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1 Goal

During the study of [10](and its preliminaries [3], [8]), despite the already complex expressions of the
four pairs of chain rules, the derivations are not all obvious, and some steps are clearer in other references,
which make them more difficult to follow. There is also a theorem which uses some SDP technique, which I
think is worth made explicit. Hence the goal of this project is to expand selected derivations and add more
explanations, such that it can be more approachable for the hypothetically intended audience sharing the
same level as the author’s , i.e. beginners of quantum information theory.

This writeup first lists out some necessary definitions, and some properties which are considered imme-
diate. Then we proceed on further discussion on one chain rule.

2 Definitions

Following is a brief summary of smooth min- max- entropies and their properties.

2.1 Smooth Min- and Max- Entropies

Definition 1. D≤(X ) = {ρ ∈ Pos(X ) : Tr(ρ) ≤ 1}
Let’s call its member substate.

Definition 2. min- max- entropies of ρXY ∈ D≤(X ⊗Y) relative to σY ∈ D≤(Y) is defined to be

Hmin(ρXY | σY) = sup{λ : ρXY ≤ 2−λ1X ⊗ σY}
Hmax(ρXY | σY) = 2 log F(ρXY, 1X ⊗ σY)

where F is fidelity.

The subscripts of substates denote the spaces they live in. E.g. for ρ ∈ D≤(X ⊗ Y), ρX = TrY (ρ), and
ρXYZ is its purification.

Definition 3. min- max- entropies of ρXY is the min- max- entropies relative to some optimal choice of σY

Hmin(X | Y)ρ = max
σY

Hmin(ρXY | σY)

Hmax(X | Y)ρ = max
σY

Hmax(ρXY | σY)

it’s feasible because we assume X and Y are finite spaces.
Alternatively[3],

Hmax(X | Y)ρ = −Hmin(X | Z)ρ

where ρXY is purified in X ⊗Y ⊗Z , which indicates the duality relation between these two.

Definition 4. The purified distance between ρ, σ ∈ D≤(X ) is based on fidelity

P(ρ, σ) =

√
1−

√
(1− Trρ)(1− Trσ)− F(ρ, σ)

Theorem 5. Purified distance is a metric on D≤(X )[8, Lemma 5].
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This property can be seen directly from fidelity’s properties. Identity can be seen from trace norm’s
property. Commutativity can be seen from commutativity of fidelity and multiplication. The triangular
inequality can be seen from assignment 2.

Definition 6. For ε ≥ 0, ε-ball around ρ ∈ D≤(X ), Tr(ρ) > ε, is

Bε(ρ) = {σ ∈ D≤(X ) : P(ρ, σ) ≤ ε}
Definition 7. Smooth min- max- entropies are optimization of min- max- entropies within the ε-ball, respec-
tively,

ρXY ∈ D≤(X ⊗Y)
Hε

min(X | Y)ρ = max
ρ̃∈Bε(X )

Hmin(X | Y)ρ̃

Hε
max(X | Y)ρ = min

ρ̃∈Bε(X )
Hmax(X | Y)ρ̃

It’s feasible because ε-ball is compact[8, Definition 10].
Or in the form of duality[8],

Hε
max(X | Y)ρ = −Hε

min(X | Z)ρ

where ρXYZ is purification of ρXY in X ⊗Y ⊗Z .

2.2 Some properties

Following are some basic and relevant properties which the subsequent proof is based on.

Lemma 8. [8, Lemma 7]

ρ, σ ∈ D≤(X ), Φ ∈ CP(X ,Y), Φ is trace non-decreasing, P(ρ, σ) ≥ P(Φ(ρ), Φ(σ)).

Since purified distance is fidelity based, following can be drawn from fidelity’s properties immediately[Theorem
3.28, Theorem 3.22 in the book],

Lemma 9. [8, Lemma 8, Corollary 9]

ρ, σ ∈ D≤(X ), ∃ρ′, σ′ ∈ D≤(X ⊗Y), s.t. TrY (ρ′) = ρ, TrY (σ′) = σ,

P(ρ, σ) = P(ρ′, σ′)

A special case will be when ρ′, σ′ are pure.

This lemma then implies the existence of extension of any substates staying in a larger ε-ball with the
same purified distance.

3 Main Discussion

The main discussion follows. Considering the main steps of all four pairs of chain rules share the same
spirit, it might just suffice to discuss the most difficult one, in order to avoid redundancy, together with other
concepts accompanied to it.

Following theorem will be the main focus[10, Theorem 15],

Theorem 10. [10, Theorem 15] Let ε > 0, ε′, ε ≥ 0, and ρXYZ ∈ D≤(X ⊗Y ⊗Z), then

Hε′
min(XY | Z) ≤ Hε′′

max(X | YZ) + H2ε+ε′+ε′′
min (Y | Z)1 + 3 f (ε)

where

f (ε) = log
1

1−
√

1− ε2

1In the paper, the purified distance of min-entropy on the right hand side is 2ε + ε′ + 2ε′′, which has an extra factor of 2 before ε′′. I
suspect it’s not needed and the discussion will be in the proof below.
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3.1 A Theorem Using SDP

Following theorem uses a form of SDP which is not seen from the lectures, is quite puzzling from the first
glance. Hence it might be worth verbosifying it.

The theorem is based on the following lemma.

Lemma 11. [10, Lemma 7] ρXY ∈ D≤(X ⊗Y), σY ∈ D≤(Y), ρXYZ is purification of ρXY, then Hmax(ρXY | σY) =
log γ, where γ is the optimal value of following SDP,

primal problem:

max 〈AXYZ, ρXYZ〉
s.t. TrZ(AXYZ) ≤ 1X ⊗ σY

AXYZ ≥ 0

dual problem:

min 〈1X ⊗ σY, BXY〉
s.t. BXY ⊗ 1Z ≥ ρXYZ

BXY ≥ 0

The duality gap for this SDP is closed by using Slater’s theorem, and the primal optimal value and dual
optimal value equals. Therefore γ is well defined.

Following theorem optimizes above over all σY.

Theorem 12. [10, Lemma 8] ρXY ∈ D≤(X ⊗Y), σY ∈ D≤(Y), ρXYZ is purification of ρXY, then

Hmax(X | Y)ρ = log γ′

where γ′ is the optimal value of following
min ‖BY‖∞

s.t. BXY ⊗ 1Z ≥ ρXYZ

BXY ≥ 0

Proof. We have known by definition

Hmax(X | Y)ρ = max
σY

Hmax(ρXY | σY)

Considering the primal problem of the SDP above, if we further optimize that over σY, we indeed generate
following SDP,

max 〈AXYZ, ρXYZ〉
s.t. TrZ(AXYZ) ≤ 1X ⊗ σY

Tr(σY) ≤ 1
AXYZ ≥ 0
σY ≥ 0

Therefore our goal is to show the steps to transform this primal problem to the matching dual problem
shown in the paper.

Consider transforming the constraints into following, together with slack variables 0 ≤ K1 ∈ C, K2 ∈
Pos(X ⊗Y),

Tr(σY) + K1 = 1
TrZ(AXYZ)− 1X ⊗ σY + K2 = 0

Let’s consider any A′ ∈ Pos(Y ⊕ C⊕ (X ⊗ Y ⊗ Z)⊕ (X ⊗ Y)), then we can definitely decompose the
A′ into following

A′ =


σY · · ·
· K1 · ·
· · AXYZ ·
· · · K2


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where · denotes “don’t care”. We can then try to construct the Hermitian preserving map, as following

Φ1(A′) = Tr(σY) + K1

Φ1 ∈ T(Y ⊕C⊕ (X ⊗Y ⊗Z)⊕ (X ⊗Y), C)

Φ2(A′) = TrZ(AXYZ)− 1X ⊗ σY + K2

Φ2 ∈ T(Y ⊕C⊕ (X ⊗Y ⊗Z)⊕ (X ⊗Y),X ⊗Y)

Φ =

(
Φ1 0
0 Φ2

)
∈ T(Y ⊕C⊕ (X ⊗Y ⊗Z)⊕ (X ⊗Y), C⊕ (X ⊗Y))

All components from Φ1, Φ2 are Hermitian preserving, and they only deal with diagonal elements, so Φ
is also Hermitian preserving. Hence the constraint becomes

Φ(A′) =

Tr(σY) + K1 0
0 TrZ(AXYZ)− 1X ⊗ σY + K2

 =

 1 0
0 0

 = C ∈ Pos(C⊕ (X ⊗Y))

Under this setting, it wouldn’t be difficult already to come up with the target function,

〈AXYZ, ρXYZ〉 = 〈A′, D〉
where

D =


0 0

0
ρXYZ

0 0

 ∈ Pos(Y ⊕C⊕ (X ⊗Y ⊗Z)⊕ (X ⊗Y))

Then now we can express the SDP as following

primal problem

max 〈A′, D〉
s.t. Φ(A′) = C

A′ ≥ 0

dual problem

min 〈B′, C〉
s.t. Φ∗(B′) ≥ D

B′ ∈ Herm(C⊕ (X ⊗Y))

Then we will need to compute Φ∗. Consider any B′ =
(

λ ·
· BXY

)
∈ Herm(C⊕ (X ⊗ Y)), which is

decomposed in similar form to above, we have

〈Φ(A′), B′〉 = 〈
(

Φ1(A′) 0
0 Φ2(A′)

)
,
(

λ ·
· BXY

)
〉

= 〈Φ1(A′), λ〉+ 〈Φ2(A′), BXY〉
= 〈A′, Φ∗1(λ)〉+ 〈A′, Φ∗2(BXY)〉
= 〈A′, Φ∗1(λ) + Φ∗2(BXY)〉
= 〈A′, Φ∗(B′)〉

4



Project Writeup Zhong Sheng Hu(zs2hu)

Compute Φ1, Φ2 respectively,

Φ∗1(λ) =


λ1Y 0

λ

0
0 0



Φ∗2(BXY) =


−TrX (BXY) 0

0
BXY ⊗ 1Z

0 BXY


Therefore the constraint is

Φ∗(B′) = Φ∗(
(

λ ·
· BXY

)
)

= Φ∗1(λ) + Φ∗2(BXY)

=


λ1Y − TrX (BXY) 0

λ
BXY ⊗ 1Z

0 BXY


≥ D

Expanding D and knowing that the only non-zero entry of C is C11 = 1, we obtained what the paper
described,

min 〈B′, C〉 = λ

s.t. λ1Y − TrX (BXY) ≥ 0
λ ≥ 0
BXY ⊗ 1Z ≥ ρXYZ

BXY ≥ 0

The reason why λ = ‖BY‖∞ can be obtained from the constraint λ1Y − TrX (BXY) ≥ 0 ⇒ λ1Y ≥ BY,
and trying to minimize λ. Hence the same final dual SDP as the paper is generated,

min ‖BY‖∞

s.t. BXY ⊗ 1Z ≥ ρXYZ

BXY ≥ 0

Since we know the solution of primal problem is 2Hmax(X | Y)ρ , we will just need to show there is no duality
gap and the optimal values are the same. By Slater’s theorem, we can definitely find an instance of A′ > 0,
such that Φ(A′) = C. Consider following,

For any G ∈ Pd(Y), Tr(G) < 1

A′ =


G 0

1− Tr(G)
1

2dim(Z)1X ⊗ G⊗ 1Z

0 1
2 1X ⊗ G

 > 0

Easily verified that Φ(A′) = C. The dual feasible set is definitely not empty, as we can, for example,
let BXY = ‖ρXYZ‖∞1XY ≥ ρXYZ. Therefore the duality gap vanishes, and also the dual optimal value is
feasible.
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3.2 S-entropy

Following is a discussion regarding S-entropy, which is a tool concept to assist proof steps of the chain
rules.

Definition 13. S-entropy of ρXY ∈ D≤(X ⊗Y) relative to σY ∈ D≤(Y) is defined as

Sε(ρXY | σY) = inf{λ : Tr(Πλ
XYρXY) ≤ ε}

where

Πλ
XY is the projection matrix onto (2λρXY − 1X ⊗ σY)’s eigenspace with negative eigenvalues.

This definition is quite confusing.

Since we know ρXY, σY are positive, we know (2λρXY − 1X ⊗ σY) is Hermitian. Then we can look at its
Jordan-Hahn decomposition,

2λρXY − 1X ⊗ σY = A− B
where

A, B ∈ Pos(X ⊗Y), AB = 0

Then we know Πλ
XY = B0 can be found is such a way.

To see how it tries to minimize λ s.t. 2λρXY ≥ 1X ⊗ σY, we have following

2λρXY ≥ 1X ⊗ σY

2λρXY − 1X ⊗ σY ≥ 0
A− B ≥ 0

Then B needs to vanish. Therefore

Tr(B0(ρXY − 2−λ1X ⊗ σY)) ≤ Tr(B0ρXY) ≤ ε

which does seem to agree with the intuition described in the paper. 2

Following lemma is also proved in the paper,

Lemma 14. [10, Lemma 12] ε > 0, ρXY ∈ D≤(X ⊗Y), σY ∈ D≤(Y),

Sε(ρXY | σY) ≤ Hmax(ρXY | σY)− log ε2

3.3 Other theorems

Following theorems are used during the main proof.

Theorem 15. [10, Lemma 20] ρ ∈ D≤(X ), Π is a projection matrix in X , then

P(ΠρΠ, ρ) ≤
√

2Tr(Π⊥ρ)− (Tr(Π⊥ρ))2

where

Π⊥ = 1−Π

Theorem 16. [10, Lemma 9] ε > 0, ρ ∈ D≤(X ⊗Y), ρ′ ∈ Bε′(ρ), ∃ρ̃ ∈ Bε+ε′(ρ′) such that

Hmax(X | Y)ρ̃ ≤ Hmax(ρXY | ρ′Y)− log(1−
√

1− ε2)
2From [2, Proposition 2], it turns out that S-entropy has a very close form to spectral inf-divergence rate, and from [2, Theorem 3],

this similarity does not seem a coincident. But I can’t get something concrete out of it.
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3.4 Main Proof

Following we proceed to the main proof of theorem 10.

Proof. There is a general proof idea shared among many proofs of theorems in this paper: relate several
substates by projection matricies, and use triangular inequality and theorem 15 to give a bound on purified
distance to some other intermediate state. As long as the distance from ρ is known, an optimization within
ε-ball can bring ρ back to “centre”.

For inequalities that involves both min- max- entropies, like this one, S-entropy is used as a guide to
create a proper projection matrix, which helps generating bound between min- and max- entropies by
lemma 14. One thing worth noticing, is by giving a bound on Tr(Πλ

XYρXY) ≤ ε, S-entropy subsequently

enforces P(Πλ⊥
XYρXYΠλ⊥

XY, ρXY) ≤
√

2Tr(Πλ
XYρXY)− (Tr(Πλ

XYρXY))2 ≤
√

2ε− ε2 via theorem 15. That im-
plies a form of potential candidates of auxiliary matrices to work with.

Then theorem 16 is used to switch to another substate with known distance, which will subsequently be
used to bring ρ back into scope.

According to the duality of smooth min- max- entropies, for a substate ρXYZ ∈ D≤(X ⊗ Y ⊗Z) and its
purification u ∈ X ⊗Y ⊗Z ⊗W , ρXYZW = uu∗, the original problem becomes

Hε′′
max(XY |W) ≥ Hε′′

min(X |W) + H2ε+ε′+ε′′
min (Y | XW)− 3 f (ε)

Then we let ρ′XYW ∈ Bε′(ρXYW), ρ′′XW ∈ Bε′′(ρXW), such that following optimizations are achieved,

Hε′
max(XY |W)ρ = Hmax(XY |W)ρ′

Hε′′
min(X |W)ρ = Hmin(X |W)ρ′′

Then further let an optimal choice σW ∈ D≤(W), such that

Hmin(X |W)ρ′′ = Hmin(ρ
′′
XW | σW)

Following will use S-entropy to draw some relation involving ρ′ and ρ′′. By definition of Hmin
3

ρ′′XW ≤ 2−Hmin(X |W)ρ′′ (1X ⊗ σW) (1)

⇒ 2Hmin(X |W)ρ′′ ρ′′XW ⊗ 1Y ≤ (1XY ⊗ σW) (2)

Then consider following S-entropy Sε̃(ρ′XYW | σW), ε̃ > 0. Since it’s an infimum, then we know by
definition, there are choices of δ > 0 that are infinitely close to 0, for λ = Sε̃(ρ′XYW | σW) + δ, so that
Tr(Πλ

XYWρ′XYW) ≤ ε̃ holds.

Since Πλ
XYW projects to the negative eigenspace of (2λρ′XYW − 1XY ⊗ σW), we can let Πλ⊥

XYW = 1XYW −
Πλ

XYW , which projects the matrix to its positive eigenspace instead. We then are sure following trivially
holds,

Πλ⊥
XYW(2λρ′XYW − 1XY ⊗ σW)Πλ⊥

XYW ≥ 0 (3)

Πλ⊥
XYW(1XY ⊗ σW)Πλ⊥

XYW ≤ Πλ⊥
XYW2λρ′XYWΠλ⊥

XYW (4)

Now we notice (1XY ⊗ σW) gives some lower bound and upper bound. Form this one, we can more or less
make sense why S-entropy is interested in an inequality in a different direction from min-entropy requires.
Conjugating inequality 2 by Πλ⊥

XYW , then by transitivity of ≤ with 4, we have

3The order of tensoring is not right but it shouldn’t matter in this case as the matrices with different tensoring orders are isomorphic
to each other.
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2Hmin(X |W)ρ′′Πλ⊥
XYW(ρ′′XW ⊗ 1Y)Πλ⊥

XYW ≤ 2λΠλ⊥
XYWρ′XYWΠλ⊥

XYW

Moving the factor to the right, we have

Πλ⊥
XYW(ρ′′XW ⊗ 1Y)Πλ⊥

XYW ≤ 2λ−Hmin(X |W)ρ′′Πλ⊥
XYWρ′XYWΠλ⊥

XYW (5)

Then we are looking to use lemma 14 to remove S-entropy from the expression. Consider following
conditional max-entropy next

2Hmax(Πλ⊥
XYW ρ′XYW Πλ⊥

XYW | ρ′′XW ) = lemma 11

min 〈ρ′′XW ⊗ 1Y, BXYW〉
s.t. BXYW ⊗ 1V ≥ (Πλ⊥

XYW ⊗ 1V)τXYWV(Πλ⊥
XYW ⊗ 1V)

BXYW ≥ 0
where

τXYWV purifies ρ′XYW for some space V4

Notice that (Πλ⊥
XYW ⊗ 1V)τXYWV(Πλ⊥

XYW ⊗ 1V) purifies Πλ⊥
XYWρ′XYWΠλ⊥

XYW as it’s a rank one matrix. There-
fore following holds

(Πλ⊥
XYW ⊗ 1V)τXYWV(Πλ⊥

XYW ⊗ 1V) ≤ Πλ⊥
XYW ⊗ 1V

So Πλ⊥
XYW is a candidate of the dual SDP. Therefore we know

2Hmax(Πλ⊥
XYW ρ′XYW Πλ⊥

XYW | ρ′′XW ) ≤ 〈ρ′′XW ⊗ 1Y, Πλ⊥
XYW〉 Πλ⊥

XYW is a suboptimal choice.

= Tr(Πλ⊥
XYW(ρ′′XW ⊗ 1Y)Πλ⊥

XYW)

≤ 2λ−Hmin(X |W)ρ′′ Tr(Πλ⊥
XYW(ρ′XYW)Πλ⊥

XYW) inequality 5

≤ 2λ−Hmin(X |W)ρ′′

because the matrix above is a substate

Just look at the exponent,

Hmax(Π
λ⊥
XYWρ′XYWΠλ⊥

XYW | ρ′′XW) ≤ λ− Hmin(X |W)ρ′′

= Sε̃(ρ′XYW | σW) + δ− Hmin(X |W)ρ′′

≤ Hmax(ρ
′
XYW | σW)− Hmin(X |W)ρ′′ + δ− 2 log ε̃ lemma 14

≤ Hmax(XY |W)ρ′ − Hmin(X |W)ρ′′ + δ− 2 log ε̃

due to optimization over σW .

= Hε′
max(XY |W)ρ − Hε′′

min(X |W)ρ + δ− 2 log ε̃ (*)

The form of right hand side suggests that the remaining work is to relax the Hmax on left hand side
further to find a max-entropy related to ρ. According to lemma 9, we can then find extensions of ρ′XYW , ρ′′XW ,
respectively ρ′XYZW , ρ′′XYZW , such that P(ρ′XYZW , ρXYZW) = P(ρ′XYW , ρXYW) ≤ ε′, P(ρ′′XYZW , ρXYZW) =

4The paper picks the purification in X ⊗Y ⊗Z ⊗W , which I find strange, asW is picked to purify ρXYZ so it can be very large, and
we don’t know the rank of ρ′XYW , so it’s not straightforward to me how ρ′XYW can be purified in Z . However, it does not seem to matter
as the purification is not used anywhere in the concrete argument.
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P(ρ′′XW , ρXW) ≤ ε′′, and then we have following,

P(Πλ⊥
XYWρ′XYWΠλ⊥

XYW , ρXYW)

≤P((Πλ⊥
XYW ⊗ 1Z)(ρ

′
XYZW)(Πλ⊥

XYW ⊗ 1Z), ρXYZW)

lemma 8, and TrZ is trace-preserving.

≤P((Πλ⊥
XYW ⊗ 1Z)(ρ

′
XYZW)(Πλ⊥

XYW ⊗ 1Z), ρ′XYZW) + P(ρ′XYZW , ρXYZW) + P(ρXYZW , ρ′′XYZW)

triangular inequality because purified distance is a metric.

≤
√

2ε̃− ε̃2 + ε′ + ε′′

The last step is due to theorem 15, and the assumption of Πλ
XYW made by the S-entropy, then we have

Tr(Πλ
XYWρ′XYW) ≤ ε̃.

P((Πλ⊥
XYW ⊗ 1Z)ρ

′
XYZW(Πλ⊥

XYW ⊗ 1Z), ρ′XYZW)

≤
√

2Tr(Πλ
XYWρ′XYW)− (Tr(Πλ

XYWρ′XYW))2

theorem 15 and TrZ is trace-preserving.

≤
√

2ε̃− ε̃2

because x 7→
√

2x− x2 =
√

1− (x− 1)2 monotonically increases when x ≤ 1

Then by theorem 16, we know there exists ρ̃XYW ∈ B
√

2ε̃−ε̃2+ε′+ε′′+ε(ρ′′XYW), such that 5

Hmax(Y | XW)ρ̃ ≤ Hmax(Π
λ⊥
XYWρ′XYWΠλ⊥

XYW | ρ′′XW) + f (ε)

Substitute that in inequality *, we have

H
√

2ε̃−ε̃2+ε′+ε′′+ε
max (Y | XW)ρ ≤ Hmax(Y | XW)ρ̃

optmization within the ε-ball

≤ Hmax(Π
λ⊥
XYWρ′XYWΠλ⊥

XYW | ρ′′XW) + f (ε)

≤ Hε′
max(XY |W)ρ − Hε′′

min(X |W)ρ + δ− 2 log ε̃ + f (ε) inequality *

Since ε̃ is arbitrary, we can let ε̃ = 1−
√

1− ε2; δ can be infinitesimal, so let δ → 0 to approximate the
infimum, we eventually will be able to obtain from above,

Hε′+ε′′+2ε
max (Y | XW)ρ ≤ Hε′

max(XY |W)ρ − Hε′′
min(X |W)ρ + 3 f (ε)

Hε′
max(XY |W)ρ ≥ Hε′′

min(X |W)ρ + Hε′+ε′′+2ε
max (Y | XW)ρ − 3 f (ε)

as claimed at the beginning.

5This step in the paper sets the bound to be
√

2ε̃− ε̃2 + ε′ + 2ε′′ + ε, which generates one extra ε′′ in the distance bound. I don’t
seem to find that necessary, and it’s also suggested on a subsequent bound f (ε), which has no ε′′ ’s presence.
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Some Relevant Things That are Irrelevant

During study of [3], [8], [10], I was confused by how max-entropy is defined and subsequently did some
investigation. I suppose it might serve an interesting reading and hence write it down here.

Reading [3], defining max-entropy via duality instead of relative Rényi entropy like min-entropy puzzled
me. Without noticing the fidelity is already the case, I tried to look up alternative definition, and it was
found in [6], [1], [2] as following

H
′
max(X | Y)ρ = log sup

σY

Tr(ρ0
XY(1X ⊗ σY))

where ρ0
XY projects onto eigenspace of ρXY.

I couldn’t understand it, since if H
′
max = Hmax were true, then it indicated a too easy way of computing

fidelity. More confusingly, another form of duality was described as[1, Proposition 3.11],

For a pure state ρ ∈ D(X ⊗Y ⊗Z),

Hmin(ρXZ | ρZ) = −H
′
max(X | Y)ρ

which seemingly implies Hmin(ρXZ | ρZ) must be optimal, which does not seem the case.

My confusion eventually went away after I saw these slides [5], which put relative Rényi entropy and
min- max- entropies side by side. In the slides, H

′
max is defined to be H0, and Hmax to be D 1

2
.

Curiously, from papers around ’08, ’09, it’s obvious that the concrete meaning of Hmax was still alternat-
ing: [1], [2] defined it as H0, while [3], [8] defined it in the current way, and interestingly they cite each
other.
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