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Abstract

this is a course project report of CS860, Advanced Topics in Algorithms and Complexity,
Fall 2018. In this project, we explore the basic concepts in classical and quantum information
theory, classical and quantum information complexity, and communication complexity.

Additionally, we particularly focus on the bound of communication complexity by infor-
mation complexity. Roughly, the randomized communication complexity of a function f has
following relation with information complexity: R(f) = 2O(IC(f)). On the other hand, the
quantum variant is also proved: QCC(f) = 2O(QIC(f)). In this report, we try to explain
these two proofs and explore the differences.

1 Problem Definition

Informally speaking, communication complexity measures the amount of the communication
needed to solve a problem while information complexity measures the amount of information
exchange. The question is how these two quantities relate to each other. In [5, 6], the two
relations are given respectively, one for the classical case, and the other one for the quantum case,
stating the communication is bounded by information exponentially.

R(f) = 2O(IC(f))

QCC(f) = 2O(QIC(f))

In this report, we present and make the proof arguments more verbose, and therefore easier to
understand. Additionally, despite their similar forms, their proofs employ two different approaches.
In the classical case, the proof quite straightforwardly compresses a protocol into a different one
that has communication upper bound. On the other hand, in the quantum case, the proof is
somewhat indirect, by utilizing the property of generalized discrepancy method, and only relies
on protocol compression in an intermediate relation. We will compare these two different proof
techniques and attempt to explain why the proof techniques in the classical case are not directly
applicable in the quantum case.
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Symbols Meaning
Σ (default) alphabet
X ,Y,Z domains / spaces
X,Y, Z random variables
x, y, z elements (from matching spaces, i.e. x ∈ X , y ∈ Y)
p, q, µ probability distributions / probability vectors
π communication protocol between two spaces
Π random variable over a communication protocol π,

where the inputs are themselves random variables
ε error

Table 2.1: Convention table

2 Preliminaries: the Classical Case

In this section, we overview a number of basic definitions in order to define the problem.

2.1 Conventions

Before entering the technical discussion, we want to first outline the a number of notational
conventions in Table 2.1, in order to make sure the writing is consistent.

2.2 Communication Complexity

Consider two players, Alice and Bob, and their input spaces, X and Y. Their goal is to
compute a function f : X × Y → {0, 1}. The way they compute f for a given x ∈ X and
y ∈ Y held by Alice and Bob respectively, is to follow a communication protocol, π, which gives
instructions to Alice and Bob on when and who to send which bit to the other, so that f(x, y)
can be computed. We primarily use π(x, y) to denote a transcript of f(x, y), which is a record of
communication between Alice and Bob, but also overload π(x, y) to represent the result of f(x, y)
sometimes. The meaning should be distinguishable according to the context. In this model, we
assume Alice and Bob have infinite computational power, and the cost is merely the number of
bits they have to exchange.

In this report, we exclusively discuss the communication settings with public randomness, or
public coin. Under this settings, before the communication begins, there is a publicly available
infinitely long random string that Alice and Bob have access to for free. There are models where
such random string doesn’t exist, or Alice and Bob have their own random string. These models
will not be discussed here.

Definition 2.1. The communication cost of a protocol π, is

CC(π) = max
x∈X ,y∈Y

|π(x, y)|

where π(x, y) here means the transcript, and |π(x, y)| is the number of bits transmitted according
to this transcript.

Definition 2.2. The distributional communication complexity of f : X × Y → {0, 1} with input
distribution µ : X × Y → [0, 1] and error ε > 0, is

Dµ
ε (f) = min

π:P{π(x,y)6=f(x,y)}≤ε
CC(π)

where π is a deterministic protocol.

2



J. Hu

Notice that even if it’s a deterministic protocol, the protocol can rely on the public randomness.
The distributional communication complexity measures the cost of the best deterministic protocol
for the worst inputs.

Definition 2.3. The randomized communication complexity of f : X × Y → {0, 1} with public
randomness and error ε > 0, is

Rε(f) = min
π:P{π(x,y)6=f(x,y)}≤ε

CC(π)

where π is a randomized protocol.

Contrast to deterministic protocol, a randomized protocol can be considered as a result
of selecting a deterministic protocol based on some probability distribution. The randomized
communication complexity measures the cost of the best randomized protocol for the worst inputs.

Clearly, Rε(f) ≥ Dµ
ε (f). This is because in the randomized case, the communication cost

cannot get smaller than deterministically optimal solution, by averaging with other sub-optimal
protocols. These two definitions are further related in the following way.

Theorem 2.1. [20, Yao’s min-max]

Rε(f) = max
µ

Dµ
ε (f)

This theorem states that in the worst distribution, selecting the best deterministic protocol
essentially works the same as running an optimal randomized protocol.

2.3 Information Theory

In 1948, C.E. Shannon published a celebrated paper [13], which describes a well-established
mathematical theory on data transmission over channels, and defines fundamental concepts in
today’s information theory.

Definition 2.4. The Shannon entropy, or entropy, of a nonnegative real vector v ∈ [0,∞)Σ is

H(v) = −
∑
x∈Σ

v(x) log v(x)

Throughout, we assume the base of logarithm is always 2, so we omit it by default. A special
case is when v is a probability vector of a random variable X. An interpretation of this formula
is that entropy is the expectation of number of bits required to record one sample of the random
variable X. Due to this statistical nature, Shannon entropy defines the amount of information of
a random variable in an amortized sense.

Following are definitions of a few more (classical) information theoretic concepts.

Definition 2.5. Conditional entropy of X given Y is

H(X|Y ) = H(XY )−H(Y )

where H(XY ) is joint entropy of X and Y .

In particular, if X and Y are unrelated, then H(X|Y ) = H(X), since their joint entropy
H(XY ) = H(X) +H(Y ). Clearly, H(X|Y ) ≤ H(X) in general, because putting condition cannot
generate more information.

Definition 2.6. Mutual information of X and Y is

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(XY )
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Mutual information measures the amount of information shared between X and Y . If X and
Y are unrelated, then I(X;Y ) = 0; if X and Y are identical, then I(X;Y ) = H(X) = H(Y ).

Definition 2.7. Divergence / relative entropy of two nonnegative real vectors p and q is

D(p ‖ q) =
∑
x∈X

p(x) log
p(x)

q(x)

where supp(p) ⊆ supp(q).

Divergence measures how far away q is from p.
It’s critical to realize that information theory measures one-way data transmission in an

amortized sense, so it’s an approximation, and converges as more and more data is transmitted.
This can be seen in the following theorem of Shannon entropy.

Theorem 2.2. (Shannon’s source coding theorem [13, Theorem 4])

lim
n→∞

Cn(X)

n
= H(X)

where Cn(X) means the number of bits used to transmit n (independent) samples of X.

Theorem 2.2 is probably the most important theorem which turns information theory into
highly practical use. It states a way to actually approximate Shannon entropy in a manner similar
to the law of large numbers and hence assigns an operational meaning to Shannon entropy. Here
are some interpretations of this theorem.

1. X can be transmitted losslessly provided a channel with at least H(X) bit bandwidth.

2. A compression ofX so that the result requires less thanH(X) bits to describe the information
must be lossy.

2.4 Information Complexity

In [3, 5], Braverman defines the interactive information complexity. Compared to information
theory, which models one-way communication, information complexity theory models the amount
of information exchange between Alice and Bob, when they execute a communication protocol, π.
In order to define communication complexity, we first need to define communication cost.

Definition 2.8. The (internal) information cost of a protocol π over X × Y is

ICµ(π) = I(Π;X|Y ) + I(Π;Y |X)

where µ is a distribution on the inputs X and Y .

This definition is explicitly introduced in [2]. Another common notation for the same concept
is ICiµ(π), in which the superscript i denotes the information cost is internal. Prior to [2],
information cost referred to a similar concept, which now is called external information cost.

Definition 2.9. The external information cost of a protocol π over X × Y is

ICextµ (π) = I(XY ; Π)

Another common notation is ICoµ(π).
The information cost of a protocol π measures how much additional information Alice and Bob

can learn about the input of the other in total, by knowing the communication protocol. On the
other hand, the external information cost of a protocol π measures how much the communication

4



J. Hu

protocol is related to both inputs held by Alice and Bob in terms of the amount of information.
This measure is external, because it captures the mutual information as an external observer, to
whom all of the inputs and the protocol are visible.

Since [2], the information cost has become more interesting concept than the external infor-
mation cost, due to a property similar to Theorem 2.2. Before stating the concrete theorem, we
first need to define information complexity.

Definition 2.10. The information complexity of a function f : X ×Y → {0, 1} with error ε and
probability distribution of inputs µ is

ICµ(f, ε) = inf
π:P{π(x,y)6=f(x,y)}≤ε

ICµ(π)

In this definition, the infimum is taken over all communication protocols, which can compute
f with no more than ε error. This infimum is necessary, because there are problems the optimal
information complexities of which are not reachable, but nonetheless can be approximated by
(infinitely long) sequences of communication protocols. As protocols appear later in the sequences,
the information costs converge to ICµ(f, ε) but can never reach it. The infimum in the definition
is handled situations of this kind. Details can be found in [19, 2.3.4, Theorem 2.3.2], which shows
the AND function is one of the examples.

At this point, the information complexity still depends on a prior distribution µ of inputs.
The worst such distribution defines the information complexity of the function.

Definition 2.11. The information complexity of a function f : X × Y → {0, 1} with error ε is

IC(f, ε) = inf
π:P{π(x,y)6=f(x,y)}≤ε

max
µ

ICµ(π)

If we simply factor out µ from ICµ(f, ε), we can obtain a closely related concept.

Definition 2.12. The max-distributional information complexity of a function f : X ×Y → {0, 1}
with error ε is

ICD(f, ε) = max
µ

ICµ(f, ε) = max
µ

inf
π:P{π(x,y) 6=f(x,y)}≤ε

ICµ(π)

IC is the inf-max of the information cost and ICD is the max-inf of the information cost. They
are closely related, but not necessarily equal. They are related by the following two theorems.

Theorem 2.3. Let f : X × Y → {0, 1} and ε ≥ 0, then for α ∈ (0, 1),

IC(f,
ε

α
) ≤ ICD(f, ε)

1− α

Theorem 2.4. Let f : X × Y → {0, 1},

IC(f, 0) = ICD(f, 0)

The following theorem captures a desired property we want to have for information complexity.

Theorem 2.5. (additivity) For f : X × Y → {0, 1},

ICD(fn, ε) = n · ICD(f, ε)

IC(fn, ε) = n · IC(f, ε)

where fn is a function which computes f for n (independent) pairs of inputs.
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This theorem captures the intuition that computing the same function on n inputs one by one
should cost the same as computing at the same time. This draws the attention to amortized cost
of communications. The next theorem addresses this and resembles Theorem 2.2, which makes
the (internal) information complexity a more interesting definition than external information
complexity.

Definition 2.13. Dµ,n
ε (fn) is the distributional communication complexity of computing f :

X ×Y → {0, 1} on n (independent) pairs of inputs drawn from distribution µ, each with no more
than ε ∈ (0, 1) error.

We can have a similar definition for the randomized case.

Definition 2.14. Rnε (fn) is the randomized communication complexity of computing f : X ×Y →
{0, 1} on n (independent) pairs of inputs, each with no more than ε ∈ (0, 1) error.

The following theorem connects information complexity with the amortized cost of repeating
the same function.

Theorem 2.6.

ICµ(f, ε) = lim
n→∞

Dµ,n
ε (fn)

n

IC(f, ε) = lim
n→∞

Rnε (fn)

n
, ε > 0

Finally, following theorem connects information complexity and communication complexity.

Theorem 2.7. [5, Theorem 5.3] For ρ ∈ (0, 1/16),

Dµ
ρ+ε(f) = 2O(1/ρ+ICµ(f,ε)/ρ2)

Rρ+ε(f) = 2O(1/ρ+IC(f,ε)/ρ2)

These two bounds are rather weak, stating that communication complexity and information
complexity are related exponentially. Following theorem shows that for some problems, this
relation is in fact tight.

Theorem 2.8. [9, 8, Theorem 1, Theorem 2]
There is a function that separate communication complexity and information complexity

exponentially.

3 Proof of Theorem 2.7

3.1 Proof Idea

In this section, we review the proof of Theorem 2.7. We aim at reviewing the proof in greater
details in order to make the proof more understandable for audience that are less familiar with
the background. Before expanding the proof, the proof can be roughly divided into following
steps.

1. Begin with a protocol, π, so that its information complexity ≈ IC(f, ε).

2. Discover another protocol, π′, which approximates π with a little extra error (compression),
and has a bound of communication complexity exponential to information complexity.

3. Since the error between π and IC(f, ε) can be arbitrarily small, the theorem is concluded.

The construction of the π′ is somewhat convoluted, and is the core step of the proof. The
actual construction is shown in Lemma 3.6.
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3.2 Useful Theorems and Lemmas

Following are a number of lemmas that will be used in the proofs.

Lemma 3.1. For all p, q nonnegative real vectors,

D(p ‖ q) ≥ 0

Theorem 3.2. (Markov’s inequality)

P (X ≥ a) ≤ E(X)

a

P (X ≤ a) ≥ 1− E(X)

a

We need a specialized Chernoff bound for the sum of independent variables obeying Bernoulli
distribution.

Theorem 3.3. [10] (Chernoff bound) Let Xi is random variable obeying Bernoulli distribution
with probability p to take value 1. Let X =

∑
iXi, then

Pr{X ≥ (1 + δ)E(X)} ≤ e−
δ2

2+δE(X), δ > 0

Lemma 3.4. (Conditional mutual information as divergence)

I(X;Y |Z) = EXZ(D((Y |XZ) ‖ (Y |Z)))

Proof. Let p be the joint distribution of all X, Y and Z. We denote the marginal distributions
using subscripts, e.g. pX(x) =

∑
y∈Y,z∈Z p(x, y, z).

I(X;Y |Z) =H(X|Z)−H(X|Y Z)

=−
∑
z∈Z

pZ(z)
∑
x∈X

pX|Z(x|z) log pX|Z(x|z)

+
∑

y∈Y,z∈Z
pY Z(y, z)

∑
x∈X

pX|Y Z(x|y, z) log pX|Y Z(x|y, z)

=−
∑
x,y,z

p(x, y, z) log
pXZ(x, z)pY Z(y, z)

pZ(z)p(x, y, z)

=
∑
x,y,z

p(x, y, z) log
pZ(z)p(x, y, z)

pXZ(x, z)pY Z(y, z)

=
∑
x,z

pXZ(x, z)
∑
y

pY |XZ(y|x, z) log
pY |XZ(y|x, z)
pY |Z(y|z)

=
∑
x,z

pXZ(x, z)D(pY |XZ ‖ pY |Z)

=EXZ(D((Y |XZ) ‖ (Y |Z)))

Corollary 3.4.1. (Information cost as divergence) For all µ : X × Y → [0, 1] a distribution and
π a protocol,

ICµ(π) = E(x,y)∼µ(D(π(x, y) ‖ π(X, y)) +D(π(x, y) ‖ Π(x, Y )))
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Proof. This lemma is a specialization of Lemma 3.4.

ICµ(π) =I(X; Π|Y ) + I(Y ; Π|X)

=EXY (D((Π|XY ) ‖ (Π|Y )) +D((Π|XY ) ‖ (Π|X)))

The conclusion is obtained by expanding the definition.

To state further lemmas, we first want to explicitly define total variation of two probability
distributions.

Definition 3.1. 1The total variation of p, q : X → [0, 1], two distributions, denoted by |p− q|, is

|p− q| = 1

2

∑
x

|p(x)− q(x)|

The following helper lemma is shown in [5, 19, 3].

Lemma 3.5. For p, q distributions, so that D(p ‖ q) ≤ I for some I. For any ε,

Pr{x : 2(I+1)/εq(x) < p(x)} < ε

Proof. Consider two sets, A = {x : p(x) < q(x)} and B = {x : 2(I+1)/εq(x) < p(x)}. Clearly,
A ∩B = ∅. Note that only x ∈ A contribute negative values to D(p ‖ q).

Therefore,

D(p ‖ q) =
∑
x

p(x) log
p(x)

q(x)

≥
∑
x∈A

p(x) log
p(x)

q(x)
+
∑
x∈B

p(x) log
p(x)

q(x)
(1)

>
∑
x∈A

p(x) log
p(x)

q(x)
+
∑
x∈B

p(x)
I + 1

ε
(2)

ineq. (2) holds, because all negative terms have been captured by A, so whatever dropped
have to be positive. ineq. (2) is due to B’s definition, which has p(x)/q(x) > 2(I+1)/ε.

For the first half, we have p(x)/q(x) ∈ (0, 1) (recall that supp(p) ⊆ supp(q), so p(x)/q(x) 6= 0,
for x under consideration). Consider f(x) = x log x, we know x ∈ (0, 1), f(x) ∈ (−1, 0). Therefore∑

x∈A
p(x) log

p(x)

q(x)
=
∑
x∈A

q(x)
p(x)

q(x)
log

p(x)

q(x)

>
∑
x∈A

q(x) · (−1)

≥ −1 because q is a distribution

So overall,

I ≥ D(p ‖ q) > −1 +
∑
x∈B

p(x)
I + 1

ε

≥ −1 + Pr{B}I + 1

ε

By transforming the inequality, we have Pr{B} < ε.
1The version presented here is normalized. There is an unnormalized version which does not have 1

2
factor.
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3.3 Main Proof

The following big auxiliary lemma is used in the proof of Theorem 2.7, which construct a
protocol π′ statistically closely related to f : X × Y → {0, 1}, and the task is then used to
calculate and bound the randomized communication complexity.

Essentially, the proof idea is to consider a statistically equivalently difficult problem with
public randomness, and a protocol that approximates the answer with some extra error. The
sampling here means Alice and Bob only “sample” a subset from the public random string (A
and B in the proof), but the sample sets are well engineered to make sure the goal is achieved.

Lemma 3.6. (Sampling) Let µ, pA, pB : X → [0, 1] distributions, I ≥ 0, error ε ∈ (0, 1/16), so
that D(µ ‖ pA) ≤ I,D(µ ‖ pB) ≤ I.

Let four other real functions sA, sB , uA, uB : X → [0, 1]. sA and uA are given to Alice, and
sB and uB are given to Bob. They satisfy

µ(x) = sA(x)sB(x)

pA(x) = sA(x)uA(x)

pB(x) = sB(x)uB(x)

There exists a sampling protocol π′ with public randomness achieves the following with
2O((I+1)/ε) bits of communication.

1. Alice and Bob output xA, xB ∈ X respectively.

2. there is an event E so that ¬E ⇒ xA = xB and Pr{E} < ε.

3. Let µ′ = Pr{xA ∈ X : ¬E}, then the total variation |µ− µ′| < ε
2 .

Proof. From the public randomness, Alice and Bob draw (xi, αi, βi) ∈ X × [0, 1]× [0, 1] uniformly.
Here the subscript i ∈ [1, T ] is the index of the instance drawn from the public randomness,
where T = 2|X | ln 1

ε . Note that i has upper bound T , so Alice and Bob stop consider any further
instances at that point. On the other hand, they try to find the first index satisfying

αi ≤ sA(xi), βi ≤ sB(xi)

To compute the chance for an x ∈ X which can satisfy this requirement,

Pr{α ≤ sA(x), β ≤ sB(x)} = Pr{α ≤ sA(x)} × Pr{β ≤ sB(x)} (1)
= sA(x)sB(x) (2)
= µ(x)

eq. (1) holds because (xi, αi, βi) is drawn uniformly and therefore α and β are independent. eq. (2)
holds is again because α and β are drawn uniformly, so the chance for α ≤ sA(x) is just sA(x). β
works in the same way.

Therefore, for any draw, indicated by the index i, the chance for it to succeed is

Pr{αi ≤ sA(xi), βi ≤ sB(xi)} =
∑
x∈X

Pr{x ∈ X}Pr{α ≤ sA(x), β ≤ sB(x)}

=
∑
x∈X

1

|X |
µ(x) =

1

|X |

Let τ be the first such index Alice and Bob encounter. Clearly, τ ≤ T . If we generalize τ ’s
range, we can conveniently represent the case where no such τ is found as τ > T . Namely, Alice
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and Bob fail.

Pr{τ > T} = (1− 1

|X |
)2|X | ln 1/ε

< e2 ln ε = ε2 <
ε

16

Next, we will need to discover event E in the conclusion and give its probabilistic bound. This
part is quite vague in [5], so we are trying to make it clearer here. We let A and B two sets of
indices

A = {i ≤ T : αi ≤ sA(xi), βi ≤ 28(I+1)/εuA(xi)}
B = {i ≤ T : βi ≤ sB(xi), αi ≤ 28(I+1)/εuB(xi)}

And there are two subsets of X :

FA = {x : 28(I+1)/εpA(x) < µ(x)}
FB = {x : 28(I+1)/εpB(x) < µ(x)}

Then if xτ /∈ FA, we have

28(I+1)/εpA(xτ ) ≥ µ(xτ )

28(I+1)/εsA(xτ )uA(xτ ) ≥ sA(xτ )sB(xτ )

28(I+1)/εuA(xτ ) ≥ sB(xτ )

Since τ satisfies the requirements, we have βτ ≤ sB(xτ ) ≤ 28(I+1)/εuA(xτ ). Together with
ατ ≤ sA(xτ ), we know τ ∈ A. Similarly, τ ∈ B. So xτ /∈ FA ∪ FB ⇒ τ ∈ A ∩ B.

Due to an argument similar to a previous one, from the uniformity of the distribution, we
know

Pr{i ∈ A} = Pr{αi ≤ sA(xi), βi ≤ 28(I+1)/εuA(xi)}
= Pr{αi ≤ sA(xi)} · Pr{βi ≤ 28(I+1)/εuA(xi)}

=
∑
i

1

|X |
sA(xi)2

8(I+1)/εuA(xi)

=
28(I+1)/ε

|X |

Notice that, i ∈ A obeys Bernoulli distribution. Therefore, we can see for each i ∈ [1, T ] as an
independent sampling, with Pr{i ∈ A} probability to get 1, or otherwise 0. We can obtain that

E(|A|) =
∑
i

Pr{i ∈ A} = TPr{i ∈ A} = 28(I+1)/ε · 2 ln
1

ε

Apply Theorem 3.3, with δ = 1,

Pr{|A| ≥ 2E(|A|)} ≤ e−E(|A|)/3

= e28(I+1)/ε·2 ln ε/3

< ε2
8/ε·2/3 (3)

< ε2 <
ε

16
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ineq. (3) holds because I ≥ 0, and we know that 28/ε > 3. In [5], it’s unclear which form of
Chernoff bound is used and the paper seems overshoot by a lot for some reason, so it’s worth to
make it explicit here.

On the other hand, 2E(|A|) = 28(I+1)/ε · 4 ln 1
ε < 29(I+1)/ε is clear by comparing 21/ε with

4 ln 1/ε. So Pr{|A| ≥ 29(I+1)/ε} < ε
16 holds. Similarly, Pr{|B| ≥ 29(I+1)/ε} < ε

16 holds.
Now consider FA and FB. Applying Lemma 3.5, we obtain µ(FA) < ε/8, µ(FB) < ε/8.

Therefore

Pr{xτ ∈ FA ∪ FB} < 2
ε

8
=
ε

4

Consider the following event, E ′ = {xτ ∈ FA ∪FB ∨ τ > T ∨ |A| > 29(I+1)/ε ∨ |B| > 29(I+1)/ε}.
Its probability

Pr{E ′} ≤ Pr{xτ ∈ FA ∪ FB}+ Pr{τ > T}+ Pr{|A| > 29(I+1)/ε}+ Pr{|B| > 29(I+1)/ε}

=
ε

4
+

3ε

16
<
ε

2

Looking at E ′, ¬E ′ requires τ ≤ T , so Alice and Bob should discover τ . Note that, the sizes of
A and B have been restricted to 2O(I+1)/ε, which gives an upper bound on the number of bits to
communicate. Note that to completely state E , we still need another small disjunction in addition
to E ′. We will only be able to state this disjunction after we describe the protocol. However, E ′
has covered most of the characteristics that we can use to analyze E .

Since ¬E ′ only restricts sampling space in X/FA∪FB . We then know how to adjust probability
and compute the total variation between µ and µ′

|µ− µ′| = 1

2

∑
x∈X
|µ(x)− µ′(x)|

=
1

2

∑
x∈FA∪FB

|µ(x)− 0|+ 1

2

∑
x/∈FA∪FB

|µ(x)− µ′(x)|

<
ε

8
+

1

2

∑
x/∈FA∪FB

|µ(x)− µ(x)

1− ε/4
|

<
ε

8
+

ε

8− 2ε
<
ε

2

So condition 3 is satisfied.
The actual protocol is given in [5], as follows.

1. Alice and Bob computes A and B respectively, and abort if their sizes go beyond 29(I+1)/ε.

2. Alice computes d = d18 I+1
ε + log 1/ε+ 2e hash bits for each xi, i ∈ A, and send them all to

Bob.

3. Bob computes the hashes as well and find the first index τ , and send it to Alice. Bob output
xB .

4. Alice outputs xA according to τ .

Given I and ε, d is linearly bounded. The communication complexity from Alice is bound by
|A| · d = O(|A|). Bob’s communication is ignorable. The chance for hash clashes for two different
value is

2−d < 2−(18(I+1)/ε+log 1/ε+2) ≤ ε

4|A||B|
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So the overall hash clashes chances are

|A||B|2−d < ε

4

Recall that E ′ misses a disjunction to define E . Now, what we need to do is to simply make no
hash clashes as this disjunction, so ¬E can guarantee hash code equality implies element equality.
We add all the probability up

Pr{E} < ε

2
+
ε

4
< ε

So the probability for this protocol to fail is bounded. Together with the inequality above,
condition 1 and 2 are satisfied.

The proof technique used here is to use public randomness to compress the original protocol
to a protocol that has communication bound. This technique is best explained in [2]. Having
defined the sampling lemma Lemma 3.6, we can now proceed to the proof of Theorem 2.7.

Proof of Theorem 2.7. Recall that ICµ(f, ε) = infπ:P{π(x,y) 6=f(x,y)}≤ε ICµ(π), so for some fixed
constant, δ > 0, we now there must exist a protocol π, so that Iµ = ICµ(π) = ICµ(f, ε) + δ. We
have

Iµ = ICµ(f, ε) + δ

= ICµ(π)

= E(x,y)∼µ(D(π(x, y) ‖ π(X, y)) +D(π(x, y) ‖ Π(x, Y ))) (Corollary 3.4.1)

By Lemma 3.1 and Theorem 3.2, we have

Pr{D(π(x, y) ‖ π(X, y)) +D(π(x, y) ‖ Π(x, Y )) ≤ 2Iµ
ρ
}

≥ 1− E(D(π(x, y) ‖ π(X, y)) +D(π(x, y) ‖ Π(x, Y )))

2Iµ/ρ
(Theorem 3.2)

= 1− Iµ
2Iµ/ρ

= 1− ρ

2

Note that divergence is nonnegative, so both D(π(x, y) ‖ π(x, Y )) ≤ 2Iµ
ρ and D(π(x, y) ‖

π(x, Y )) ≤ 2Iµ
ρ with confidence of 1− ρ/2.

Now consider π as a protocol tree. Due to randomness on inputs, each node in π as a tree
must have some Bernoulli distribution on which bit to send next. An example tree is shown in
Figure 3.1. Notice that, in a protocol tree, at each node, its probability to go left or right is
automatically conditioned on all the bits sent before it, and therefore chain rule for probabilities
applies.

For example, consider a node, v, it’s probability to be reached is the product of all the
probabilities along the path from the root to it, namely,

µ(v) =
∏

t∈{path from root to v}

p{0,1}(t)

where p{0,1}(u) means p0(u) or p1(u) depending on the actual bit being sent. Again, this is the
consequence of the chain rule.

12
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Following this line, we can define following functions, acting on each leaf v in the protocol tree

sA(v) =
∏

t∈{path from root to v}∧t is Alice’s nodes

p{0,1}(t)

sB(v) =
∏

t∈{path from root to v}∧t is Bob’s nodes

p{0,1}(t)

uA(v)|x =
∏

t∈{path from root to v}∧t is Bob’s nodes

p{0,1}(t)|x

uB(v)|y =
∏

t∈{path from root to v}∧t is Alice’s nodes

p{0,1}(t)|y

where uA(v)|x measures the product of all probabilities of Bob’s nodes, given Alice holds x. The
same holds for uB(v)|y.

Since the nodes in the tree are either Alice’s or Bob’s. We can easily see µ(v) = sA(v)sB(v).
On the other hand, given any x held by Alice, the only thing varies is y held by Bob. In that case,
in each Bob’s node, the probability of sending 1 is just the expectation for him to send 1 over all
possible y’s, and this is what Alice can see. Therefore, given any x, pA(v)|x = sA(v)uA(v), where
pA(v)|x is the probability to each v given x in Alice. Similarly, we have pB(v)|y = sB(v)ub(v).

Seeing µ, pA, pB , and their relation with sA, sB , uA and uB , and considering Lemma 3.6, we
can let I =

2Iµ
ρ , and error ρ. From Lemma 3.6, we obtain another protocol π′, which is ρ/2 away

from π in total variation from condition 3, and it’s communication complexity is

2O((1+2Iµ/ρ)/ρ) = 2O(1/ρ+Iµ/ρ
2)

= 2O(1/ρ+(ICµ(f,ε)+δ)/ρ2)

We can ignore δ because it can be arbitrarily small.
Recall that all this is under the assumption of D(π(x, y) ‖ π(x, Y )) ≤ 2Iµ/ρ and D(π(x, y) ‖

π(X, y)) ≤ 2Iµ/ρ. The confidence for this is 1− ρ/2. Let such x, y be good. π′ only works with
good x, y. To show π′’s error bound, we have

Pr{π′(x, y) 6= f(x, y)} ≤Pr{(x, y) not good}+ Pr{π′(x, y) 6= π(x, y)|(x, y) good}
+ Pr{π(x, y) 6= f(x, y)}

<ρ/2 + ρ/2 + ε = ρ+ ε

Therefore Dµ
ρ+ε(f) = 2O(1/ρ+ICµ(f,ε)/ρ2) holds.

Next, we just need to apply Theorem 2.1, we can obtain the same bound for randomized
information complexity, by setting µ to be the optimal choice.

Rε(f) = Dµ
ε (f) = 2O(1/ρ+ICµ(f,ε)/ρ2) ≤ 2O(1/ρ+IC(f,ε)/ρ2)

4 Preliminaries: the Quantum Case

In this section, we briefly overview the related concepts but in the quantum settings.

4.1 Conventions

As in classical case, we also need some additional quantum related notations, which are shown
in Table 4.1.
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p1

p1

p1

· · ·

Figure 3.1: An example protocol tree. A represents Alice and B represents Bob. Going to left
child means sending 0, and right means sending 1. Each node (except leaf) has certain probability
to send 0 or 1. These probabilities do not have to be the same.

Symbols Meaning
X ,Y,Z complex Euclidean spaces
v, u vectors
A,B linear operators
ρ, σ quantum states / density operators
P,Q positive semidefinite matrices
A∗ adjoint of A
Φ,Ψ quantum channels

Table 4.1: Convention table

4.2 Quantum Information Theory

Quantum information theory is a generalized information theory in the quantum settings. A
more complete discussion can be found in [18]. Note that all quantum related notions in this
report respect the convention in [18], which does not agree with some other references.

Definition 4.1. We use the following notions represent sets of linear operators / matrices.

L(X , Y ) = {linear operators from X to Y}
L(X ) = L(X ,X )

Herm(X ) = {H ∈ L(X ) : H = H∗} Hermitian matrcies
Pos(X ) = {A∗A : A ∈ L(X )} positive semidefinite matrices
Pd(X ) = {P ∈ Pos(X ) : det(P ) 6= 0} positive definite matrices
D(X ) = {ρ ∈ Pos(X ) : Tr(ρ) = 1} density matrices

where Tr is the trace operator.

Definition 4.2. The von Neumann entropy, or entropy, of P ∈ Pos(X ) is

H(P ) = H(λ(P ))

where λ(P ) is the vector of eigenvalues of P , and the second H denotes Shannon entropy.
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Similarly, we can define quantum conditional entropy and quantum mutual information in the
same way as the classical case.

Definition 4.3. Quantum divergence / quantum relative entropy of P w.r.t. Q, where P,Q ∈
Pos(X ) is

D(P ‖ Q) =

{
Tr(P logP )− Tr(P logQ), if im(P ) ⊆ im(Q)

∞, otherwise

where im(P ) defines the imagine of P as an operator. Logarithm of P is defined by taking
logarithm on eigenvalues in P ’s spectral decomposition.

logP =
∑
i

log(λi)Πi

where P =
∑
i

λiΠi,Πi are projection matrices.

Next, we define quantum channels.

Definition 4.4. A quantum channel is a linear map,

Φ : L(X )→ L(Y)

so that it

1. preserves trace.

2. is completely positive. Namely, it preserves positive semi-definiteness of the inputs when
tensored with identity map in any space.

The set of channels is denoted by C(X ,Y), or C(X ) when X = Y.
Complete positivity of a channel says if a channel tensors with an identity channel, then

the resulting linear map is still a channel. Therefore, if the space is known, it’s unambiguous
to implicitly augment channels with identity channel. Namely, for Φ : C(X ,Y), we write
Φ : C(X ⊗ Z,X ⊗ Z) instead of Φ⊗ IZ .

We might want to compose channels.

ΨΦ(X) = Ψ(Φ(X))

Namely, we write the channels right to left in the order they are applied. We sometimes might
need to take partial trace of a matrix A ∈ X ⊗ Y, we might use any of these notations

TrX (A) = A[Y ] = AY

Partial and full traces are examples of channels.

Definition 4.5. The Kraus representation of a channel Φ ∈ C(X ,Y) is

Φ(X) =
∑
a

AaXA
∗
a,

s.t.
∑
a

A∗aAa = 1X

We can define the adjoint of a channel via Kraus representation.
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Definition 4.6. The adjoint of a channel Φ ∈ C(X ,Y), Φ∗ ∈ C(Y,X ), is

Φ∗(Y ) =
∑
a

A∗aY Aa

Definition 4.7. A unitary channel, or just unitary, U ∈ C(X ), is a channel, such that

U∗U(X) = X, for all X ∈ L(X )

The set of all unitary channel is denoted by U(X ). In Kraus representation, a unitary channel
can be represented using a unitary matrix.

U(X) = UaXU
∗
a ,where U ∈ U(X ), Ua unitary matrix

We then define norms on operators.

Definition 4.8. The norms of A are defined as follows.

‖A‖ = ‖A‖1 = Tr(
√
AA∗) (trace norm)

‖A‖2 =
√
〈A,A〉 (2-norm, Frobenius norm)

‖A‖∞ = max{s(A)} (spectral norm)

where s(A) is the set of singular values of A.

A quantum state is a special kind of operator.

Definition 4.9. A quantum state ρ is a density operator.

ρ ∈ D(X )

Following definitions and theorem involve pure states and purification of states.

Definition 4.10. A state ρ ∈ D(X ) is pure, when there exists v ∈ X satisfying

ρ = vv∗

Definition 4.11. For a state ρ ∈ D(X ), a vector v ∈ X ⊗ Y purifies ρ, when

ρ = TrY(vv∗)

Theorem 4.1. For any ρ ∈ D(X ), there exists v ∈ X ⊗ Y purifies ρ, iff dim(Y) ≥ dim(X ).

4.3 Quantum Communication Complexity

A quantum communication model is presented in Figure 4.1. For each state, their scripted
fonts represents their space. For example, B2 lives in B2. The model has following components.

1. ρ ∈ D(AI ⊗ BI), the input state.

2. Ui, each is a unitary channel with appropriate input and output spaces.

3. ψ, a shared pure state.

4. Ui communicates with Ui+1 using register Ci.

5. AI and BI are input registers, and they together represent ρ. Alice uses Ai registers to pass
the state from previous channel to the next. Similarly, Bob uses Bi for the same purpose.
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Figure 4.1: Illustration of quantum communication model [17]

6. Together, AO and BO represent the output of the overall protocol.

7. R serves as a reference space.

Therefore, the overall communication protocol can be represent as follows.

Π(ρ) = TrAnBn−1
Un+1Un · · ·U1(ρ⊗ ψ)

Note that we put implicit identity channels wherever appropriate to make the dimension
correct.
R is a space introduced so that ρAIBIR is a purification of ρ.

Definition 4.12. For an intended channel Φ ∈ C(AI ⊗ BI ,AO ⊗ BO), Π implements Φ on
ρ ∈ D(AI ⊗ BI), if the error ε ∈ [0, 2] has

‖Π⊗ IR(ρAIBIR)− Φ⊗ IR(ρAIBIR)‖ ≤ ε

where ρAIBIR denotes a purification of ρ for suitable R.

We denote the set of all Π with error bounded by ε as T (Φ, ρ, ε).

Definition 4.13. For a protocol Π, the quantum communication cost is

QCC(Π) =
∑
i

log dim(Ci)

Definition 4.14. For a channel Φ ∈ C(AI ⊗BI ,AO ⊗BO) and input state ρ ∈ D(AI ⊗BI), and
error ε ∈ [0, 2], the quantum communication complexity is

QCC(Φ, ρ, ε) = min
Π∈T (Φ,ρ,ε)

QCC(Π)

Similarly, we can define protocols of n-fold channels and the definitions of corresponding
quantum communication cost and communication complexity.
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Definition 4.15. A protocol Πn implements n-fold product channel Φ⊗n ∈ C((AI⊗BI)⊗n, (AO⊗
BO)⊗n) on input ρ⊗n ∈ D((AI ⊗ BI)⊗n) with error ε, if for all i ∈ [n],

‖Πn(ρ⊗nAIBIR)AiOBiORi − Φ⊗ IR(ρAIBIR)‖ ≤ ε

where the superscript of i denotes the i-th copy of the space.

Namely, the definition requires each computation performed by Πn has bounded error.

Definition 4.16. The n-fold quantum communication complexity is

QCC(Φ⊗n, ρ⊗n, ε) = min
Πn∈Tn(Φ⊗n,ρ⊗n,ε)

QCC(Πn)

Definition 4.17. The amortized quantum communication complexity is

AQCC(Φ, ρ, ε) = lim sup
n→∞

1

n
QCCn(Φ⊗n, ρ⊗n, ε)

4.4 Quantum Information Complexity

In [17], Touchette motivates a definition which generalizes the classical definition of information
complexity to the quantum case. Following the communication diagram in Figure 4.1, we can
give the definition of quantum information cost.

Definition 4.18. The quantum information cost of a protocol Π on an input ρ is

QIC(Π, ρ) =
∑
i odd

1

2
I(Ci;R|Bi−1) +

∑
i even

1

2
I(Ci;R|Ai−1)

where B0 = BI ⊗ TB.

Intuitively, the quantum information cost is an accumulation of quantum information relative
to the reference space exchanged between Alice and Bob, conditioned on the register they are
holding. Following this intuition, indeed this definition gives a sense of generalization of the
classical case.

The definition of quantum information complexity follows quite similarly.

Definition 4.19. The quantum information complexity of Φ on ρ with error ε ∈ [0, 2] is

QIC(Φ, ρ, ε) = inf
Π∈T (Φ,ρ,ε)

QIC(Π, ρ)

Similar to Theorem 2.6, there is also a theorem which operationalizes this definition of quantum
information complexity.

Theorem 4.2.

QIC(Φ, ρ, ε) = AQCC(Φ, ρ, ε)

This says that the amortized cost of communication of the best protocol is essentially as much
as the least information exchange. This operationalization theorem indicates that this definition
of quantum information complexity is the correct definition in the quantum settings.

In Section 2.4, the definitions of information complexity are based on worst-case distribution
over inputs. In quantum settings, since quantum state itself has encoded randomness, we can
just pick the worst input for the same purpose.
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Definition 4.20. The max-distributional quantum information complexity is

QICD(Φ, ε) = max
ρ∈D(X⊗Y)

QIC(Φ, ρ, ε) = max
ρ∈D(X⊗Y)

inf
Π∈T (Φ,ρ,ε)

QIC(Π, ρ)

Definition 4.21. The quantum information complexity is

QIC(Φ, ε) = inf
Π∈T (Φ,ε)

max
ρ∈D(X⊗Y)

QIC(Π, ρ)

where T (Φ, ε) denotes the set of all protocols implementing Φ with the worst case error ε.

It would be very desirable if the prior-free definition of quantum information complexity,
QIC(Φ, ε), also has operationalization property as Theorem 4.2. However, such property is not
proved in [6], nor a proof is discovered during our literature review.

From the definition, we can already see some similarity between the quantum and the classical
case. [17, 6] more thoroughly explores many properties of this definition quantum information
complexity. Following theorem resembles the classical version.

Theorem 4.3. [6, Theorem 4.13]

QIC(f,
ε

α
) ≤ QICD(f, ε)

1− α

[6] proves an analogue of Theorem 2.7 in quantum settings, which is stated in the following
theorem.

Theorem 4.4. [6, Theorem D, Corollary 5.8] Let f be a boolean function,

QCC(f, 1/3) ≤ 2O(QIC(f,1/3)+1)

In this statement, the notion overloads QCC and QIC to take a function, where in the formal
definitions, these notions take a channel. A classical function can be made into a quantum channel,
by considering each input and output. More formally, for f ∈ A×B → X × Y , a ∈ A, b ∈ B, if
f(a, b) = (x, y), then

Φ(|a〉〈a| ⊗ |b〉〈b|) = |x〉〈x| ⊗ |y〉〈y|

5 Proof Sketch of Theorem 4.4

In this section, we attempt to establish a high level proof sketch of Theorem 4.4. The actual
proof of Theorem 4.4 is rather complex, and a thorough proof as in Section 3 would be very long.
Therefore, it’s much better off to provide a clear proof outline instead of getting into the details.

From very high level, the proof utilizes the fact that, generalized discrepancy method, GDM ,
is a lower bound of quantum information complexity. Therefore, the relation is relatively straight-
forwardly established by using the relation between discrepancy and randomized communication
complexity. This method is not the same as the proof in Section 3, where the original protocol is
compressed to another protocol by sampling public randomness. More verbosely, the proof can
be roughly divided into the following steps.

1. Show that there is always a protocol which computes a function f by n-fold, such that the
probability for computing at least some ratio of correct results is bounded from below.

2. Use result from [15] to establish the relation between generalized discrepancy methods and
quantum information complexity.

3. Finalize the proof by chaining a series of inequalities in communication complexity.
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In particular, the observation is generalized discrepancy method, GDM , has already been a
strong lower bound, and the work pending to be done, is to actually demonstrate a protocol that
witness the relation between GDM and QICD (which is done in Item 1). The concrete definition
of GDM is defined as follows.

Definition 5.1. For boolean function f : X × Y → {0, 1} and error ε,

GDMε(f) = max
µ a distribution over X × Y

{GDMµ
ε (f)}

GDMµ
ε (f) = max

g:X×Y→{0,1},Prx,y∼µ{f(x,y)6=g(x,y)≤ε}
{log

1

discµ(g)
}

discµ(g) = max
R
|
∑

(x,y)∈R

(−1)g(x,y)µ(x, y)|

where R is a rectangle in X × Y.

Definition 5.2. A rectangle R in X × Y satisfies

1. R ⊆ X × Y

2. For some A ⊆ X ,B ⊆ Y, R = A× B.

It happens that discrepancy is a lower bound of classical communication complexity.

Theorem 5.1. For boolean function f : X × Y → {0, 1}, error ε and distribution µ : X × Y →
{0, 1},

Dµ
1/2−ε(f) ≥ log

2ε

discµ(f)

To state the significance of GDM , we fist need the following definition.

Definition 5.3. For positive integer n, percentage η and error ε, n-fold quantum communication
complexity QCC(fn, ηn, ε) ≤ C, if there exists a protocol Π which computes fn, such that

1. QCC(Π) ≤ C

2. Pr{Π computes at least ηn coordinates correctly} ≥ 1− ε

Note that this definition requires Π successfully computes ηn coordinates with certain proba-
bility (but not necessarily high) for all inputs. Then, the following theorem is shown in [15].

Theorem 5.2. [15, Theorem 1] There exists an absolute constant εsh > 0, such that for f :
X × Y → {0, 1},

Ω(nGDM1/5(f)) ≤ QCC(fn, (1− εsh)n, 1− 2−εshn)

with arbitrary entanglement.

Notice that the meaning of QCC(fn, (1 − εsh)n, 1 − 2−εshn) is subtle. First, since εsh is a
small absolute constant, the theorem essentially requires most of the coordinates to success, and
only in this situation, the quantum has a lower bound. This quantity is more specific than, say,
an probably natural definition of a prior-free accumulated quantum communication complexity,
similar to Definition 4.17. Second, the error 1− 2−εshn grows exponentially as n grows, so the
chances for success is exponentially decreasing. This implies the success case is unlikely to happen,
and therefore amortization of this definition is unlikely approximating QIC(f, ε). This definition
essentially prevents a proof plan similar to Theorem 2.7, as we will expand further. Despite that,
we can show the following relation.
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Theorem 5.3.

QCC(fn, (1− εsh)n, 1− 2−εshn) ≤ O(n(QIC(f, ε) + 2)) + o(n)

Following two previous theorems and by transitivity, we will have the following theorem.

Theorem 5.4. 2[6, Theorem 5.7]

Ω(GDM1/5(f)) ≤ QIC(f, ε) +O(1)

Essentially, the proof of Theorem 4.4 is connected by the previous inequalities.

Proof of Theorem 4.4.

QCC(f, 1/3) ≤ R(f, 1/3)

≤
( 1

disc(f)

)O(1)

( 1
disc(f) approximates number of rectangles)

≤ 2O(GDM1/5(f)) (by definition of GDM)

≤ 2O(QIC(f,ε)+O(1)) (by Theorem 5.4)

In the second inequality, we omit the probability distribution µ. We can take the worst case µ
for this purpose, and the third inequality will still hold, because GDM is maximized over all µ’s.

To finalize the proof, we just need to relax the error.

6 Comparing Proofs of Theorem 2.7 and Theorem 4.4

Recall that, in the classical and quantum case, communication complexity is bounded by
information complexity exponentially.

R(f) = 2O(IC(f))

QCC(f) = 2O(QIC(f))

Despite the similarity of their statements, their proof techniques are not quite similar. In
particular, in the classical case, the main part of the proof is to show that any protocol can be
approximated by a lossy compression, so that the communication complexity is upper bounded.
However, in the quantum case, the proof essentially relies on the characteristics of general
discrepancy method. The proof of the quantum case is less satisfactory, in the sense that, it’s
unclear which protocol can be taken to actually witness the upper bound of communication
complexity. This dissatisfaction can be found in [5, Problem 4] and [1].

Reading [5, 2], one can realize that the correctness of the compression protocol relies on that
in the classical settings, both Alice and Bob have persistent memory, namely they don’t lose
knowledge. In particular, in the compression protocol in [2, Section 7], a player can rely on
an operation ([2, Lemma 4.14]) to correct his / her estimation of the overall communication
protocol. This operation implicitly requires the players remembers the overall estimation to begin
with. However, in the quantum case, if a player processes a quantum state using a channel and
obtains another one, the player behaves as if the previous quantum state never existed. From this
perspective, one can see that in the method of protocol compression, the classical communication

2We formulate this theorem slightly differently here. In [6], this theorem concludes with QICD, which seems
strange, because QICD is a weaker bound than QIC, and we don’t have theorem to go from QICD to QIC.
However, the proof steps seem just ok with stating the conclusion with QIC directly.
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model and quantum model seem to exhibit some fundamental differences, which forbids a direct
transcribe from classical settings to quantum settings.

Moreover, quantum lower bound by generalized discrepancy method (Theorem 5.2) holds with
arbitrary entanglement. This is another difference between two communication models which
makes a direct transcription much less obvious.

7 Conclusion

In this report, we’ve briefly summarized basic definitions of information theory, communication
complexity and information complexity in both classical and quantum settings. We discussed
the theorems stating that communication complexity is bounded by information complexity
exponentially in both settings. The proof for classical case is expanded with greater details and
the one for quantum case is outlined. At last, we explained why indirect proof in quantum case
is unsatisfactory and a number of differences between models in discussion which might have
brought difficulties in a direct proof via compression argument.
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