
Toward A Provably Correct GoLite Compiler

JASON Z.S. HU,McGill University, Canada

In this report, we discuss our effort on implementing a compiler for the GoLite language, a subset of the Go language. We

introduce our analysis and our approach to the problem, such that the compiler is cleanly implemented. We point out a

number of properties to have in order to argue the correctness of the type checker and the code generator.

Additional Key Words and Phrases: compilers, GoLang, GoLite, OCaml, parsing, type systems, type checking, LLVM

ACM Reference Format:
Jason Z.S. Hu. 2020. Toward A Provably Correct GoLite Compiler. 1, 1 (May 2020), 21 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 INTRODUCTION
Compilers are often understood as “magic boxes”. Programmers feed a program in the box and the box will spit

out an executable which somehow does what the programmers expect. This happens so often that programmers

usually forget about the fact that compilers are nothing but a normal piece of software. The software is written

by other programmers and they might introduce bugs.

Though the history of compilers is as long as the one of computer science and the software engineering

community has been fighting bugs for about the same time, a sound compiler is only a recent achievement.

CompCert [Leroy 2006], for example, is an optimizing (almost) C99 compiler formally verified in Coq [The Coq

Development Team 2020]. Thus, it is possible to develop a correct compiler, and we can do better than just “being

careful”.

There are many categories of bugs in a compiler. Before writing a compiler, we ought to determine what the

language consists of. The final decision forms a specification of a language. We often refer to a bug as certain

behaviors of the compiler which disagree with the specification. There is another kind of bugs introduced by the

mismatch between the specification and programmers’ expectations. In this case, the specification needs to be

improved but as an implementation, the compiler is not wrongly implemented. Another possibility is that the

language does “less” than what the programmers think. This happens when programmers hit the limitation of

the language which might not be easily resolvable.

In this report, we discuss our effort and mindset to implement GoLite in a provably correct way. By correctness,

we only consider the first kind of bugs, namely those breaking the specification. We sometimes hit the second

kind of bugs, which still need to be caught by a large number of tests. That said, handling the first kind of bugs

has already given us advantages. We do not run proof assistants to prove the correctness formally. Instead, we

employ the purely functional programming style and some methods to organize our code so that we can maintain

certain logical invariant and claim that the implementation is “obviously” correct. In this report, we discuss our

experience and how this is done in OCaml.

Figure 1 shows the organization of the compiler and the involved tools in each phase.

Author’s address: Jason Z.S. Hu, zhong.s.hu@mail.mcgill.ca, School of Computer Science, McGill University, 3480 University St., Montréal,

Quebec, H3A 0E9, Canada.

2020. XXXX-XXXX/2020/5-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Jason Z.S. Hu

Lexer (OCamllex)

GoLite code

Parser (Menhir)

CST

Type checker (OCaml)

AST

Code generation (OCaml)

Typed AST

Optimization (opt)

LLVM IRAssembler and linker

(llc and clang)

LLVM IRexecutable

Fig. 1. Organization diagram

2 PARSING AND ABSTRACT SYNTAX
In the first two phases, we need to convert the input GoLite source code into an abstract syntax tree (AST)

representing the essential portion of the program. We use the standard tool chain of OCaml: OCamllex and

Menhir [Minsky et al. 2013, Chapter 16]. In this section, we discuss how the lexer and the parser are concretely

organized.

2.1 Lexing and Parsing
OCamllex (the lexer) and Menhir (the parser) are tightly integrated. Unlike other tool chain, e.g. Flex and

Bison [Levine 2009], the development process of OCamllex and Menhir is interleaving. We first need to determine

the tokens in the parser file (parser.mly) and only after that we can start to write the lexer file (lexer.mll).
Once the tokens are defined, the lexer returns a stream of tokens which is subsequently received by the parser

and converted into an abstract syntax tree (AST).

OCamllex provides many very convenient functionalities. A profound one is to allow us to keep track of

the locations of the characters. We later make use of the location information to generate very readable error

messages. For example, in the type checker phase, we generate the following message:

Error: line 5 char 20-23: the expression foo has type [5]int, but the following type(s)

is(are) expected: [5]float64↪→

Internally, we use the following OCaml record to annotate data with such information:

type 'a meta = {
start_l : int; start_c : int; end_l : int; end_c : int; data : 'a

}

It is a polymorphic data type decorating a piece of data data with four additional integers. They record a

consecutive region and correspond to the start line number of the region, the character position of the start

line of the region, the last line number of the region, and the character position of the last line of the region,

respectively. We also implement a number of combinators which make combining location information easy.

Another convenient functionality is that OCamllex allows lexing rules to be mutually dependent. This is very

helpful when parsing the escape sequences in an interpreted string literal. The following is a piece of related

OCamllex code fragment:

1 | '"' { let ... in ...;
2 let s = read_interpreted_string buf lexbuf in
3 ... }
4 and read_interpreted_string buf =
5 parse
6 | '"' { (* return the accumulated buffer *) }
7 | '\\' 'n' { (* read a newline into the buffer *) }

, Vol. 1, No. 1, Article . Publication date: May 2020.

Toward A Provably Correct GoLite Compiler • 3

8 | ... (* other escape sequences *)
9 | ('\\' _) as s { raise (UninterpretableEscape (coordinates lexbuf s)) }
10 | [^ '\\' '"' '\r' '\n'] as c { (* read literal characters and ensure they are ASCII *) }
11 | ... (* more cases follow *)

Line 1 to line 3 is the main lexer code. It says when we encounter a double quote, we execute the code on the right

and invoke read_intepreted_stringwhich is define from line 4 to line 11. The interpreted string is constructed

using a string buffer buf. In read_intepreted_string, when we encounter another double quote, we return the

accumulated string in the buffer so far. When we encounter an escape sequence, e.g. "\n " on line 7, we insert a

new line character into the buffer. On line 9, we throw an exception if an escape sequence is illegal. Otherwise,

we just insert that character into the buffer as shown on line 10.

OCamllex also allows us to add additional parameters to the main lexer function. We use this feature to tackle

the optional semicolon specified by the Go language. In the Go language, there are several occasions where a

token of semicolon is automatically inserted when a new line is seen. We achieve this by passing the previous

token, if any, as an additional parameter to the lexer so that it can generate different tokens when a new line is

encountered.

The parser is also quite easy. It is similar to any typical parser. For each grammar production rule, there is an

associated parser action which is executed once the production rule is matched. We proceed by transcribing the

Go specification. Menhir detects ambiguities in the grammar and a human readable explanation can be accessed

via the --explain flag. We resolve the ambiguities in the specification by either adding logic to the parser actions

or altering the grammar rules.

2.2 Untyped ASTs
In our parser action, we need to generate an AST for the input program. We call this AST untyped in order to

distinguish it from a different and typed AST generated by the type checker.

In a functional programming language like OCaml, it is a very common practice to represent ASTs using

algebraic data types (ADTs) [Liskov and Zilles 1974] and we adopt this convention. ADTs make reasoning of the

semantics of the data very clear and recursions of them are easy to reason about. This advantage subsequently

contributes to the correctness arguments later in this report.

The actual design of the ASTs is quite standard. We simply strip off the unnecessary portion of the concrete

syntax and the resulting ADTs are very close to the Go specification. Since we program in the purely functional

style, we pay very close attention to our ADTs to ensure that their recursive functions are total. Maintaining

totality of functions makes keeping track of logical invariants much easier. For untyped ASTs, we design the

following ADTs:

type typ (* represents types *)
type expr (* represents expressions *)
type simp_stmt (* represents simple statements *)
type decl (* represents declarations (variables and types) *)
type stmt (* represents statements *)
type stmts (* represents sequences of statements *)
type top_decl (* represents top level declarations *)
type program (* represents whole programs *)

The concrete cases are omitted. Each type above remembers its own location meta. Notice that we separate
simp_stmt from stmt in the interest of totality of functions explained above. Likewise, decl and top_decl have

the same design.

, Vol. 1, No. 1, Article . Publication date: May 2020.

4 • Jason Z.S. Hu

x ,y, z Names
τ Types
Γ ::= Contexts
· Empty Context

Γ,x ∼ τ Context Concatenation

x ∼ τ ::= Bindings
x : τ Variable Bindings

x ÷ τ Constant Bindings

x :: τ Type Bindings

Type Resolution

A type reference is represented by a tuple (x ,τ).

RT (τ) ≜

{
τ ′ if τ is a type reference (x ,τ ′)

τ τ is not a type reference

Binding Lookup

Γ = Γ1,x ∼ τ , Γ2 x < dom(Γ2)

x ∼ τ ∈ Γ

(Partial) Typing Rules

x : τ ∈ Γ

Γ ⊢ x : τ

x ÷ τ ∈ Γ

Γ ⊢ x : τ

Γ ⊢ e : τ RT (Γ,τ) ∈ {int, float64, rune}

Γ ⊢ −e : τ

Γ ⊢ type x τ ⇒ Γ,x :: τ

Γ ⊢ e : τ x < dom(Γ)

Γ ⊢ x := e ⇒ Γ,x : τ

Γ ⊢ init ⇒ Γ′ Γ′ ⊢ e : τ
RT (τ) = bool Γ′ ⊢ stmt∗ ⇒ Γ′′

Γ ⊢ if init; e {stmt∗} ⇒ Γ

Fig. 2. Adjusted Syntax and Definitions

2.3 Weeding Processes
In Go and GoLite, there are certain grammatical requirements which are relatively complex to implement as

context free grammar (CFG) rules. For example, continue cannot live outside of a loop body, and there is at most

one default case in a switch statement. Thus we need more sanity checks other than the CFG itself. Luckily, we

are already able to do many checks in the parser action itself, e.g. the check for default in a switch statement. The

check for continue and break, on the other hand, is done after the parsing because they require understanding

of the surrounding syntactical context.

When a weeding process fails, it throws a dedicated exception:

raise (AtMostOneDefault m)

which is caught in the main function to generate a proper error message (with location information, of course).

3 STATIC SEMANTICS
After the parsing phase, we have obtained an AST. In this section, we discuss the formal specification of the

GoLite language and design its static semantics. We begin by considering the formal judgments relating the

untyped expressions and statements to type information. This process helps us to understand what the functions

we should implement and what are their inputs and outputs.

3.1 Formal Judgments
We proceed by defining a fragment of the formal syntax and judgments of GoLite in Figure 2. The fragment

defines various concepts we need to use in the implementation and establish the correctness invariant of the

compiler. During type checking, we need to maintain a typing context to understand the semantics of names.

, Vol. 1, No. 1, Article . Publication date: May 2020.

Toward A Provably Correct GoLite Compiler • 5

A context is either empty or a given context concatenating another binding. In GoLite, we have three forms of

bindings: variable bindings, constant bindings and type bindings. A variable binding binds a variable to a type.

A constant binding is similar to a variable binding except that the binder cannot be mutated. We use constant

bindings for constants like true and false. A type binding binds a name to a type and the binder behaves as a

distinct type. Three kinds of bindings are syntactically distinguished as shown on the top right in Figure 2.

Since we have type bindings in our language, we sometimes need to find out the underlying types. This is

done by the type resolution operation. Since a type binding is constructed when it is declared, the result of a type

resolution should be independent of the context. Therefore, the type resolution function RT takes only a type as

the parameter. This motivates the design in which a type reference should carry its resolved type. In our syntax,

we represent a type reference as a tuple (x ,τ), where τ is the resolved type.

In the formal language, we design two kinds of judgments:

Γ ⊢ e : τ the expression e has type τ in context Γ

Γ ⊢ s ⇒ Γ′ the statement s is well-formed in context Γ returning an updated context Γ′

The judgments for expression are quite standard. The judgments for statements are more interesting. One might

expect the judgments for statements to be

Γ ⊢ s

In our judgments, Γ′ denotes the updated context. For example, in the type definition and variable definition rules

in Figure 2, the updated contexts are the original contexts concatenated with a type binding and a variable binding,

respectively. Consequently, when we type check an if statement, we have access to the updated context when

type checking the expression e and the body stmt∗, as indicated by the premises Γ′ ⊢ e : τ and Γ′ ⊢ stmt∗ ⇒ Γ′′.
Without providing Γ′ in the judgment, e must be type checked in the original Γ. This is clearly incorrect when

init is a short declaration:

Γ ⊢ init Γ ⊢ e : τ RT (τ) = bool Γ ⊢ stmt∗

Γ ⊢ if init; e {stmt∗}
If-Wrong

3.2 Typed ASTs
3.2.1 Structure of Typed ASTs. After analyzing the formal syntax and judgments of GoLite, we move on to design

the ASTs representing typed programs. We have the following types in our typed ASTs:

type typ (* represents types *)
type expr (* represents (right) expressions *)
type ltyp (* represents types for left expressions *)
type aexpr (* represents addressable expressions (to be explained in more detail) *)
type lexpr (* represents left expressions *)
type simp_stmt (* represents simple statements *)
type 'a decl (* represents declarations (variables and types) *)
type stmt (* represents statements *)
type stmts (* represents sequences of statements *)
type top_decl (* represents top level declarations *)
type program (* represents whole programs *)

We reuse the names but these types are distinct from the untyped ASTs shown in Section 2.2. Compared to

our untyped ASTs, the typed ASTs, on one hand, exhibit a large similarity: we also have typ, expr, stmt, etc.
to represent the corresponding concepts. On the other hand, we introduce some extra types in the typed case:

ltyp, aexpr and others. The typed counterpart of decl becomes polymorphic, as indicated by 'a.

, Vol. 1, No. 1, Article . Publication date: May 2020.

6 • Jason Z.S. Hu

Conceptually, the typed ASTs are a semantic version of the untyped ASTs. The typed ones only represent

those well-formed programs while the untyped ones represent all syntactically valid programs (regardless of

being malformed or not). Indeed, in addition to location information, the typed ASTs are aware of their type

information. The following functions witness this fact:

val get_typ : expr -> typ
val get_atyp : aexpr -> typ
val get_ltyp : lexpr -> ltyp

That is, all expressions know their own types.

Theorem 3.1. All typed expressions have well-formed types.

We start to gradually build up logical arguments toward our final correctness claim.

3.2.2 Semantic Types. Among all concepts, the most important one is types. When redefining typed typ or

semantic typ, we adjusted the structure so that the semantics are better reflected. In the untyped typ, we remember

location information and a type reference contains no resolved type. Contrarily, in the semantic typ, we no
longer store location information and a type reference carries its own resolved type as designed in the formal

syntax in Section 3.1. Additionally, we define void and function types in the semantic typ in order to better unify

the type representation. These treatments allow us to implement a function comparing the equality between

semantic typs via a structural recursion, which implies that we have succeeded in reflecting the semantics in the

structure of semantic typ.

3.2.3 Semantic Expressions. In the untyped ASTs, we use expr to represent all expressions, while in the typed

ASTs, we use three: expr, aexpr and lexpr. They correspond to three different kinds of expressions in a program.

expr corresponds to ones used as right expressions, those producing values:

val x = foo[bar]
baz(x)

In this code fragment, foo, bar, foo[bar] and x in baz(x) are expr because they (are expected to) compute to

values.

aexpr corresponds to addressable expressions, those with assignable locations in the memory. aexpr is a

subset of expressions of expr, as proved by the following function:

val aexpr_to_expr : aexpr -> expr

Theorem 3.2. The set of expressions of aexpr is a subset of expr.

Due to this theorem, aexpr can also produce a value. This fact is used in code generation. In the following code

fragment, a[x] and x on the second line are represented by aexpr but x in a[x] is an expr because it evaluates

to a value:

a[x] = 10
x = 20

We separate aexpr apart from expr in preparation for code generation. Otherwise, in code generation, we

would have to duplicate the check that has occurred in the type checker. This separation helps us to write far less

partiality in the code generation phase.

lexpr corresponds to left expressions. It is either an underscore on the left hand side or just an aexpr:

_ = foo(bar)

The _ is a lexpr. Notice that lexpr is not a subset of expr because _ does not produce a value (consider (_ + 1)).
Thus, lexpr does not always have a typ, which motivates ltyp.

, Vol. 1, No. 1, Article . Publication date: May 2020.

Toward A Provably Correct GoLite Compiler • 7

3.2.4 Function Declaration and Name Representation. Some consideration reveals that global variables and local

variables are different. All global variables live precisely in one scope, while local variables have different scopes.

This adds many details like how concretely a scope behaves in the language and these details are not easily

expressible as structures of ADTs. Hence, it is of our interest to avoid making any assumption of scopes of GoLite

and the target language in code generation, in order to simplify our program logic.

The idea we take is to use different data types to represent names of global and local variables. Specifically,

we use string to represent global names while natural numbers to represent local names. We use the following

example to demonstrate:

1 func foo(x, _ int) {
2 for x := true; false; {
3 if x {
4 var x string
5 } else {
6 var x float64
7 }
8 }
9 }

1 func foo(%0, _ int) { // [int; bool; string; float64]
2 for %1 := true; false; {
3 if %1 {
4 var %2 string
5 } else {
6 var %3 float64
7 }
8 }
9 }

On the left, we show a program in which names are intentionally heavily shadowed. We first receive an int x
as a parameter on line 1. In the for loop on line 2, we declare another x in a new scope and use it on line 3.

Finally we declare one more x as a string on line 4 and one as a float64 on line 6. This program is not only

confusing, but also adds difficulties to the implementation. One typical way to address shadowing is to rename

all the variables so that they do not clash. For example, the x’s on both line 2 and line 3 can be renamed to y.
Though it is a valid solution, it is not very convenient. There are two problems:

(1) We need to implement a whole set of substitution functions for all types in the ASTs.

(2) We need to be very careful to avoid clashing names which we are still not aware. For example, if line 4 is

var y string instead, then y is really not a valid choice to substitute x for on line 2 and 3.

Instead, we take a much easier approach, shown on the right. We associate each function declaration a list of

types. Each variable corresponds to a position in the list and its occurrences are replaced by the index of the

position. In the program on the right, the x on line 1 is replaced by %0. It is 0 here because it is the first variable.
We use % here to avoid making the program look like an assignment to an integer literal. Likewise, the x’s on line

2 and line 3 are replaced by %1. This approach makes it clear that the x on line 3 refers to the one on line 2. We

replace x on line 4 with %2 and the one on line 6 with %3 even though they are not used anywhere. This approach

tackles both aforementioned problems at once. We no longer need to implement substitution nor do we have to

figure out a strategy to generate fresh names. This approach is not entirely innovative; it is very related to locally

nameless representation [Charguéraud 2012] and the indices are similar to de Bruijn indices [de Bruijn 1972].

In this example, we have already silently made an optimization: we have omitted the blank parameter of

foo. We could have made the associated list [int; int; bool; string; float64], where the second int
corresponds to the blank parameter of foo. However, we do not bother doing so because blank identifiers can

never be referred to.

This approach also motivates us to distinguish two different kinds of declarations: global and local ones. In

untyped ASTs, we use only one ADT decl to represent declarations. In typed ASTs, we use two and that is why

we make decl polymorphic:

type 'a decl
type gdecl = string decl (* global declarations *)
type ldecl = int decl (* local declarations *)

, Vol. 1, No. 1, Article . Publication date: May 2020.

8 • Jason Z.S. Hu

Γ ⊢r e ⇒ e ′ type checking a right expression

Γ ⊢a e ⇒ e ′ type checking an addressable expression

Γ ⊢l e ⇒ e ′ type checking a left expression

Γ ⊢ τ ⇒ τ ′ type checking a type

Γ ⊢τ s ⇒ (Γ′, s ′∗) type checking a statement where s ′∗ is a sequence of statements

Γ ⊢void return ⇒ (Γ, return)

Γ ⊢r e ⇒ e ′ e ′ has type τ

Γ ⊢τ return e ⇒ (Γ, return e ′)

Fig. 3. Type checking functions in judgmental form. Terms in red are untyped and Terms in blue are typed.

We specialize the generic decl with string for global declarations and with int for local ones.

3.3 Type Checking
Combining Sections 3.1 and 3.2, we can proceed to implement the type checker. The actual type checking functions

are different from the judgments in Section 3.1. We made necessary adjustments so that the output includes typed

ASTs.

We list the type checking functions extending formal judgments in judgmental form in Figure 3. We use colors

to distinguish untyped and typed ones. Notice that Γ is always blue because contexts keep track of semantic

information which has to be typed. Terms to the left of ⇒ are inputs and those to the right are outputs. For

example, Γ ⊢r e ⇒ e ′ denotes a type checking function taking a context and an untyped expr, and returning a

typed expr. These extensions are justified by Theorem 3.1.

Theorem 3.3. If Γ ⊢r e ⇒ e ′, then Γ ⊢ e : τ where τ is the type of e ′.

Similar theorems exist for other type checking functions for expressions.

In our actual implementation, Γ needs to keep track of two contexts. One is often called symbol table, which
maps from names to types. This is the context defined in Section 3.1. In our code, this context is implemented as

a stack of maps from string to bindings. The other context is the list associated to each function discussed in

Section 3.2.4. It is especially important to carefully accumulate all local variables in a function body so that the

indices are correctly mapped. This also provides a reason why type checking for statements need to return a

potentially updated Γ′.
The type checking function for statements Γ ⊢τ s ⇒ (Γ′, s ′∗) is worth an elaboration. First it takes a semantic

typ τ as input. τ denotes the return type of the current function and is used during type checking returns
to ensure that all expressions returned by the return statements are consistent with the declared function

as denoted by the judgments. Moreover, Γ ⊢τ s ⇒ (Γ′, s ′∗) returns s ′∗ which indicates a list of statements.

We translate one untyped statement to zero, one, or multiple typed statements for convenience. For example,

type _ int introduces no new type binding, so when type checking this type declaration, we just ensure that

int is well-formed (in this case, it is) and disregard it. As a result, it returns no statement. It is also possible to

generate multiple statements:

var (
x int
y float64

)

, Vol. 1, No. 1, Article . Publication date: May 2020.

Toward A Provably Correct GoLite Compiler • 9

This program generates two typed statements from a untyped one.

3.4 Return and Terminating Statements
By simply accumulating Γ ⊢τ s ⇒ (Γ′, s ′∗), we can convert an untyped AST for the program to a typed one.

However, this typed AST is not necessarily well-formed. We must ensure:

(1) return conforms the return type of the enclosing function, and

(2) if a function has a return type, the function always ends with terminating statements.
The first item has been taken care of by the type checker because the return type is passed in as τ . The second
item is handled by recursively looking into the last statement and require it to be a terminating statement. A

terminating statement in GoLite is either:

(1) a return statement,

(2) a block with the last statement terminating,

(3) a if statement with an else block and both blocks are terminating,

(4) a switch statement with a default block and all blocks are terminating and do not contain a break
statement breaking the switch, or

(5) a for statement without a condition and the body does not contain a break statement breaking the loop.

This is literally transcribed in our code. After this check, we finally obtain a well-formed typed AST to be

passed to the code generation phase.

4 CODE GENERATION AND DYNAMIC SEMANTICS
In this section, we discuss the code generation phase. In this phase, we transform a typed AST to LLVM [Lattner

and Adve 2004] intermediate representation (LLVM IR). We show how we structure our program logic and

maintain the logical invariant, so that the resulting translation to LLVM IR can obtain a correctness argument.

4.1 LLVM IR
LLVM is a common compiler backend which implements an intermediate representation (IR) and sophisticated

optimizations based on this IR. LLVM is very easy to program and provides official binding APIs in OCaml.

Moreover, LLVM has an architecture very similar to a physical computer: it has registers and memory which is

divided into multiple segments. Nonetheless, LLVM provides many convenient abstractions so it is much easier

to program LLVM than an actual machine.

4.1.1 Types. LLVM is strongly typed. That is, all data in LLVM are associated with types. The type system of

LLVM is simple, as it contains only basic types like integers, floating points and pointers, as well as aggregate

types like arrays and structs. In particular, it does not feature polymorphism. LLVM provides many instructions

for converting values which can be used to implement conversions among integers and floating points, and many

pointer castings.

4.1.2 Static Single Assignment. One of the most useful abstractions LLVM IR employs is the static single assign-

ment form (SSA) [Rosen et al. 1988]. In LLVM IR, there is an infinite supply of registers and values are assigned

to registers. Once a register is assigned a value, it can no longer be mutated, thus single assignment. This form

makes keeping track of values much easier than mutable registers in actual machine architectures and enables

various simple yet effective optimizations.

4.1.3 Memory. SSA is not a complete silver bullet because it makes mutation impossible. In order to complement

the lack of mutation, LLVM adopts a memory model very similar to typical machines. For each function, there

is allocated a stack frame, which is released after the function returns. Inside a function, we can use alloca

, Vol. 1, No. 1, Article . Publication date: May 2020.

10 • Jason Z.S. Hu

void arr_init()
{

double a[20]; int i;
for (i = 0; i < 20; i ++) a[i] = 0.0;

}

(a) A program initializing an array of doubles to 0
1 define void @arr_init() {
2 entry:
3 %a. = alloca [20 x double]
4 br label %valinit.pred
5

6 valinit.pred: ; preds = %valinit.body, %entry
7 %valinit.idx = phi i32 [0, %entry], [%3, %valinit.body]
8 %1 = icmp slt i32 %valinit.idx, 20
9 br i1 %1, label %valinit.body, label %valinit.end
10

11 valinit.body: ; preds = %valinit.pred
12 %2 = getelementptr inbounds [20 x double], [20 x double]* %a., i32 0, i32 %valinit.idx
13 store double 0.000000e+00, double* %2
14 %3 = add nsw i32 %valinit.idx, 1
15 br label %valinit.pred
16

17 valinit.end: ; preds = %valinit.pred
18 ret void
19 }

(b) The corresponding LLVM program

Fig. 4. An example of C program and its corresponding LLVM program

to allocate memory on the stack frame. We can also allocate heap memory by invoking malloc or other heap
management functions. Given a pointer to the memory, we can use store to change its value. Therefore, when

we implement mutation in the code generation phase, we need to somehow ensure that a portion of the memory

is properly allocated.

4.1.4 Basic Blocks. Control flows in LLVM are divided by blocks of instructions called basic blocks. A function is

composed of one or more basic blocks and has exactly one entry block. Other than the entry block, all basic blocks

have any number of predecessor blocks and can jump to any number of successor blocks. Instructions in a block

are executed sequentially. The last instruction of a basic block has to be a terminator instruction, which either

returns the current function, or jumps to other basic blocks. All basic blocks of a function and their terminator

instructions form a control flow diagram of the function.

4.1.5 Correspondence between C. A LLVM program sometimes finds a great similarity to its counterpart in C.

Figure 4 shows a simple C program and its translation. The C program defines a function, in which an array

of doubles are allocated on the stack and all its elements are set to be zero. The LLVM program is much more

verbose, but if we look closer, it just add greater details to the C program. Essentially line 8 tests whether i is

, Vol. 1, No. 1, Article . Publication date: May 2020.

Toward A Provably Correct GoLite Compiler • 11

a less than 20, and if so, the basic block from line 11 is execute. It uses getelementptr to compute the pointer

position of the element in the array on line 12 and use store to store zero to that position on line 13.

In general, we can often see a very straight connection between C programs and LLVM programs, while LLVM

programs are just more verbose. Even though we are generating LLVM programs, in the rest of the report, we

choose to present C programs in most cases. We only present LLVM IR when certain very specific concepts are

crucial in code generation.

4.2 Relating Types between GoLite and LLVM
Before starting to write the code generator, we should pause a second to consider a few important questions:

(1) How do types between GoLite and LLVM correspond?

(2) How do names between GoLite and LLVM correspond?

(3) How should functions be generated (like equality comparison between structs and initialization of

structs)?

These are fundamental questions and are better determined up front. Let us consider the first question. The

second question is answered in Section 4.6 and the third is answered in Section 4.7. Since LLVM has most types

GoLite has (except slices, which will be discussed in Section 4.3), the first attempt is to do a direct translation

from types in GoLite to ones in LLVM:

⟦string⟧ = i8*

⟦int⟧ = i32

⟦float⟧ = double

⟦rune⟧ = i32

⟦(x, τ)⟧ = x (where τ is a struct. We also create a type declaration as a side effect.)

⟦(x, τ)⟧ = ⟦τ⟧ (where τ is not a struct)

⟦[n]τ⟧ = [n x ⟦τ⟧]
⟦struct { xi τi; }⟧ = { ⟦τi⟧, } (where i ranges over the length of the struct)

We use ⟦⟧ to denote the translation from GoLite to LLVM. We overload the symbol for the translations of types,

expressions and statements. The actual meaning will be clear from the context. We omit the case for slices for

now and this case will be expanded shortly. Despite being naive, this translation has already contained some

significant details.

(1) strings are represented by i8*, a pointer to bytes, which is equivalent to char * in C.

(2) We have two case for type references. Recall that in Section 3.1, we concluded that a type reference is

represented by a tuple of its name and its resolved type. In the first case for type references where the

resolved type τ is a struct, we create a type definition in the final LLVM IR and then return the reference

itself. A type definition in LLVM is similar to one in Go and creates a unique named type. LLVM only

permits type definition for structs. Thus we do this check to make sure the type definition is well-formed.

(3) If the resolved type τ is not a struct, then we cannot refer to this type as x in LLVM because a type

definition cannot be created, so we have to translate the resolved type instead.

(4) The cases for arrays and structs are straightforward because LLVM supports corresponding aggregate

types.

There have already been the following obvious problems in this translation:

, Vol. 1, No. 1, Article . Publication date: May 2020.

12 • Jason Z.S. Hu

(1) In the type reference case when τ is not a struct, our translation recurs down to the resolved type, which

makes the translation no longer structural. As a result, this translation might not terminate and thus

malformed. Consider the following goLite program:

type foo []foo
It is worth a pause to think about what this type should be translated to. Consider the following tentative

translation:

⟦(foo, []foo)⟧ = slice-in-LLVM(⟦(foo, []foo)⟧)
This translation is clearly malformed because the translation of foo depends on the translation of itself and

this translation can never terminate. This means we have to be very careful about how slices are translated

to in LLVM. We do have a solution to this and it will be discussed in Section 4.3.

(2) A less obvious problem has something to do with performance. Let us consider the following program:

var x struct { foo [100] struct { bar int; }; }
var y = x.foo[0].bar
This innocent program can be incredibly slow if we fail to be careful enough. Recall that LLVM employs

SSA and values are stored in registers. Since registers are not part of the memory, assignments to registers

copy the whole values, even when the values are aggregate types. That is, in a very unexpected case, this

program is equivalent to the following in performance:

var x struct { foo [100] struct { bar int; }; }
var tmp0 = x.foo
var tmp1 = tmp0[0]
var y = tmp1.bar
In this program, x.foo copies the array of length 100 to tmp0, only to access the first element in tmp1,
which also copies the struct containing bar. The majority of the copies are in vain, so we should attempt

to avoid it. The solution is discussed in Section 4.4.

4.3 Slices
In this section, we tackle to representation problem of slices. It is important because if the solution is too

complex, the implementation would be much more error-prone, the translation function might not even terminate

in some cases, and thus our final correctness argument could be compromised.

Our solution to this problem is simple: all slices are represented as one single type in LLVM! In that case,

[]foo in the previous example becomes a fixed type in LLVM which does not require any translation of the foo
nested inside. An implementation of slices in C is shown in Figure 5. Again, we use C for conciseness. Memory

management details are omitted in the code fragment.

Slices are represented as a struct with four fields, meaning the capacity, the length, the byte buffer for data and

the size for each element in the buffer respectively. This struct directly translates to a fixed struct type in LLVM.

Thus we add the case for slices to the translation:

⟦[]τ⟧ = %slice*

where %slice is the named struct in LLVM corresponding to slice in Figure 5. Notice that a slice is translated

to a pointer to %slice in LLVM. We claim that the translation function terminates.

Theorem 4.1. The type translation function ⟦⟧ with the case added above terminates.

This theorem follows from two facts: the translation of slices above goes to a fixed struct and in the second

case for type references in Section 4.2, τ can only contain type references defined before x. The latter says that
the translation forms a directed acyclic graph of type references and thus serves as a termination argument.

, Vol. 1, No. 1, Article . Publication date: May 2020.

Toward A Provably Correct GoLite Compiler • 13

typedef struct slice {
// capacity
int cap;
// length
int len;
// byte buffer
char *buf;
// size of each element
size_t elem;

} slice;

slice *do_new_slice(size_t elem)
{

slice *s = malloc(sizeof(slice));
s->cap = 0;
s->len = 0;
s->buf = NULL;
s->elem = elem;
return s;

}

slice *slice_augment(slice *s)
{

slice *ret = malloc(sizeof(slice));
ret->cap = s->cap;
ret->len = s->len;
ret->elem = s->elem;
if (s->len < s->cap) {

ret->buf = s->buf;
} else if (!s->NULL) {

ret->buf = malloc(2 * s->elem);
} else {

ret->cap *= 2;
ret->buf =

malloc(ret->cap * s->elem);
memcpy(ret->buf, s->buf,

s->cap * s->elem);
}
ret->len += 1;
return ret;

}

Fig. 5. Implementation of slices in C

In Figure 5, we also show two functions. do_new_slice allocates a new slice in the heap. It sets both the

capacity and the length to zero and remembers the size of each element. slice_augment returns a new slice

which can fit at least one more element than the original one. This function is called before we append an element

to a slice. Before we access element from a slice, we need to cast the buf pointer to the right type. This is always

possible because our typed expressions know their own types.

4.4 Involving Pointer Arithmetic
In Section 4.2, we gave an example which wastes nearly all computation power due to intermediate copies. This

happens if we translate (right) expressions in GoLite one to one in LLVM. We formalize this claim as follows:

If Γ ⊢r e : τ , then ⊩r ⟦e⟧ : ⟦τ⟧1
We use ⟦e⟧ to denote the translation of right expressions from GoLite to LLVM. The judgment Γ ⊢r e : τ denotes

that e as a right value has type τ . The judgment ⊩r ⟦e⟧ : ⟦τ⟧ denotes that the translated expression has the

translated type in LLVM. This assertion reads: if e has type τ in GoLite, then the translation of e has the translated
type τ in LLVM. This assertion is plausible; it at least does what we expect. If we implement ⟦e⟧, then we indeed

obtain a correct compilation from GoLite to LLVM. However, the problem is the performance. Let us examine the

example in Section 4.2 once more:

var x struct { foo [100] struct { bar int; }; }
var y = x.foo[0].bar

Since the translation must always return values, it first looks at x.foo and translates it to a value in LLVM which

are copied, essentially

1
We very consistently use blue to denote typed terms.

, Vol. 1, No. 1, Article . Publication date: May 2020.

14 • Jason Z.S. Hu

var tmp0 = x.foo

Then it reaches x.foo[0], looks up the first value in the array and copies it to a register:

var tmp1 = tmp0[0]

Finally another index is performed which returns the only data we want to copy in the entire program:

var y = tmp1.bar

Again, this compilation strategy generates very inefficient code and the ultimate cause is that we require ⟦e⟧
to always have type ⟦τ⟧. Therefore, the solution is to not always require this property. Our translation for right

expressions satisfies the following slightly more complicated property instead:

Theorem 4.2. If Γ ⊢r e : τ and τ is not an aggregate type, then ⊩r ⟦e⟧ : ⟦τ⟧.
If Γ ⊢r e : τ and τ is an aggregate type (structs or arrays), then ⊩r ⟦e⟧ : ⟦τ⟧*.
Let us reexamine the previous program to see that this theorem is the property we want. First the translation

sees x.foo. Instead of returning the array as a value, it returns a pointer to that array. Then x.foo[0] computes the

address of the first element in the array, which has the same value as the previous pointer. Finally, x.foo[0].bar
correctly dereferences the pointer and obtain an integer value. In this translation, we copy only the target integer.

Thus, this property is much more warranted and should be aimed at in the implementation.

This property might look convoluted because the type of ⟦e⟧ is determined by τ . In fact, this invariant is very

easy to maintain. In the actual implementation, we have the following small function:

let expr_invariance v t =
if is_aggregate t then v else build_load v "" g.builder

This function receive an LLVM pointer v and a semantic type t. We test whether the type is aggregate. If so, we

return the pointer, otherwise we create a load command to load the value from the memory via the pointer.

This function is used to wrap the return values of the cases in which it is possible to return an aggregate type:

variables, indexing, and selection. In equality comparison, since aggregate types can be compared, we need to

insert expr_invariant appropriately. This is discussed in Section 4.7. Function applications also need special

care, which is discussed in Section 4.6.

Now ⟦e⟧ does not necessarily return a value, so we have to consider how assignment is arranged. In an

assignment statement in GoLite

x = e

when the expression e does not have an aggregate type, we simply assignment the value to the location of x in
the memory via the store command. If it has an aggregate type, It is still possible to use store command. We

can first use load command to load from the pointer and then store it to x. Our implementation is more direct.

We use memcpy to copy the data from the pointer computed by e to x.

4.5 Addressable and Left Expressions
In this section, we briefly discuss addressable and left expressions. Addressable expressions in fact are much

easier to handle than right expressions. Addressable expressions only occur to the left of an assignment, its

translation must return an address to assign to.

Theorem 4.3. If Γ ⊢a e : τ , then ⊩a ⟦e⟧a : ⟦τ⟧*.
The judgment Γ ⊢a e : τ denotes that the addressable expression e has type τ . We use ⟦⟧a to denote the

translation of addressable expressions and the judgment ⊩a ⟦e⟧a : ⟦τ⟧* denotes the translation of e has type
⟦τ⟧* in LLVM. For the following programs:

, Vol. 1, No. 1, Article . Publication date: May 2020.

Toward A Provably Correct GoLite Compiler • 15

e++
e--
e += e'

We have obtained a pointer of e via ⟦e⟧a . By inspecting the typing rules for all three kinds of statements, we

know that ⟦e⟧a must point to a non-aggregate type and thus we just need to use load to load the value and

combine it with other operations. The correctness of this treatment is justified by Theorem 3.2.

For left expressions, we simply discriminate the case for blank identifiers and the case for addressable expres-

sions is handled by ⟦⟧a .
4.6 Variables and Functions
In the previous sections, we have discussed a complication due to a performance consideration involving

unnecessary copying and have concluded that Theorem 4.2 is the right property we are looking for. However, in

that conclusion we made an implicit assumption about variables. We assume that all variables have addresses.

Recall that in LLVM, registers do not have addresses, so variables cannot be simply mapped to registers. In this

section, we consider how variables are allocated in the memory. There are a few cases to consider.

4.6.1 Global Variables. All global variables in LLVM are allocated in memory, so this case is the easiest. We

assign a global variable an LLVM type ⟦τ⟧ where τ is the GoLite type of the variable. Then the pointer to it is

automatically ⟦τ⟧*. The memory locations for global variables are handled by LLVM.

4.6.2 Local Variables Declared In the Body of a Function. The cases for local variables are more complex. We first

consider local variables in the body in contrast of function parameters.

func foo() {
var x int

}

Let us consider how variables like x should be allocated. This case is similar to the case for global variables. We

assign one local variable an LLVM type ⟦τ⟧ where τ is its GoLite type. We allocate these variables on the stack

by using the alloca command. thus their memory is automatically released once the function returns.

4.6.3 Function Parameters. So far the cases are quite straightforward. We can easily find a location in memory

for the aforementioned variables. Now we move on to consider function parameters. Consider the following code

fragment:

func foo(x int, y struct { bar int; }) { }

After a quick thought, we arrive at the conclusion that x should be allocated the same as regular local variables,

namely on the stack using the alloca command. We then use a store command to store the value of x on the

stack.

What about y of an aggregate type?

Recall that GoLite implements some call-by-value semantics. That is, when foo is invoked, the value in y’s
position should be copied and the copy is passed in the function. If we alter the the bar field of y in foo’s body, it
should not alter the value given by the caller. One tentative answer is to also do the same for aggregate types as

normal variables. A parameter of type τ in GoLite is translated to one of type ⟦τ⟧* in LLVM and the value is

copied to the stack to obtain an address. This solution seems reasonable at its first glance until we study one

optimization phase SROA.
SROA is short for Scalar Replacement of Aggregates. In this optimization phase, aggregate types are expanded

to scalars. That is, y.bar will be assigned to a register regardless. This might look harmless but this phase also

runs for arrays:

, Vol. 1, No. 1, Article . Publication date: May 2020.

16 • Jason Z.S. Hu

func foo2(x int, y struct { bar int; }, z [10000]int) { }

SROA will unfold z 10000 times and assign each element to a register. In general, SROA has an exponential

complexity if we regard parameters of aggregate types like y and z as values in LLVM. This gives us a reason to

refrain from continuing this option. Instead, we assign aggregate types in function parameter ⟦τ⟧*. Though this

translation prevents SROA from applying, it alone would break the call-by-value semantics. In order to conform

the call-by-value semantics, we add an LLVM attribute byval to the parameter. This attribute instructs LLVM to

allocate enough memory for the values of the parameters in the caller. This is handled conveniently silently by

LLVM. foo2 is translated to the following LLVM function by our code generator.

define void @foo2(i32 %x, { i32 }* byval %y, [10000 x i32]* byval %z) {
entry:
%x. = alloca i32
store i32 %x, i32* %x.
ret void

}

At this point, we have determined all sources of memory locations for variables.

4.6.4 Return Values of Functions. In previous sections we discussed inputs to functions, now we consider the

outputs. We see that there is an advantage of delegating aggregate types to pointer. In our implementation, we

also do the same outputs.

func foo() struct { x int; } { /* code omitted */ }

Instead of returning the output as a value in LLVM, we require the caller to pass in a pointer to a struct as the

last parameter and the function to return void. This might look convoluted at the first glance but this design is

consistent with Section 4.4, in which we use memcpy to implement assignment of aggregate types. If we return by

value, we would create exceptional cases here and there and complicate our program logic. foo then becomes:

define void @foo({ i32 }*) {
entry:
; body omitted
ret void

}

At this point, we have arranged allocations of all data.

4.6.5 Addresses of Local Variables. In Section 3.2.4, we showed our strategy to map all local variables to an index

in a list of types. In code generation, we use the same idea and keep track of a list of LLVM pointers. For each

GoLite variable x of type τ , the list remembers ⟦τ⟧* in the corresponding index. When we look for the address of

a local variable, it is as easy as indexing this list. The stack allocation occurs right after the entry of the function,

so all variables are guaranteed their own locations in memory and the locations do not overlap. How the memory

addresses are determined has implicitly resolved the name clashing issue which typically needs to be handled by

explicit renaming.

4.7 Equality Comparison and Initialization for Aggregates
In the past sections, we focused on reasoning about types and how their invariants should be maintained. We

concluded that Theorem 4.2 is the desired property and expr_invariant is invoked to ensure this property. The

conclusion has formed the spine of our code generator, and what is left is to fill in some implementation detail.

, Vol. 1, No. 1, Article . Publication date: May 2020.

Toward A Provably Correct GoLite Compiler • 17

In GoLite, aggregate types like structs and arrays can be compared by equality and all variables in GoLite

should be given initialized values if one is not provided. For structs, these two are implemented by generated

functions.

Consider a situation in which we need to compare two arrays x and y of type [n]τ . Due to Theorem 4.2, we

know that they are given as two LLVM pointers of type [n x ⟦τ⟧]*. It is clear that we just need to loop over all

elements and compare each pair of elements of type τ . This is done via doing the pointer arithmetic and obtaining

the pointer of type ⟦τ⟧*. There are two cases depending on τ : if it is an aggregate type, then we keep them as

pointers and recurse; otherwise, we need to apply the load command to load the values. This is precisely what

expr_invariant does. We can then recurse on the values returned by expr_invariant.
structs are very similar. We need to access each field in sequence and compare them recursively. Comparisons

for structs are delegated to generated functions. The names of the functions are mangled names of the structs
themselves so we can avoid generating duplicated functions for essentially the same comparison.

Initialization takes a similar strategy. For arrays, we loop over each entry and assign it a default value recursively.

For structs, we also generate functions with mangled names and assign a default value for each field.

4.8 Bound Checking
In GoLite, we do not permit out of bound access. Therefore, we need to do some bound checking when we index

an array or a slice. This is done by calling a bound_check function prior to all indexing. In the bound_check
function, if the index is larger then the length of the array or the slice, we invoke the panic function. This

function simply prints a readable message to the standard error and exit the program immediate with non-zero

value.

4.9 Translation of Statements
The translation for expressions is by far the most complex portion in the whole code generation phase. Due to

the invariant, we have been able to follow a very clear thought in our implementation. Compared to expressions,

the translation for statements is much simpler. Assignments and declarations are very easy because we have

considered how these should be handled in previous sections. What remain are printing and control flows.

4.9.1 Printing Statements. Printing is handled by invoking fprintf from C standard. We only need to generate

a format string and pass in the parameters.

4.9.2 Invariant for Basic Blocks. When handling control flow, we cannot avoid directly handling basic blocks.

They are the building blocks for translation of control flows. In Section 4.1.4, we mentioned that each basic block

must have one terminator instruction for the LLVM program to be well-formed. This well-formedness condition

adds some complexity because some well-formed GoLite program does not correspond to a well-formed LLVM

program directly. Consider the following program:

func foo1() {
return
return

}

This is a well-formed GoLite program. However, if we translate it directly to LLVM, we would generate the

following code:

define void @foo1() {
entry:
ret void

, Vol. 1, No. 1, Article . Publication date: May 2020.

18 • Jason Z.S. Hu

ret void ; one extra terminator instructor
}

This LLVM program is not well-formed because the entry basic block contains two terminator instructions.

A direct translation also might also miss a terminator instruction.

func foo2() { }

This program would be translated to

define void @foo2() {
entry: ; there is no terminator!
}

These two malformed cases need to be dealt with so that we can be sure our code generator always output

valid LLVM programs. This is achieved by introducing another function ⎷s⌄which judge whether s has generated
a terminator instruction for a statement s . Only when s is return, continue and break, ⎷s⌄ returns true. We

further augment ⟦⟧ and ⎷⌄ to sequences of statements satisfying the following properties:

Theorem 4.4. ⟦⟧ and ⎷⌄ have the following relation when translating a sequence of statements:

⎷·⌄ = false

⎷s; s∗⌄ = ⎷s∗⌄ If ⎷s⌄ is not true
⎷s; s∗⌄ = true If ⎷s⌄ is true

⟦·⟧ = · generates no instruction

⟦s; s∗⟧ = ⟦s⟧; ⟦s∗⟧ If ⎷s⌄ is not true
⟦s; s∗⟧ = ⟦s⟧ If ⎷s⌄ is true

The equation for ⟦⟧ says that when the leading statement generates a terminator instruction, we do not

generate code for subsequent statements s∗. This effectively prevents the foo1 function above from generating

two ret voids.
The problem for not generating a terminator instruction at all is more subtle. In the foo2 function, we intuitively

know that a ret void should be inserted, but how much cases this intuition can cover? We shall reason more

carefully.

When a function has no return value, GoLite allows to have no return. In this case, it is correct to insert a

ret void.
However, even when a function has return value, it is still possible to generate a basic block with no return

value. Let us consider the following function and its generated code:

func foo3(b bool) int {
if b {

return 1
} else {

return 2
}

}

define i32 @foo3(i1 %b) {
entry:
br i1 %b, label %if.true, label %if.false

if.true: ; preds = %entry
ret i32 1

if.false: ; preds = %entry
ret i32 2

if.end: ; No Terminator!
}

, Vol. 1, No. 1, Article . Publication date: May 2020.

Toward A Provably Correct GoLite Compiler • 19

Notice that the basic block if.end is empty and contains no terminator instruction. We could have been really

careful and keep track of what instructions both branches are translated to, but there is a much simpler solution.

We simply insert an unreachable instruction, indicating that the if.end block is not reachable. This has handled
the terminator instructions for functions.

We do not always want to insert ret or unreachable when a terminator instruction is needed. Consider the

following two functions:

func foo4(b bool) int {
if b {
}
return 2

}

func foo5(b bool) int {
if b {

return 1
}
return 2

}
When we generating the if block in foo4, since it does not end with a terminator instruction, we need to

insert an unconditional branch to the ending block, which executes return 2. Meanwhile, in foo5, we must not
generate a branching at the end of the if because it contains a return. The distinction can be made due to the

⎷⌄ function. We use ⎷⌄ to test whether the if block is translated to a terminator instruction or not. If not, we

append an unconditional branching to the end of the if. The same treatment is applied to the else block too if it

exists. Statements in switch and for are handled in a similar way.

4.9.3 Switch Statements. switchs are very complex because they test for equality and contain an indefinite num-

ber of code blocks. Conceptually, a switch statement can be recursively generated by the following translation:

switch e {
case e1, ... en:
s*

// other cases
}

⇒

var v = e
if v == e1 || ... || v == en {
s*

} else {
switch v {
// other cases
}

}
We adopt a similar strategy. Special care is taken to handle the default case. Otherwise, it is very similar to an

if statement.

4.9.4 Continue and Break. For switch and for, we need to keep track of the basic blocks so that when continue
or break is encountered, we know which basic block to jump to. Concretely, we keep track of four states:

(1) Not inside of any switch or for: break and continue are illegal, which has been guarded by the weeding

process of the parser.

(2) Inside of a switch that is not inside of a for: only break is legal. We need to keep track of the basic block

immediately following the switch and break. break translates to a unconditioned branch to that block.

continue is illegal in this case.

(3) Inside of a for: we keep track of the basic block for the loop condition and the basic block immediate

following the for. continue jumps to the condition block and break jumps to the ending block.

(4) Inside of a switch that is inside of a for: we keep track of the basic block after switch and the condition

block of the for. break jumps to the ending block of switch and continue jumps to the condition block

of the for.

We need to carefully maintain these four states when we encounter switchs and for. The transition diagram

is shown in Figure 6. Based on the state, we generate continue and break accordingly.

, Vol. 1, No. 1, Article . Publication date: May 2020.

20 • Jason Z.S. Hu

3 4

21 switch

for for

for

switch

switch

switch

for

Fig. 6. State transition

4.10 Main Function and Program Initialization
We have set up all necessary components for code generation of expressions and statements. In this section we

set up the entry point of the whole program. This is done via composing a main function. We first specify the

initialization order:

(1) We initialize global variables in their order of appearances in the file.

(2) We invoke init functions in their order of appearances in the file.

(3) We invoke the main function defined in the file if it exists.

Thus, after generating all contents in source code, we generate the code in the main function according to this

specification. Notice that some name mangling is need to avoid the using the main function in the source as the

final entry point.

4.11 Well-formedness Verification of the Whole Module
After generating the main function, we have obtained “hopefully” a well-formed LLVM module. In the OCaml

binding of LLVM, there provides a function Llvm_analysis.verify_module which allows us to verify the well-

formedness of the generated module. This serves as the double check for our reasoning in the code generation

phase.

5 LINKING AND EXECUTION
We finally have arrived at the end of the diagram in Figure 1. After code generation, we have obtained an

LLVM file. We then need to convert it into an executable file. Before assembling it, we take the advantage of the

optimizers in LLVM by invoking opt:

opt -S -O2 $INPUT -o $OUTPUT

-S flag means that the output is still an LLVM IR file and -O2 flag triggers a level-2 optimization, which improves

greatly the performance of our naively generated code.

We then pass the output file to llc which assembles the file to an object file. After that, we invoke clang to
link the object file with clib and obtain an executable file. This gives us access to C standard functions like

malloc, fprintf and others.

, Vol. 1, No. 1, Article . Publication date: May 2020.

Toward A Provably Correct GoLite Compiler • 21

6 CORRECTNESS ARGUMENT
Up to this point, we have implemented a GoLite compiler to LLVM IR. We have conducted some formal analysis

to guide our development and summarized a number of theorems. In this section, we connect these theorems

together and argue that our compiler is provably correct.
(1) Theorem 3.3 asserts that the type checker converts an untyped expression to a typed one in a type preserving

manner. This theorem justifies the correctness of the type checker.

(2) Theorem 4.1 asserts that the type translation from GoLite to LLVM is well-formed. This very important

property provides a basis to measure our code generator.

(3) Theorem 4.2 and Theorem 4.3 provides guideline properties which we aim at when generating code for

expressions and addressable expressions. It is very easy to see that our code generator satisfies these

invariants due to the expr_invariant function.

(4) Theorem 4.4 asserts that the translation for statements always generate well-formed blocks.

These theorems combined together essentially ensure us the correctness of type checking, as well as translations

of types, expressions and statements from GoLite to LLVM. Up to satisfaction of the invariants, the compiler

correctly translates a GoLite program to LLVM.

7 CONCLUSION AND FUTURE WORK
In this report, we discussed our implementation of a GoLite compiler. We discussed how parsing, type checking

and code generation are done in our implementation. Throughout the implementation, we carried a number of

invariants in mind, in order to obtain a clean implementation and argue its correctness. We specified a number of

theorems we aimed at during the development and explained why these theorems are the right properties to go

after.

Employing LLVM as the backend opens the door to many interesting future directions. In our implementation,

we use heap for data types like strings and slice and we never reclaim the heap memory in our generated code.

A very interesting future work is to balance the heap. It is also possible to delegate memory management to

garbage collection (GC).

REFERENCES
Arthur Charguéraud. 2012. The Locally Nameless Representation. J. Autom. Reasoning 49, 3 (2012), 363–408. https://doi.org/10.1007/s10817-

011-9225-2

Nicolaas Govert de Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with

application to the Church-Rosser theorem. Indagationes Mathematicae (Proceedings) 75, 5 (1972), 381 – 392. https://doi.org/10.1016/1385-

7258(72)90034-0

Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In 2nd IEEE /
ACM International Symposium on Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA. IEEE Computer

Society, 75–88. https://doi.org/10.1109/CGO.2004.1281665

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In Proceedings of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA, January 11-13,
2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.). ACM, 42–54. https://doi.org/10.1145/1111037.1111042

John R. Levine. 2009. flex and bison - Unix text processing tools. O’Reilly. http://www.oreilly.de/catalog/9780596155971/index.html

Barbara Liskov and Stephen N. Zilles. 1974. Programming with Abstract Data Types. SIGPLAN Notices 9, 4 (1974), 50–59.
Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. 2013. Real World OCaml - Functional Programming for the Masses. O’Reilly. http:

//shop.oreilly.com/product/0636920024743.do#tab_04_2

Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1988. Global Value Numbers and Redundant Computations. In Conference Record
of the Fifteenth Annual ACM Symposium on Principles of Programming Languages, San Diego, California, USA, January 10-13, 1988, Jeanne
Ferrante and P. Mager (Eds.). ACM Press, 12–27. https://doi.org/10.1145/73560.73562

The Coq Development Team. 2020. The Coq Proof Assistant, version 8.11.0. https://doi.org/10.5281/zenodo.3744225

, Vol. 1, No. 1, Article . Publication date: May 2020.

https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1111037.1111042
http://www.oreilly.de/catalog/9780596155971/index.html
http://shop.oreilly.com/product/0636920024743.do#tab_04_2
http://shop.oreilly.com/product/0636920024743.do#tab_04_2
https://doi.org/10.1145/73560.73562
https://doi.org/10.5281/zenodo.3744225

	Abstract
	1 Introduction
	2 Parsing and Abstract Syntax
	2.1 Lexing and Parsing
	2.2 Untyped ASTs
	2.3 Weeding Processes

	3 Static Semantics
	3.1 Formal Judgments
	3.2 Typed ASTs
	3.3 Type Checking
	3.4 Return and Terminating Statements

	4 Code Generation and Dynamic Semantics
	4.1 LLVM IR
	4.2 Relating Types between GoLite and LLVM
	4.3 Slices
	4.4 Involving Pointer Arithmetic
	4.5 Addressable and Left Expressions
	4.6 Variables and Functions
	4.7 Equality Comparison and Initialization for Aggregates
	4.8 Bound Checking
	4.9 Translation of Statements
	4.10 Main Function and Program Initialization
	4.11 Well-formedness Verification of the Whole Module

	5 Linking and Execution
	6 Correctness Argument
	7 Conclusion and Future Work
	References

