elim𝑙1,𝑙2

−→
𝑀
−→
𝑏 (box 𝑢𝛿 : □𝐸) is neutral, because 𝑢𝛿 simply does not find a branch in

−→
𝑏 .

Meanwhile, letbox𝑙
𝑥 .𝑀

𝑢 ′ ← (box 𝑢𝛿 : □𝐸) in 𝑡 reduces to 𝑡 [𝑢𝛿/𝑢 ′]. This distinction is further
revealed in the logical relations, where semantics for terms at layer c must carry two kinds of
information: syntactic information about their shapes and semantic information about how they run
(c.f. Sec. 5.3). In the next section, we will describe how we model features in DeLaM semantically.

5 Kripke Logical Relations

The Kripke logical relations of DeLaM follow the same outline as in Abel et al. [2018]: the logical
relations are parameterized by generic equivalences. To derive the fundamental theorems, we
instantiate these generic equivalences. However, DeLaM is quite complex due to the presence
of dependent types, Tarski-style universes, and the distinction between MLTT (c and d layer)
and meta-programming (m layer) which enables quoting, evaluating, and recursively analyzing
code. To shorten the proofs as much as possible, we simplify the logical relations by adopting
PER-style definitions. This allows us to define the logical relations with only two predicates – in
contrast, [Abel et al. 2018] requires four predicates for types and terms. This improvement further
allows us to more compactly state the necessary lemmas and proofs by reducing their number to
approximately half. This significantly eases our meta-theoretic development. Nevertheless, the
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LogRel for types
and terms, 𝑗 = d

LogRel for regular ctx.
and subst., 𝑗 = d

LogRel for types and
terms, 𝑖 ≥ d, 𝑗 = d

LogRel for types and
terms, 𝑖 = c, 𝑗 = d

LogRel for meta-
ctx. and subst.

LogRel for types and
terms, 𝑖 = 𝑗 = m

LogRel for regular ctx.
and subst., 𝑖 = 𝑗 = m

𝐴→ 𝐵 𝐵 depends on 𝐴

𝑖, 𝑗 parameters to LogRel

Fig. 3. Structure of logical relations

complete proofs remain very verbose and therefore, in this paper, we only focus on the main idea
and refer the interested reader to the technical report [Hu and Pientka 2024a]. The structure of the
logical relations is depicted in Fig. 3, where the nodes are clickable in a PDF viewer. The logical
relations are parameterized by 𝑖 , the layer for terms, and 𝑗 , the layer for types. We give more
explanations on 𝑖 and 𝑗 in Sec. 5.2.

5.1 Generic Equivalences

First, we define the generic equivalences for types and terms. The generic equivalences are pa-
rameters of judgments with laws to the logical relations, which we eventually instantiate with
the conversion checking algorithm to obtain its completeness proof. There are four generic equiv-
alence judgments: 𝐿 | Ψ; Γ ⊢𝑖 𝑉 ∼ 𝑉 ′@ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≃ 𝑇 ′@ 𝑙 are equivalences for neutral

types and any types, and 𝐿 | Ψ; Γ ⊢𝑖 𝜈 ∼ 𝜈 ′ : 𝑇 @ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ≃ 𝑡 ′ : 𝑇 @ 𝑙 are those for neu-
tral terms and any terms. The layer 𝑖 only takes d or m because they are the only layers with
computation. Their laws are formulated following closely the recipe by Abel et al. [2018]. These
judgments are subsumed by syntactic equivalence at their layers and form PERs. They respect
equivalence of contexts and types, and weakenings of contexts. The rest of the laws are to capture
how equivalences are propagated under WHNFs. For example, for 𝑡 and 𝑡 ′ of type Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇
to be equivalent, a law requires 𝑡 𝑥 and 𝑡 ′ 𝑥 to be equivalent on type 𝑇 for 𝑥 : 𝑆 . Two neutrals are
generically equivalent if all sub-components are generically equivalent pointwise.

5.2 Logical Relations for Types in MLTT

The logical relations are defined on top of generic equivalence. They are Kripke in their stability
under weakenings. We write 𝐿 | Ψ; Γ =⇒𝑖 𝐿

′ | Φ;Δ for a weakening of three contexts, where Γ and
Δ are well-formed at layer 𝑖 . If 𝑇 is well-formed in 𝐿′ | Φ;Δ, we directly say that 𝑇 is weakened
and is also well-typed in 𝐿 | Ψ; Γ. As the first step, we define the logical relations for types and
terms: 𝐿 | Ψ; Γ ⊨𝑗

𝑖
𝑇 ≈ 𝑇 ′@ 𝑙 and 𝐿 | Ψ; Γ ⊨𝑗

𝑖
𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙, where (𝑖, 𝑗) ∈ {(d, d), (m, d), (m,m)}

or equivalently 𝑖 ≥ 𝑗 ≥ d. The judgments say that 𝑇 and 𝑇 ′ are related (resp. 𝑡 and 𝑡 ′) as types
at layer 𝑗 and as terms at layer 𝑖 . When 𝑗 = d, it means that 𝑇 and 𝑇 ′ are related types in MLTT
after reductions, regardless of which layer they and their terms actually live at. This separation of
consideration in 𝑗 is particularly important in the layering restriction lemma (Lemma 5.1), which
gives a semantic explanation for code execution. As a mnemonic, the number of vertical bars in the
turnstile matches the number of contexts. As we progress, this number gradually decreases, so it
also serves as a progress bar for our development.

The logical relations are defined by
(1) first, recursion on 𝑗 , which means that we first define the semantics for types of MLTT before

we consider all types at layer m,
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𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇝∗ Nat@ 0
𝐿 | Ψ; Γ ⊢𝑖 𝑇 ′ ⇝∗ Nat@ 0

𝐿 | Ψ; Γ ⊨𝑗
𝑖
𝑇 ≈ 𝑇 ′@ 0

𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇝∗ Ty𝑙 @ 1 + 𝑙
𝐿 | Ψ; Γ ⊢𝑖 𝑇 ′ ⇝∗ Ty𝑙 @ 1 + 𝑙

𝐿 | Ψ; Γ ⊨𝑗
𝑖
𝑇 ≈ 𝑇 ′@ 1 + 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇝∗ 𝑉 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑇 ′ ⇝∗ 𝑉 ′@ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑉 ∼ 𝑉 ′@ 𝑙

𝐿 | Ψ; Γ ⊨𝑗
𝑖
𝑇 ≈ 𝑇 ′@ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇝∗ Π𝑙,𝑙 ′ (𝑥 : 𝑆1).𝑇1@ 𝑙 ⊔ 𝑙 ′ 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ′ ⇝∗ Π𝑙,𝑙 ′ (𝑥 : 𝑆2).𝑇2@ 𝑙 ⊔ 𝑙 ′

∀ 𝐿′ | Φ;Δ =⇒𝑖 𝐿 | Ψ; Γ . 𝐿′ | Φ;Δ ⊨𝑗
𝑖
𝑆1 ≈ 𝑆2@ 𝑙

∀ 𝐿′ | Φ;Δ =⇒𝑖 𝐿 | Ψ; Γ and 𝐿′ | Φ;Δ ⊨𝑗
𝑖
𝑠 ≈ 𝑠 ′ : 𝑆1@ 𝑙 . 𝐿′ | Φ;Δ ⊨𝑗

𝑖
𝑇1 [𝑠/𝑥] ≈ 𝑇2 [𝑠 ′/𝑥]@ 𝑙 ′

𝐿 | Ψ; Γ ⊨𝑗
𝑖
𝑇 ≈ 𝑇 ′@ 𝑙 ⊔ 𝑙 ′

Fig. 4. Logical relations for types in MLTT

(2) then a transfinite well-founded recursion on the universe levels,
(3) at last, an induction-recursion [Dybjer and Setzer 2003] to relate types and terms.

The recursion on 𝑗 before universe levels allows us to restart the universe level from 0 when
referring to the logical relations for 𝑗 = d in those for 𝑗 = m. Therefore, all contextual types can
safely live on level 0. We will discuss more when we define the logical relations for 𝑗 = m in Sec. 5.5.

The logical relations for types are defined inductively in Fig. 4. The four cases are natural numbers,
universes, neutral types and Π types. The last case is the most complex one. First, 𝑇 and 𝑇 ′ reduce
to their respective Π types. Then the third premise relates input types for all weakenings, and the
fourth premise relates output types for all weakenings given related inputs 𝑠 and 𝑠 ′ of the type 𝑆1.
The logical relations for terms 𝐿 | Ψ; Γ ⊨𝑗

𝑖
𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 are defined by recursion on those of types.

In the case of Π types where 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇝∗ Π𝑙,𝑙 ′ (𝑥 : 𝑆1).𝑇1@ 𝑙 ⊔ 𝑙 ′, we have
• 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ⇝∗ 𝑤 : Π𝑙,𝑙 ′ (𝑥 : 𝑆1) .𝑇1@ 𝑙 ⊔ 𝑙 ′ and 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ′ ⇝∗ 𝑤 ′ : Π𝑙,𝑙 ′ (𝑥 : 𝑆1).𝑇1@ 𝑙 ⊔ 𝑙 ′, i.e.
𝑡 and 𝑡 ′ reduce to WHNFs𝑤 and𝑤 ′, respectively;
• 𝐿 | Ψ; Γ ⊢𝑖 𝑤 ≃ 𝑤 ′ : Π𝑙,𝑙 ′ (𝑥 : 𝑆1).𝑇1@ 𝑙 ⊔ 𝑙 ′, saying that𝑤 and𝑤 ′ are generically equivalent,
• at last, for all 𝐿′ | Φ;Δ =⇒𝑖 𝐿 | Ψ; Γ and related inputs 𝐿′ | Φ;Δ ⊨𝑗

𝑖
𝑠 ≈ 𝑠 ′ : 𝑆1@ 𝑙 , the results

of applying𝑤 and𝑤 ′ are related: 𝐿′ | Φ;Δ ⊨𝑗
𝑖
𝑤 𝑠 ≈ 𝑤 ′ 𝑠 ′ : 𝑇1 [𝑠/𝑥]@ 𝑙 .

When 𝑗 = d, we have given the complete definition of the logical relations for MLTT. Compared to
the version by Abel et al. [2018], we halve the number of definitions by defining the logical relations
in a PER style. We still have to prove the same set of lemmas, but their statements and proofs are
also halved in size. This makes the large semantic development of DeLaM more manageable.
When 𝑗 = m, we still need more cases to handle types for meta-programming and universe-

polymorphic functions (see Sec. 5.5). Nevertheless, the definitions that we have given here still
apply. In other words, for types shared between layers d and m, their logical relations only differ in
layers. This observation is captured by the layering restriction lemma:

Lemma 5.1 (Layering Restriction). If 𝐿 | Ψ; Γ ⊨d
m
𝑇 ≈ 𝑇 ′@ 𝑙 ,

• then 𝐿 | Ψ; Γ ⊨m
m
𝑇 ≈ 𝑇 ′@ 𝑙 ;

• then 𝐿 | Ψ; Γ ⊨m
m
𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 and 𝐿 | Ψ; Γ ⊨d

m
𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 are equivalent.

The most interesting direction in this lemma is m to d, i.e. that 𝐿 | Ψ; Γ ⊨mm 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙

implies 𝐿 | Ψ; Γ ⊨dm 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙, given 𝑇 as a type from layer d, i.e. in MLTT. Effectively, if we
know that 𝑇 reduces to some type from MLTT, then we can restrict the relation between 𝑡 and
𝑡 ′ from 𝑗 = m to 𝑗 = d. This lemma is crucial to model code execution semantically. Consider an
identity function 𝜆(𝑥 : Nat).𝑥 for natural numbers from layer c. The semantics of this function
says that given a normalizing input 𝑡 in MLTT, (𝜆𝑥.𝑥) 𝑡 gives a normalizing output also in MLTT.
However, after being lifted to layer m, the identity function can be applied to meta-programs like
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𝐿 ⊢ Ψ
𝐿 | Ψ ⊨𝑗

𝑖
· ≈ ·

𝐿 ⊢ Ψ 𝑢 : Ctx ∈ Ψ
𝐿 | Ψ ⊨𝑗

𝑖
𝑢 ≈ 𝑢

∀ 𝐿′ | Φ =⇒ 𝐿 | Ψ . 𝐿′ | Φ ⊨𝑗
𝑖
Δ ≈ Δ′

∀ 𝐿′ | Φ =⇒ 𝐿 | Ψ and 𝐿′ | Φ; Γ ⊨𝑗
𝑖
𝛿 ≈ 𝛿 ′ : Δ .

𝐿′ | Φ; Γ ⊨𝑗
𝑖
𝑇 [𝛿] ≈ 𝑇 ′[𝛿 ′]@ 𝑙

𝐿 | Ψ ⊨𝑗
𝑖
Δ, 𝑥 : 𝑇 @ 𝑙 ≈ Δ′, 𝑥 : 𝑇 ′@ 𝑙

Fig. 5. Logical relations for contexts

letbox 𝑢 � box zero in 𝑢, which is clearly not in MLTT. Layering restriction comes to the rescue
by saying that even though meta-programs are not from MLTT, since we know Nat is a type in
MLTT, every normalizing meta-program of type Nat can be lowered in the semantics to 𝑗 = d
to be passed as arguments to the identity function. Finally, the results are lifted again to 𝑗 = m
in the reverse direction. In this way, the machinery in code execution is semantically explained.
Interestingly, though lifting (Lemma 4.1) monotonically brings terms from a lower layer to a higher
one syntactically, layering restriction does need to be expressed as an equivalence in the semantics.
The logical relations for regular contexts (𝐿 | Ψ ⊨𝑗

𝑖
Γ ≈ Δ) and regular substitutions

(𝐿 | Ψ; Γ ⊨𝑗
𝑖
𝛿 ≈ 𝛿 ′ : Δ) are also defined inductive-recursively. The former is defined induc-

tively in Fig. 5 and requires all relations between types to be stable under regular substitutions
pointwise. The latter is defined recursively on the former, and is a generalization of the logical
relations of terms. They are also defined in the PER style so that subsequent proofs are simplified.

5.3 Semantics for MLTT and Code

At the end of Sec. 4.6, wementioned that terms at layer c need tomaintain both semantic information
and syntactic information. In their work, Hu and Pientka [2024b] achieve this by embedding the
semantic information in an inductively defined judgment which stores syntactic information.
This is exactly how we proceed here as well. First, we define semantics for types, terms and
regular substitutions that are stable under regular substitutions. Effectively, these definitions
give the semantics for pure MLTT. We always set 𝑗 = d because we are only concerned about
types from MLTT. We define 𝐿 | Ψ; Γ ⊨d≥d 𝑇 ≈ 𝑇 ′@ 𝑙 as for all 𝐿′ | Φ =⇒ 𝐿 | Ψ, 𝑘 ≥ d, and
𝐿′ | Φ;Δ ⊨d

𝑘
𝛿 ≈ 𝛿 ′ : Γ, we have 𝐿′ | Φ;Δ ⊨d

𝑘
𝑇 [𝛿] ≈ 𝑇 ′[𝛿 ′]@ 𝑙. The condition 𝑘 ≥ d means that

𝑇 and 𝑇 ′ are related at both layers d and m. The judgment 𝐿 | Ψ; Γ ⊨d≥d 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 is defined
similarly, but instead we require the conclusion to be 𝐿′ | Φ;Δ ⊨d

𝑘
𝑡 [𝛿] ≈ 𝑡 ′[𝛿 ′] : 𝑇 [𝛿]@ 𝑙. The

generalizations 𝐿 | Ψ ⊨d≥d Δ ≈ Δ′ and 𝐿 | Ψ; Γ ⊨d≥d 𝛿 ≈ 𝛿 ′ : Δ are defined in a similar manner.
These semantic judgments capture the running information of these objects. For convenience, we
also defined asymmetric variants by requiring both sides to be equal, e.g. 𝐿 | Ψ; Γ ⊨d≥d 𝑇 @ 𝑙 is
defined as 𝐿 | Ψ; Γ ⊨d≥d 𝑇 ≈ 𝑇 @ 𝑙 . Given that these judgments characterize pure MLTT, they are
closed under semantically related regular substitutions. For example,

Lemma 5.2 (Regular substitutions). If 𝐿 | Ψ; Γ ⊨d≥d 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 and 𝐿 | Ψ;Δ ⊨d≥d 𝛿 ≈ 𝛿 ′ : Γ,
then 𝐿 | Ψ;Δ ⊨d≥d 𝑡 [𝛿] ≈ 𝑡 ′[𝛿 ′] : 𝑇 [𝛿]@ 𝑙 .

Given the semantic judgments for running types, terms, etc., we then encapsulate them with
syntactic information about shapes in the semantic judgments for code. In particular, we inductively
define 𝐿 | Ψ; Γ ⊨dc 𝑇 @ 𝑙 for the semantics of code 𝑇 , 𝐿 | Ψ; Γ ⊨dc 𝑡 : 𝑇 @ 𝑙 for the semantics of

code 𝑡 of type 𝑇 , and 𝐿 | Ψ; Γ ⊨dc 𝛿 : Δ for the semantics of code for regular substitution 𝛿 . We
give two example rules for the judgments in Fig. 6 (see all the rules in [Hu and Pientka 2024a, Sec.
7.4] and [Hu 2024, Appendix G]). The framed premises in the rules come from the typing rules.
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𝐿 | Ψ; Γ ⊨dc 𝑆 @ 𝑙

𝐿 | Ψ; Γ, 𝑥 : 𝑆 @ 𝑙 ⊨dc 𝑇 @ 𝑙 ′

𝐿 | Ψ; Γ ⊨d≥d Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 @ 𝑙 ⊔ 𝑙 ′

𝐿 | Ψ; Γ ⊨dc Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 @ 𝑙 ⊔ 𝑙 ′

𝐿 | Ψ; Γ ⊨dc 𝑆 @ 𝑙 𝐿 | Ψ; Γ, 𝑥 : 𝑆 @ 𝑙 ⊨dc 𝑇 @ 𝑙 ′

𝐿 | Ψ; Γ ⊨dc 𝑡 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 @ 𝑙 ⊔ 𝑙 ′ 𝐿 | Ψ; Γ ⊨dc 𝑠 : 𝑆 @ 𝑙

𝐿 | Ψ; Γ ⊨d≥d 𝑇 ′ ≈ 𝑇 [𝑠/𝑥]@ 𝑙 ′

𝐿 | Ψ; Γ ⊨d≥d (𝑡 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ) 𝑠 : 𝑇 ′@ 𝑙 ′

𝐿 | Ψ; Γ ⊨dc (𝑡 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ) 𝑠 : 𝑇 ′@ 𝑙 ′

Fig. 6. Selected rules for semantic judgment for code

They recursively record the syntactic information of sub-structures. The other premises are for
semantic information. For a type, e.g. a Π type, 𝐿 | Ψ; Γ ⊨d≥d Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 @ 𝑙 denotes that the
Π type can be run at both layers d and m. For a term, e.g. a function application, we need two
pieces of information: the semantic information of 𝑡 𝑠 and the semantic equivalence between 𝑇 ′
and 𝑇 [𝑠/𝑥]. Note that 𝑇 [𝑠/𝑥] is originated from layer c and is brought to layer d via lifting to
establish a semantic equivalence with 𝑇 ′. This semantic equivalence characterizes code promotion,
where code objects 𝑇 and 𝑠 are lifted to layer d for computation. All other rules in the semantic
judgments follow this exact pattern to encode both kinds of information. The following semantic
lifting lemma extracts the semantic information from the judgments.

Lemma 5.3 (Semantic lifting). If 𝐿 | Ψ; Γ ⊨d
c
𝑡 : 𝑇 @ 𝑙 , then 𝐿 | Ψ; Γ ⊨d≥d 𝑡 : 𝑇 @ 𝑙 .

Since the semantic judgments for MLTT are closed under regular substitutions and the semantic
judgments for code are basically typing judgments with extra semantic information, we can show
that the semantic judgments for code are also closed under regular substitutions, e.g.

Lemma 5.4 (Regular substitutions). If 𝐿 | Ψ; Γ ⊨d
c
𝑡 : 𝑇 @ 𝑙 and 𝐿 | Ψ;Δ ⊨d

c
𝛿 : Γ, then

𝐿 | Ψ;Δ ⊨d
c
𝑡 [𝛿] : 𝑇 [𝛿]@ 𝑙 .

The closure under regular substitutions is crucial to model code composition semantically. Given
a regular substitution 𝛿 , though it does not propagate under box, i.e. (box 𝑒) [𝛿] = box 𝑒 , it might
still be applied if it is given as part of a meta-variable. In other words, assuming a meta-substitution
𝜎 , 𝑢𝛿 [𝜎] = 𝜎 (𝑢) [𝛿 [𝜎]] where 𝜎 (𝑢) first looks up 𝑢 in 𝜎 , and then we apply 𝛿 [𝜎], the result of
applying 𝜎 to all terms in 𝛿 , to the result of the lookup. The regular substitution lemma ensures
that the overall result of code composition still maintains both semantic and syntactic information
properly.

Next, we define the symmetrized variants 𝐿 | Ψ; Γ ⊨dc 𝑇 ≈ 𝑇 ′@ 𝑙 as 𝐿 | Ψ; Γ ⊨dc 𝑇 @ 𝑙 and𝑇 = 𝑇 ′,
and 𝐿 | Ψ; Γ ⊨dc 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 as 𝐿 | Ψ; Γ ⊨dc 𝑡 : 𝑇 @ 𝑙 and 𝑡 = 𝑡 ′. Effectively, we extend the logical
relations for types and terms in Sec. 5.2 with 𝑖 = c. This extension allows us to conveniently express
the final semantic judgments for the fundamental theorems in Sec. 5.6.

5.4 Logical Relations for Meta-contexts and Meta-substitutions

The semantic judgments for code in Sec. 5.3 are used in two places in the semantics: one is the
logical relations for meta-contexts and substitutions in this section, and the other is the logical
relations for types and terms for layer m in the next section. Continuing the recipe, the logical
relations for meta-contexts and substitutions are defined inductive-recursively in the PER style.
We define those for meta-contexts 𝐿 ⊨ Ψ ≈ Φ inductively in Fig. 7. The Kripke structure of the
logical relations is in the weakening of universe contexts. All premises ∀ 𝐿′ =⇒ 𝐿 . 𝐿′ ⊨ Φ ≈ Φ′

build the Kripke structure into the logical relations. The premise (1) requires the relation between
Γ and Γ′ to be stable under related meta-substitutions for 𝑘 ≥ d. Similarly, the premise (2) requires
the relation between 𝑇 and 𝑇 ′ to be stable under both related meta-and regular substitutions.
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𝐿 ⊨ · ≈ ·
∀ 𝐿′ =⇒ 𝐿 . 𝐿′ ⊨ Φ ≈ Φ′

𝐿 ⊨ Φ, 𝑢 : Ctx ≈ Φ′, 𝑢 : Ctx

∀ 𝐿′ =⇒ 𝐿 . 𝐿′ ⊨ Φ ≈ Φ′ 𝑖 ∈ {c, d}
∀ 𝐿′ =⇒ 𝐿 and 𝐿′ | Ψ ⊨ 𝜎 ≈ 𝜎 ′ : Φ and 𝑘 ≥ d .

𝐿′ | Ψ ⊨d
𝑘
Γ [𝜎] ≈ Γ′[𝜎 ′] (1)

𝐿 ⊨ Φ, 𝑢 : (Γ ⊢𝑖 @ 𝑙) ≈ Φ′, 𝑢 : (Γ′ ⊢𝑖 @ 𝑙)
∀ 𝐿′ =⇒ 𝐿 . 𝐿′ ⊨ Φ ≈ Φ′ 𝑖 ∈ {v, c}
∀ 𝐿′ =⇒ 𝐿 and 𝐿′ | Ψ ⊨ 𝜎 ≈ 𝜎 ′ : Φ and 𝑘 ≥ d . 𝐿′ | Ψ ⊨d

𝑘
Γ [𝜎] ≈ Γ′[𝜎 ′]

∀ 𝐿′ =⇒ 𝐿 and 𝐿′ | Ψ ⊨ 𝜎 ≈ 𝜎 ′ : Φ and 𝑘 ≥ d and 𝐿′ | Ψ;Δ ⊨d
𝑘
𝛿 ≈ 𝛿 ′ : Γ [𝜎] .

𝐿′ | Ψ;Δ ⊨d
𝑘
𝑇 [𝜎] [𝛿] ≈ 𝑇 ′[𝜎 ′] [𝛿 ′]@ 𝑙 (2)
𝐿 ⊨ Φ, 𝑢 : (Γ ⊢𝑖 𝑇 @ 𝑙) ≈ Φ′, 𝑢 : (Γ′ ⊢𝑖 𝑇 ′@ 𝑙)

Fig. 7. Logical relations for meta-contexts

The logical relations for meta-substitutions 𝐿 | Ψ ⊨ 𝜎 ≈ 𝜎 ′ : Φ are defined by recursion on
those for meta-contexts. We consider the case for 𝐿 | Ψ ⊨ 𝜎 ≈ 𝜎 ′ : Φ, 𝑢 : (Γ ⊢𝑖 @ 𝑙), where
𝑖 ∈ {c, d}, which needs to satisfy the following conditions:
• 𝜎 = 𝜎1,𝑇 /𝑢 and 𝜎 ′ = 𝜎 ′1,𝑇

′/𝑢, with two related types 𝑇 and 𝑇 ′ to substitute 𝑢;
• for all 𝐿′ =⇒ 𝐿, we have 𝐿′ | Ψ ⊨ 𝜎1 ≈ 𝜎 ′1 : Φ, i.e. 𝜎1 and 𝜎

′
1 are recursively related;

• finally, depending on the value of 𝑖 ,
– if 𝑖 = d, then 𝐿 | Ψ; Γ ⊨d≥d 𝑇 ≈ 𝑇 ′@ 𝑙, so 𝑇 and 𝑇 ′ are related at both layers d and m. In
particular, they do not need to be syntactically identical;

– if 𝑖 = c, then 𝐿 | Ψ; Γ ⊨dc 𝑇 ≈ 𝑇 ′@ 𝑙, which stores the syntactic information of 𝑇 and
implies 𝑇 = 𝑇 ′. Due to the escape lemma, it also implies 𝐿 | Ψ; Γ ⊨d≥d 𝑇 ≈ 𝑇 ′@ 𝑙 .

In short, the logical relations for meta-substitutions relate two meta-substitutions pointwise, and
store the syntactic information of types and terms for contextual kinds at layer c. In Sec. 5.6, the
fundamental theorems use these logical relations to require types, terms, etc. to be stable under
meta-substitutions.

5.5 Logical Relations for Layer m

Up until this section, we only use the logical relations for 𝑗 = m. In this section, we roll all the
way back and revisit the logical relations for types and terms, but for 𝑖 = 𝑗 = m. This section gives
semantics to types for meta-programming and is the last step before giving the semantic judgments.
The logical relations for types at layer m are defined by extending Fig. 4 after setting 𝑖 = 𝑗 = m
with Fig. 8. We omit the rules for meta-functions due to their similarity to Π types. As the first
step, we first reduce 𝑇 and 𝑇 ′ to some normal types, e.g. contextual types or universe-polymorphic
functions. For contextual types for types to be related, we require Δ and Δ′ to be related at both
layers d and m (due to ≥ d). For contextual types for terms, we in addition require the types 𝑇1 and
𝑇 ′1 to be stably related under regular substitutions. Since the logical relations for contextual types is
not recursive for 𝑖 = 𝑗 = m, we can safely restart the universe level at 0. This justifies the syntactic
rules as well, where we put contextual types on universe level 0. For the logical relations of terms,
we give the case for 𝐿 | Ψ; Γ ⊨𝑗

𝑖
𝑡 ≈ 𝑡 ′ : □(Δ ⊢c 𝑇1@ 𝑙)@ 0:

• first, 𝐿 | Ψ; Γ ⊢m 𝑡 ⇝∗ 𝑤 : □(Δ ⊢c 𝑇1@ 𝑙)@ 0 and 𝐿 | Ψ; Γ ⊢m 𝑡 ′ ⇝∗ 𝑤 ′ : □(Δ′ ⊢c 𝑇1@ 𝑙)@ 0,
reducing 𝑡 and 𝑡 ′ to WHNFs, and
• 𝐿 | Ψ; Γ ⊢m 𝑤 ≃ 𝑤 ′ : □(Δ ⊢c 𝑇1@ 𝑙)@ 0, i.e. the WHNFs are generically equivalent, and
• finally, 𝐿 | Ψ; Γ ⊨ 𝑤 ≃ 𝑤 ′ : □(Δ ⊢c 𝑇1@ 𝑙), which is an inductive relation of two cases:

𝐿 | Ψ;Δ ⊨dc 𝑡1 : 𝑇1@ 𝑙

𝐿 | Ψ; Γ ⊨ box 𝑡1 ≃ box 𝑡1 : □(Δ ⊢c 𝑇1@ 𝑙)
𝐿 | Ψ; Γ ⊢m 𝜈 ∼ 𝜈 ′ : □(Δ ⊢c 𝑇1@ 𝑙)@ 0

𝐿 | Ψ; Γ ⊨ 𝜈 ≃ 𝜈 ′ : □(Δ ⊢c 𝑇1@ 𝑙)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 15. Publication date: January 2025.



15:20 Jason Z. S. Hu and Brigitte Pientka

𝐿 | Ψ; Γ ⊢m 𝑇 ⇝∗ □(Δ ⊢c @ 𝑙)@ 0
𝐿 | Ψ; Γ ⊢m 𝑇 ′ ⇝∗ □(Δ′ ⊢c @ 𝑙)@ 0
𝐿 | Ψ ⊨d≥d Δ ≈ Δ′

𝐿 | Ψ; Γ ⊨mm 𝑇 ≈ 𝑇 ′@ 0

𝐿 | Ψ; Γ ⊢m 𝑇 ⇝∗ □(Δ ⊢c 𝑇1@ 𝑙)@ 0
𝐿 | Ψ; Γ ⊢m 𝑇 ′ ⇝∗ □(Δ′ ⊢c 𝑇 ′1 @ 𝑙)@ 0
𝐿 | Ψ ⊨d≥d Δ ≈ Δ′ 𝐿 | Ψ;Δ ⊨d≥d 𝑇1 ≈ 𝑇 ′1 @ 𝑙

𝐿 | Ψ; Γ ⊨mm 𝑇 ≈ 𝑇 ′@ 0

𝐿 | Ψ; Γ ⊢m 𝑇 ⇝∗
−→
ℓ ⇒𝑙 𝑇1@ 𝜔 𝐿 | Ψ; Γ ⊢m 𝑇 ′ ⇝∗

−→
ℓ ⇒𝑙 𝑇 ′1 @ 𝜔

∀ 𝐿′ | Φ;Δ =⇒𝑖 𝐿 | Ψ; Γ and
−→
𝑙 that are well-formed in 𝐿′ and |−→ℓ | = |−→𝑙 | .

𝐿′ | Φ;Δ ⊨mm 𝑇1 [
−→
𝑙 /−→ℓ ] ≈ 𝑇 ′1 [

−→
𝑙 /−→ℓ ]@ 𝑙 [−→𝑙 /−→ℓ ] (3)

𝐿 | Ψ; Γ ⊨mm 𝑇 ≈ 𝑇 ′@ 𝜔

Fig. 8. Logical relations for types at layer m

The last condition relates 𝑤 and 𝑤 ′ on the contextual types □(Δ ⊢c 𝑇1@ 𝑙) in two cases. Ei-
ther 𝑤 = 𝑤 ′ = box 𝑡1 for some 𝑡1, which accompanies its semantic judgment for code, i.e.
𝐿 | Ψ;Δ ⊨dc 𝑡1 : 𝑇1@ 𝑙. When we recurse on 𝑤 , in the semantics, the mutual recursion principle
for code is in fact interpreted as the mutual induction principle for 𝐿 | Ψ;Δ ⊨dc 𝑡1 : 𝑇1@ 𝑙 . On the
other hand, if we compose 𝑡1 with some other code, the regular substitution lemma (Lemma 5.4)
ensures that the result code still maintains proper semantic and syntactic information. Finally, if
we run 𝑡1, then we use the semantic lifting lemma (Lemma 5.3) to obtain the semantic information
for execution, in conjunction with the layering restriction lemma (Lemma 5.1). In conclusion, the
semantics justifies all usages of code. If𝑤 and𝑤 ′ are neutral, then we cannot say more than that
they are generically equivalent.
The last case in the logical relations is the universe-polymorphic functions. In the premise (3),

we substitute some arbitrary well-formed
−→
𝑙 for −→ℓ in 𝑙 . We cannot know in particular which exact

universe level the result of the substitution is. The only thing that we are sure about is that 𝑙 [−→𝑙 /−→ℓ ]
is some finite, well-formed universe level. Therefore, in order to refer to any finite universe level,
universe-polymorphic functions must be modeled on level𝜔 , hence requiring a transfinite recursion
on universe levels in the definition of the logical relations.
The logical relations for regular contexts and substitutions for 𝑖 = 𝑗 = m have been defined in

Fig. 5.

5.6 Semantic Judgments and Fundamental Theorems

Finally, we define the semantic judgments for DeLaM. The semantic judgments state the stability
of principal objects in the judgments under all substitutions at all higher layers. First, we define
the semantic judgment for meta-contexts 𝐿 ⊩ Ψ as for all 𝐿′ ⊢ 𝜙 : 𝐿, we have 𝐿′ ⊨ Ψ[𝜙] ≈ Ψ[𝜙],
where 𝜙 is a universe substitution. Then the semantic judgment for equivalent regular contexts
𝐿 | Ψ ⊩𝑖 Γ ≈ Δ where 𝑖 ∈ {d,m} is defined as a conjunction of 𝐿 ⊩ Ψ and for all 𝐿′ ⊢ 𝜙 : 𝐿,

𝐿′ | Φ ⊨ 𝜎 ≈ 𝜎 ′ : Ψ[𝜙] and 𝑘 ≥ 𝑖 , we have 𝐿′ | Φ ⊨⇑(𝑖)
𝑘

Γ [𝜙] [𝜎] ≈ Δ[𝜙] [𝜎 ′]. Effectively, this
judgment says that the relation between Γ and Δ is stable under all universe and meta-substitutions
at all layers 𝑘 ≥ 𝑖 . Notice that in the conclusion, we set 𝑗 = ⇑ (𝑖), which is where regular contexts
live when terms live at layer 𝑖 . Its asymmetric version 𝐿 | Ψ ⊩𝑖 Γ requires both sides to be equal:
𝐿 | Ψ ⊩𝑖 Γ ≈ Γ.
Next, we define the semantic judgment for types 𝐿 | Ψ; Γ ⊩𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 . It follows the same

principle. We first require 𝐿 | Ψ ⊩⇑(𝑖) Γ, and then for all 𝐿′ ⊢ 𝜙 : 𝐿, 𝐿′ | Φ ⊨ 𝜎 ≈ 𝜎 ′ : Ψ[𝜙], 𝑘 ≥ 𝑖
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and 𝐿′ | Φ;Δ ⊨⇑(𝑖)
𝑘

𝛿 ≈ 𝛿 ′ : Γ [𝜙] [𝜎], we have

𝐿′ | Φ;Δ ⊨⇑(𝑖)
𝑘

𝑇 [𝜙] [𝜎] [𝛿] ≈ 𝑇 ′[𝜙] [𝜎 ′] [𝛿 ′]@ 𝑙 [𝜙]

In other words, the relation between 𝑇 and 𝑇 ′ is stable under all substitutions at all layers above 𝑖 .
Then the semantic judgment for terms 𝐿 | Ψ; Γ ⊩𝑖 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 is defined in the same way, except
that we require 𝐿 | Ψ; Γ ⊩⇑(𝑖) 𝑇 @ 𝑙 , and at the end, the conclusion is changed to

𝐿′ | Φ;Δ ⊨⇑(𝑖)
𝑘

𝑡 [𝜙] [𝜎] [𝛿] ≈ 𝑡 ′[𝜙] [𝜎 ′] [𝛿 ′] : 𝑇 [𝜙] [𝜎] [𝛿]@ 𝑙 [𝜙]

The last semantic judgment is for regular substitutions 𝐿 | Ψ; Γ ⊩𝑖 𝛿 ≈ 𝛿 ′ : Δ , which is again de-
fined similarly. These semantic judgments set up the right inductive invariants for the fundamental
theorems, so that they can be proved by induction on the syntactic judgments. The most important
cases in the theorems are:

Theorem 5.5 (Fundamental).
• If 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 , then 𝐿 | Ψ; Γ ⊩𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 .

• If 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 , then 𝐿 | Ψ; Γ ⊩𝑖 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 .

The proof of the fundamental theorems follows a very interesting pattern, where we must
work backwards following the order of layers. More specifically, to prove the first statement of
Theorem 5.5 in an induction, if a typing rule is only available for 𝑖 = m, then we proceed normally
as in other type theories. However, if a rule is available at multiple layers, e.g. the congruence rule
for Π types, then we have multiple statements to prove.
First, we take 𝑖 = m, then the semantic judgment eventually requires a proof of

𝐿′ | Φ;Δ ⊨mm 𝑇 [𝜙] [𝜎] [𝛿] ≈ 𝑇 ′[𝜙] [𝜎 ′] [𝛿 ′]@ 𝑙 [𝜙], since 𝑘 ≥ m means 𝑘 = m. Next we take 𝑖 = d. In
this case, 𝑘 ∈ {d,m}, so the proof requires 𝐿′ | Φ;Δ ⊨d

𝑘
𝑇 [𝜙] [𝜎] [𝛿] ≈ 𝑇 ′[𝜙] [𝜎 ′] [𝛿 ′]@ 𝑙 [𝜙]. This

case is very similar to the case for 𝑖 = m, with very minor differences in layers. When we take
𝑖 = c, then 𝑘 ≥ c now can take three different values. As the proof obligation, we need to prove
𝐿′ | Φ;Δ ⊨d

𝑘
𝑇 [𝜙] [𝜎] [𝛿] ≈ 𝑇 ′[𝜙] [𝜎 ′] [𝛿 ′]@ 𝑙 [𝜙]. Notice that here cases for 𝑘 ≥ d actually have

been proved when 𝑖 = d, so the only addition is to handle 𝑘 = c. But then even this case is quite
trivial, because when 𝑘 = c, our goal becomes the semantic judgment for code of types, which is
just a repackaging of the cases for 𝑘 ≥ d.

If we consider what information layers contain, this proof pattern make even more sense. For a
term at layer m, the only information that it has is how it runs at layer m. Meanwhile if a term is
from layer d, then we know that it can be run at both layers d and m due to lifting. For code from
layer c, we must in addition remember its syntactic shape, which adds strictly more information
on top of its running information. The proof of the fundamental theorems is similar to opening an
onion: we peel off and assign semantics to DeLaM from the outside layer by layer as we add more
and more information, until the very end when DeLaM is entirely modeled.
If we set all substitutions to identities and 𝑘 = 𝑖 , then the fundamental theorems simply imply

the logical relations.

Corollary 5.6 (Completeness of logical relations). If 𝑖 ∈ {d,m},
• If 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 , then 𝐿 | Ψ; Γ ⊨𝑖𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≃ 𝑇 ′@ 𝑙 .

• If 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 , then 𝐿 | Ψ; Γ ⊨𝑖𝑖 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ≃ 𝑡 ′ : 𝑇 @ 𝑙 .

Note that 𝑗 = 𝑖 = ⇑ (𝑖) because we know 𝑖 ∈ {d,m}. In other words, syntactically equivalent
types or terms are also logically related and thus generically equivalent. In Sec. 6.3, where we set
the generic equivalences to the conversion checking algorithm, this corollary immediately proves
the completeness of the conversion checking algorithm.
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6 Consequences of Fundamental Theorems

With the fundamental theorems, we are able to instantiate the generic equivalences to obtain
important conclusions like weak normalization, injectivity of type constructors, consistency and
the decidability of convertibility. In this section, we focus on deriving these conclusions.

6.1 First Instantiation: Syntactic Equivalence

The first instantiation assigns syntactic equivalence for types and terms to the generic equivalences.
In this case, the laws are quite trivial to prove. The first important theorem to extract from the
fundamental theorems is weak normalization.

Theorem 6.1 (Weak normalization). If 𝑖 ∈ {d,m}, then
• if 𝐿 | Ψ; Γ ⊢𝑖 𝑇 @ 𝑙 , then for some WHNF𝑊 , 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇝∗𝑊 @ 𝑙 ;

• if 𝐿 | Ψ; Γ ⊢𝑖 𝑡 : 𝑇 @ 𝑙 , then for some WHNF𝑤 , 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ⇝∗ 𝑤 : 𝑇 @ 𝑙 .

It is only a weak normalization theorem, because we fix one specific reduction strategy. The weak
normalization theorem says that well-formed types and terms always reduce to some WHNFs. This
theorem is proved from Corollary 5.6, where weak normalization is built into the logical relations.

The next important theorem is injectivity of type constructors.

Theorem 6.2 (Injectivity of type constructors).
• If 𝐿 | Ψ; Γ ⊢𝑖 Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ≈ Π𝑙,𝑙 ′ (𝑥 : 𝑆 ′).𝑇 ′@ 𝑙 ⊔ 𝑙 ′ and 𝑖 ∈ {d,m}, then 𝐿 | Ψ; Γ ⊢𝑖 𝑆 ≈ 𝑆 ′@ 𝑙

and 𝐿 | Ψ; Γ, 𝑥 : 𝑆 @ 𝑙 ⊢𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 ′.

• If 𝐿 | Ψ; Γ ⊢m □(Δ ⊢c @ 𝑙) ≈ □(Δ′ ⊢c @ 𝑙)@ 0, then 𝐿 | Ψ ⊢d Δ ≈ Δ′.
• If 𝐿 | Ψ; Γ ⊢m □(Δ ⊢c 𝑇 @ 𝑙) ≈ □(Δ′ ⊢c 𝑇 @ 𝑙)@ 0, then 𝐿 | Ψ ⊢d Δ ≈ Δ′ and
𝐿 | Ψ;Δ ⊢d 𝑇 ≈ 𝑇 ′@ 𝑙 .

We only list three cases here for brevity. The theorem says that type constructors are injective
w.r.t. syntactic equivalence. This theorem is proved from Corollary 5.6. The logical relations for
types require matching sub-structures to be related, from which we extract their equivalences.

The last theorem that we obtain from this instantiation is the consistency theorem.

Theorem 6.3 (Consistency). There is no term 𝑡 that satisfies this typing judgment:

· | ·; · ⊢m 𝑡 : ℓ =⇒1+ℓ Π1+ℓ,ℓ (𝑥 : Tyℓ ).Elℓ 𝑥 @ 𝜔

The consistency theorem says that, it is not possible to generically construct a term of any type
on any universe level. The proof proceeds as follows. First, this theorem is the same as proving
that there is no 𝑡 ′ such that ℓ | ·;𝑥 : Tyℓ @ 1 + ℓ ⊢m 𝑡 ′ : Elℓ 𝑥 @ ℓ. Let us assume such 𝑡 ′. Then it has
a neutral type Elℓ 𝑥 , so 𝑡 ′ must reduce to some neutral 𝜈 by the logical relations of Elℓ 𝑥 . We do
induction on 𝜈 and see that 𝜈 must be eventually blocked by 𝑥 . But 𝑥 as a neutral type cannot be
eliminated, nor can it have type Elℓ 𝑥 , so a contradiction is established.

6.2 Conversion Checking

Following Abel et al. [2018], we define the conversion checking algorithm. Due to layering and
meta-programming constructs, there are more operations in our conversion checking algorithm
than that by Abel et al., as we also need to compare regular contexts and substitutions. The
conversion checking algorithm is split into two modes. In the checking mode, the algorithm returns
true or false, while in the inference mode, the algorithm infers a universe level and potentially
a type on that level for neutral terms. Selected rules for the algorithm are defined Fig. 9. The
algorithm is layered at 𝑖 ∈ {d,m}, the only two layers where interesting computation occurs. The
main entry points are 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙 , which checks the convertibility of 𝑇 and 𝑇 ′ on
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𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝑉 ←→ 𝑉 ′@ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝑊 ⇐⇒𝑊 ′@ 𝑙 for types

𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇝∗𝑊 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑇 ′ ⇝∗𝑊 ′@ 𝑙 𝐿 | Ψ; Γ ⊢𝑖 𝑊 ⇐⇒𝑊 ′@ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙

𝐿 | Ψ ⊢𝑖 Γ 𝑢 : (Δ ⊢𝑖′ @ 𝑙) ∈ Ψ
𝑖 ′ ≤ 𝑖 𝐿 | Ψ; Γ ⊢𝑖 𝛿 ⇐̂⇒ 𝛿 ′ : Δ

𝐿 | Ψ; Γ ⊢𝑖 𝑢𝛿 ←→ 𝑢𝛿
′
@ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝜈 ←→ 𝜈 ′ : Ty𝑙 @ 1 + 𝑙

𝐿 | Ψ; Γ ⊢𝑖 El𝑙 𝜈 ←→ El𝑙 𝜈 ′@ 𝑙

𝐿 | Ψ ⊢𝑖 Γ
𝐿 | Ψ; Γ ⊢𝑖 Nat⇐⇒ Nat@ 0

𝐿 | Ψ ⊢𝑖 Γ
𝐿 | Ψ; Γ ⊢𝑖 Ty𝑙 ⇐⇒ Ty𝑙 @ 1 + 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑆 ⇐̂⇒ 𝑆 ′@ 𝑙 𝐿 | Ψ; Γ, 𝑥 : 𝑆 @ 𝑙 ⊢𝑖 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙 ′

𝐿 | Ψ; Γ ⊢𝑖 Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ⇐⇒ Π𝑙,𝑙 ′ (𝑥 : 𝑆 ′).𝑇 ′@ 𝑙 ⊔ 𝑙 ′

𝐿 | Ψ; Γ ⊢𝑖 𝑉 ←→ 𝑉 ′@ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑉 ⇐⇒ 𝑉 ′@ 𝑙

𝐿 | Ψ ⊢m Γ 𝐿,
−→
ℓ | Ψ; Γ ⊢m 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙

𝐿 | Ψ; Γ ⊢m (
−→
ℓ ⇒𝑙 𝑇 ) ⇐⇒ (−→ℓ ⇒𝑙 ′ 𝑇 ′)@ 𝜔

𝐿 | Ψ ⊢m Γ 𝐿 | Ψ ⊢d Δ ⇐̂⇒ Δ′

𝐿 | Ψ; Γ ⊢m □(Δ ⊢c @ 𝑙) ⇐⇒ □(Δ′ ⊢c @ 𝑙)@ 0

𝐿 | Ψ ⊢m Γ 𝐿 | Ψ ⊢d Δ ⇐̂⇒ Δ′ 𝐿 | Ψ;Δ ⊢d 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙

𝐿 | Ψ; Γ ⊢m □(Δ ⊢c 𝑇 @ 𝑙) ⇐⇒ □(Δ′ ⊢c 𝑇 ′@ 𝑙)@ 0

𝐿 | Ψ; Γ ⊢𝑖 𝑡 ⇐̂⇒ 𝑡 ′ : 𝑇 @ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝑤 ⇐⇒ 𝑤 ′ :𝑊 @ 𝑙 for any and normal terms

𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇝∗𝑊 @ 𝑙 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ⇝∗ 𝑤 : 𝑇 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑡 ′ ⇝∗ 𝑤 ′ : 𝑇 @ 𝑙 𝐿 | Ψ; Γ ⊢𝑖 𝑤 ⇐⇒ 𝑤 ′ :𝑊 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑡 ⇐̂⇒ 𝑡 ′ : 𝑇 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝜈 ←→ 𝜈 ′ :𝑊 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝜈 ⇐⇒ 𝜈 ′ : 𝑉 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑆 @ 𝑙 𝐿 | Ψ; Γ ⊢𝑖 𝑤 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 @ 𝑙 ⊔ 𝑙 ′ 𝐿 | Ψ; Γ ⊢𝑖 𝑤 ′ : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 @ 𝑙 ⊔ 𝑙 ′

𝐿 | Ψ; Γ, 𝑥 : 𝑆 @ 𝑙 ⊢𝑖 (𝑤 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ) 𝑥 ⇐̂⇒ (𝑤 ′ : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ) 𝑥 : 𝑇 @ 𝑙 ′

𝐿 | Ψ; Γ ⊢𝑖 𝑤 ⇐⇒ 𝑤 ′ : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 @ 𝑙 ⊔ 𝑙 ′

𝐿 | Ψ ⊢m Γ 𝐿 | Ψ;Δ ⊢c 𝑡 : 𝑇 @ 𝑙 𝑡 = 𝑡 ′

𝐿 | Ψ; Γ ⊢m box 𝑡 ⇐⇒ box 𝑡 ′ : □(Δ ⊢c 𝑇 @ 𝑙)@ 0

𝐿 | Ψ; Γ ⊢m 𝜈 ←→ 𝜈 ′ : □(Δ ⊢c 𝑇 @ 𝑙)@ 0

𝐿 | Ψ; Γ ⊢m 𝜈 ⇐⇒ 𝜈 ′ : □(Δ ⊢c 𝑇 @ 𝑙)@ 0

𝐿 | Ψ; Γ ⊢𝑖 𝜈 ←→ 𝜈 ′ :𝑊 @ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝜈 ←̂→ 𝜈 ′ : 𝑇 @ 𝑙 for neutral terms

𝐿 | Ψ; Γ ⊢𝑖 𝜈 ←̂→ 𝜈 ′ : 𝑇 @ 𝑙 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇝∗𝑊 @ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝜈 ←→ 𝜈 ′ :𝑊 @ 𝑙

𝐿 | Ψ ⊢𝑖 Γ 𝑥 : 𝑇 @ 𝑙 ∈ Γ
𝐿 | Ψ; Γ ⊢𝑖 𝑥 ←̂→ 𝑥 : 𝑇 @ 𝑙

𝐿 | Ψ ⊢𝑖 Γ 𝑢 : (Δ ⊢𝑖′ 𝑇 @ 𝑙) ∈ Ψ 𝑖 ′ ≤ 𝑖 𝐿 | Ψ; Γ ⊢𝑖 𝛿 ⇐̂⇒ 𝛿 ′ : Δ

𝐿 | Ψ; Γ ⊢𝑖 𝑢𝛿 ←̂→ 𝑢𝛿
′
: 𝑇 [𝛿]@ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 𝑆 ⇐̂⇒ 𝑆 ′@ 𝑙 𝐿 | Ψ; Γ, 𝑥 : 𝑆 @ 𝑙 ⊢𝑖 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙 ′

𝐿 | Ψ; Γ ⊢𝑖 𝜈 ←→ 𝜈 ′ : Π𝑙,𝑙 ′ (𝑥 : 𝑆 ′′).𝑇 ′′@ 𝑙 ⊔ 𝑙 ′ 𝐿 | Ψ; Γ ⊢𝑖 𝑠 ⇐̂⇒ 𝑠 ′ : 𝑆 ′′@ 𝑙

𝐿 | Ψ; Γ ⊢𝑖 (𝜈 : Π𝑙,𝑙 ′ (𝑥 : 𝑆).𝑇 ) 𝑠 ←̂→ (𝜈 ′ : Π𝑙,𝑙 ′ (𝑥 : 𝑆 ′) .𝑇 ′) 𝑠 ′ : 𝑇 [𝑠/𝑥]@ 𝑙 ′

𝐿 | Ψ ⊢m Γ 𝐿 | Ψ ⊢d Δ ⇐̂⇒ Δ′ 𝐿 | Ψ; Γ, 𝑥 : □(Δ ⊢c @ 𝑙 ′)@ 0 ⊢m 𝑀 ⇐̂⇒𝑀 ′@ 𝑙

𝐿 | Ψ, 𝑢 : (Δ ⊢c @ 𝑙 ′); Γ ⊢m 𝑡 ⇐̂⇒ 𝑡 ′ : 𝑀 [box 𝑢 id/𝑥]@ 𝑙 𝐿 | Ψ; Γ ⊢m 𝜈 ←→ 𝜈 ′ : □(Δ ⊢c @ 𝑙 ′)@ 0

left = letbox𝑙𝑥 .𝑀 𝑢 ← (𝜈 : □(Δ ⊢c @ 𝑙 ′)) in 𝑡

right = letbox𝑙𝑥 .𝑀′ 𝑢 ← (𝜈
′ : □(Δ′ ⊢c @ 𝑙 ′)) in 𝑡 ′

𝐿 | Ψ; Γ ⊢m left ←̂→ right : 𝑀 [𝑡/𝑥]@ 𝑙

Fig. 9. Selected rules for conversion checking algorithm
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level 𝑙 , and 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ⇐̂⇒ 𝑡 ′ : 𝑇 @ 𝑙 , which checks the convertibility of 𝑡 and 𝑡 ′ of type 𝑇 on
level 𝑙 . Both entry points first reduce the inputs to WHNFs. Then the WHNFs are compared by
𝐿 | Ψ; Γ ⊢𝑖 𝑊 ⇐⇒𝑊 ′@ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝑤 ⇐⇒ 𝑤 ′ :𝑊 @ 𝑙 , which actually do the case analyses
based on the shapes. At some point, the checking for WHNFs enters the inference mode, in order to
compare neutrals. The neutral form checking algorithm for types 𝐿 | Ψ; Γ ⊢𝑖 𝑉 ←→ 𝑉 ′@ 𝑙 returns
the universe level 𝑙 of𝑉 and𝑉 ′ if they are convertible. The neutral form checking algorithm for terms
is a bit more complex. The actual worker is 𝐿 | Ψ; Γ ⊢𝑖 𝜈 ←̂→ 𝜈 ′ : 𝑇 @ 𝑙 , which returns a type𝑇 and
its universe level 𝑙 , if 𝜈 and 𝜈 ′ are convertible. However, before returning the type𝑇 to the checking
mode, 𝐿 | Ψ; Γ ⊢𝑖 𝜈 ←→ 𝜈 ′ :𝑊 @ 𝑙 first reduces it to a WHNF, so the output type of this algorithm
is a normal type𝑊 . Finally, the checking mode for types and terms is generalized to regular contexts
and substitutions pointwise, giving 𝐿 | Ψ ⊢d Γ ⇐̂⇒ Δ and 𝐿 | Ψ; Γ ⊢𝑖 𝛿 ⇐̂⇒ 𝛿 ′ : Δ . The checking
mode for regular contexts is needed when we compare contextual types. We also need to check the
convertibility between regular substitutions when we encounter neutral meta-variables 𝑢𝛿 and 𝑢𝛿′ ,
in which case we need to compare 𝛿 and 𝛿 ′.

The conversion checking algorithm is very close to that by Abel et al. in its spirit. The checking
mode for terms is type-directed. We employ a suitable check according to the shape of the input
type. For functions, we check in suitably extended contexts, and for other types, we case-analyze
terms accordingly. The inference mode is syntax-directed. It fails immediately if two neutral forms
fail to have the same syntactic structure.

6.3 Second Instantiation: Conversion Checking

In the second instantiation, we assign the conversion checking algorithm to the generic equiv-
alences: 𝐿 | Ψ; Γ ⊢𝑖 𝑉 ∼ 𝑉 ′@ 𝑙 as 𝐿 | Ψ; Γ ⊢𝑖 𝑉 ←→ 𝑉 ′@ 𝑙, 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≃ 𝑇 ′@ 𝑙 as
𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙, and 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ≃ 𝑡 ′ : 𝑇 @ 𝑙 as 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ⇐̂⇒ 𝑡 ′ : 𝑇 @ 𝑙. The most com-
plex case is 𝐿 | Ψ; Γ ⊢𝑖 𝜈 ∼ 𝜈 ′ : 𝑇 @ 𝑙 , which is assigned a conjunction of 𝐿 | Ψ; Γ ⊢𝑖 𝜈 ←̂→ 𝜈 ′ : 𝑇 ′@ 𝑙

and 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≈ 𝑇 ′@ 𝑙. Here we always take 𝑖 ∈ {d,m}. First, the soundness lemma for the
conversion checking algorithm is proved by simple mutual induction:

Lemma 6.4 (Soundness).
• If 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙 , then 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 .

• If 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ⇐̂⇒ 𝑡 ′ : 𝑇 @ 𝑙 , then 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 .

The completeness lemma is established by Corollary 5.6.

Lemma 6.5 (Completeness).
• If 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 , then 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙 .

• If 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 , then 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ⇐̂⇒ 𝑡 ′ : 𝑇 @ 𝑙 .

Therefore, conversion checking and syntactic equivalence are logically equivalent. To establish
the decidability of convertibility, we need the following lemma, which establishes the decidability
of conversion checking between reflexively convertible types or terms.

Lemma 6.6 (Decidability of conversion checking).
• if 𝐿 | Φ;Δ ⊢𝑖 𝑇 ⇐̂⇒ 𝑇 @ 𝑙 , 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ′ ⇐̂⇒ 𝑇 ′@ 𝑙 , 𝐿 ⊢ Φ ≈ Ψ and 𝐿 | Φ ⊢𝑖 Δ ≈ Γ, then
whether 𝐿 | Φ;Δ ⊢𝑖 𝑇 ⇐̂⇒ 𝑇 ′@ 𝑙 is decidable.

• if 𝐿 | Φ;Δ ⊢𝑖 𝑡 ⇐̂⇒ 𝑡 : 𝑇 @ 𝑙 , 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ′ ⇐̂⇒ 𝑡 ′ : 𝑇 @ 𝑙 , 𝐿 ⊢ Φ ≈ Ψ and 𝐿 | Φ ⊢𝑖 Δ ≈ Γ, then
whether 𝐿 | Φ;Δ ⊢𝑖 𝑡 ⇐̂⇒ 𝑡 ′ : 𝑇 @ 𝑙 is decidable.

By using the completeness lemma, we obtain the desired decidability proof.
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Theorem 6.7 (Decidability of convertibility).
• If 𝐿 | Ψ; Γ ⊢𝑖 𝑇 @ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ′@ 𝑙 , then whether 𝐿 | Ψ; Γ ⊢𝑖 𝑇 ≈ 𝑇 ′@ 𝑙 is decidable.

• If 𝐿 | Ψ; Γ ⊢𝑖 𝑡 : 𝑇 @ 𝑙 and 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ′ : 𝑇 @ 𝑙 , then whether 𝐿 | Ψ; Γ ⊢𝑖 𝑡 ≈ 𝑡 ′ : 𝑇 @ 𝑙 is

decidable.

7 Related Work and Future Work

7.1 Normalization for Type Theories

In this paper, we follow Abel et al. [2018] closely and obtain the weak normalization and the decid-
ability of convertibility theorems. The same method is used in many recent works, including [Abel
et al. 2023; Adjedj et al. 2024; Pientka et al. 2019; Pujet and Tabareau 2022, 2023]. As opposed to the
more standard Tait’s approach [Girard 1989; Tait 1967], one big advantage of this method à la Abel
et al. is that it avoids proving the Church-Rosser property, which requires much more technical
setup to reason about reduction strategies. However, one main disadvantage is the lack of a strong
normalization conclusion. Nevertheless, we still choose to use this method, because we can directly
reason about DeLaM syntactically and refer to many mechanizations [Abel et al. 2023; Adjedj et al.
2024; Pujet and Tabareau 2022, 2023] during the technical investigation.

In contrast to weak normalization and a verbose conversion checking algorithm, Hu and Pientka
[2024b]’s work on simply typed layered modal type theory presents a strong normalization algo-
rithm which returns 𝛽𝜂 normal forms, so that the conversion checking algorithm reduces to a trivial
syntactic equality check of normal forms. In their work, Hu and Pientka employ a normalization-
by-evaluation (NbE) proof, where they extend the classic NbE proof for STLC based on a presheaf
model [Altenkirch et al. 1995]. NbE is a technique originally by Berger and Schwichtenberg [1991];
Martin-Löf [1975]. An NbE proof proceeds in two steps: we first embed well-formed types and terms
into a mathematical domain, and then extract normal forms from this chosen domain. The main idea
of an NbE proof is to piggyback many syntactic properties like Church-Rosser of the target system
onto this chosen domain, so there is no need to establish these lemmas explicitly at all. An NbE
proof has many advantages, including more concise models, a more compact normalization proof,
and a trivial conversion checking because of 𝛽𝜂 normal forms. Altenkirch and Kaposi [2016a,b,
2017] mechanize an NbE algorithm for dependent types based on CwFs [Dybjer 1995], which is a
presheaf formulation for dependent types.
Instead of presheaf categories, another frequent style of NbE proofs is given by Abel [2013],

where Abel chooses a defunctionalized untyped domain. In addition to the advantages above,
this style is easy to mechanize and implement [Gratzer et al. 2019; Hu et al. 2023; Stassen et al.
2022; Wieczorek and Biernacki 2018]. One possible future work for DeLaM is to develop an NbE
algorithm using an untyped domain model. The main difficulties are likely the modelling of code
in this method. Conventionally, the untyped domain models variables in de Bruijn levels, while the
syntax represents variables in de Bruijn indices. Due to recursion on code, the untyped domain must
model the syntax of code faithfully. This seems to suggest that we need to model meta- and regular
substitutions in the untyped domain for de Bruijn levels, leading to a cumbersome duplication.
Whether this duplication is something that we must live with is left for a future investigation.

7.2 Meta-programming and Modalities

In type theory and programming languages, modalities are a common device for meta-programming.
In Sec. 1, we have described that (contextual) 𝜆□ [Davies and Pfenning 2001; Nanevski et al. 2008;
Pfenning and Davies 2001] is a pioneer in this direction, where meta-programming and the modal
logic 𝑆4 are connected by Curry-Howard correspondence. One formulation of 𝜆□ given by Davies,
Pfenning and others is the dual-context style. In this style, variables are distinguished into two kinds,
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regular and meta, hence introducing two different contexts to store different variables. This style
is what Hu and Pientka [2024b] and this paper is based on. Boespflug and Pientka [2011] extend
the dual-context style to the multi-context style, where “more meta-” variables are introduced.
Combining this idea with contextual types, Moebius [Jang et al. 2022] supports meta-programming
with intensional analysis for system F. The soundness of Moebius is justified by progress and
preservation. However, since Moebius does not guarantee coverage of pattern matching on code,
normalization does not hold in general. One interesting future work is to adapt layering to system
F and see if we are able to obtain a normalizing theory for meta-programming in system F.
Cocon [Pientka et al. 2019] combines ideas from 𝜆□ and contextual types in a 2-level manner.

On the lower level is logical framework (LF), in which we define the syntax of object languages.
This syntax can be accessed through contextual types in MLTT on the higher level and can be
intensionally analyzed. A run function can be defined in MLTT to evaluate terms from a less
expressive object language than MLTT. However, this run function is not possible, if the expressive
power is not strictly weaker. Semantically, Cocon is similar to DeLaM in many ways. Both systems
need to have multiple layers in the semantics to model sub-languages in the system. These layers
all need their normalization arguments to eventually justify normalization for the whole type
theory. Both systems need to model syntax to support recursion on code. Nevertheless, there are
also substantial differences between them. In Cocon, object languages are user defined, so their
semantics do not have any particular relation with MLTT. As a consequence, the semantics of
Cocon cannot always provide a run function to embed the code from object languages into MLTT.
In DeLaM, on the other hand, we know the sub-language at layers c and d is exactly MLTT, so
code execution becomes possible. Syntactically, code execution comes virtually for free due to the
lifting lemma (Lemma 4.1). Semantically, code execution is modeled by the layering restriction
lemma (Lemma 5.1). The models for different layers in DeLaM also follow the matryoshka principle,
saying that lower layers include strictly more information than higher layers.

Other systems using modalities for meta-programming include MetaML [Taha and Sheard 2000],
which is a ML dialect for meta-programming without intensional analysis, 2LTT [Kovács 2022],
which uses MLTT to compose programs in a programming language, e.g. ML, and Mint [Hu et al.
2023], which extends MLTT with the □ modality and serves as a program logic for MetaML.

7.3 Future Work

7.3.1 DeLaM in Russell-style. In this paper, we introduced DeLaM with a Tarski-style universe
hierarchy. A Tarski-style universe hierarchy separates types and terms syntactically. This is also
how the semantics are constructed in this paper. This initially helped in our technical development.
However, Tarski style is not often how proof assistants, e.g. Agda, Coq and Lean, are implemented.
Moreover, Tarski style also leads to a rather complex formulation of the mutual recursion principle
for code.

In retrospect, we believe that DeLaM can equally be developed using Russell style universes. A
Russell-style universe hierarchy only includes one syntax for types and terms. Furthermore, it is
how universes are organized in existing proof assistants. The use of Russell style universes also
induces other simplifications. For one, there is only one kind of contextual types:□(Γ ⊢c 𝑇 @ 𝑙), and
a code object for types simply has type□(Γ ⊢c Ty𝑙 @ 1 + 𝑙). In addition, there is only one elimination
principle for code that does not need mutual recursion:

elim
𝑙 (ℓ, 𝑔,𝑢𝑇 , 𝑥𝑡 .𝑀)

−→
𝑏 (𝑡 : □(Γ ⊢c 𝑇 @ 𝑙 ′))

Since the recursion principle is no longer mutual, it only requires one motive𝑀 on universe level 𝑙
for the return type of the recursion. In this case, the whole recursor has type𝑀 [𝑙 ′/ℓ, Γ/𝑔,𝑇 /𝑢𝑇 , 𝑡/𝑥𝑡 ].
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While the recursor still requires a list of branches
−→
𝑏 , it only contains the cases in

−→
𝑏 Trm in Fig. 2, as

there is no distinction between types and terms anymore. We note that the recursion still occurs
on sub-structures, so termination remains quite natural.

A detailed development of the semantics based on Russell-style universes is beyond the scope of
this paper, so we leave this work for the future. We expect that the adaptation of the semantics
that is described in this paper to Russell style universes is moderate and that future extensions of
DeLaM can benefit from the simplifications brought by Russell style.

7.3.2 Supporting Other Features in DeLaM. In this paper, we only study DeLaM as a core system.
In reality, we often need more features from the type theory. For features that are already present
in MLTT, e.g. inductive type families (propositional equality types, finite number types, etc.), they
should be natural extensions of DeLaM. Their semantics can be modeled parametrically in 𝑖 and 𝑗

in the Kripke logical relations as in Sec. 5.2, so that they apply to all layers.
Themeta-programming layer mmight also need other extensions for more practicality. It might be

helpful to introduce code of regular contexts, i.e.□Ctx, code of regular substitutions, i.e.□(Γ ⊢c Δ),
and their recursion principles following Cave and Pientka [2013, 2018]. This extension should be
relatively simple as the logical relations already give their semantics.

7.3.3 Other Future Work. Another important direction is to develop an NbE algorithm for DeLaM
which provides a simpler normalization proof for mechanization and would be easier to mechanize.
The mechanization of DeLaM could be quite challenging, as we will need to handle transfinite
recursion of universe levels, as well as employ good engineering practice to tackle duplication
in the logical relations at different layers. Last, an implementation of DeLaM, where we can
actually experiment and try to understand what additional features are needed in practice would
be desirable.

8 Conclusions

In this paper, we have introduced DeLaM, a dependent layered modal type theory for meta-
programming with intensional analysis. In DeLaM, we delaminate MLTT into multiple layers.
At layer c, code does not compute due to static code, so we can soundly recurse on code. At
layer m, code is programmatically generated and is executed using lifting, which ensures that
all code from layer c is also well-formed at layer m. Combining both features, we obtain a type-
theoretic foundation for proof assistants, in which we can write type-safe tactics to generate proofs
that are guaranteed well-formed. In addition, we have proved weak normalization for DeLaM
and its decidability of convertibility. We believe DeLaM provides a theoretical perspective and
complements our understanding of existing tactic systems. In particular, it is a significant step
towards type-safe meta- and tactic programming in proof assistants.
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