
Design of Quotient Inductive Types

Jason Hu
zhong.s.hu@mail.mcgill.ca

1 Introduction

In this project, our goal is to implement quotient inductive types (QITs) [Altenkirch and Kaposi, 2016], which are
inductive types but with additional equational structures. Generally speaking, inductive types in Martin-Löf-style
type theories (MLTT) are generated freely by constructors. Unfortunately, different constructors of the same type
are disjoint. For example, in the definition of natural numbers,1

data Nat : Set where

z : Nat

1+ : Nat → Nat

we can show that z and 1+ are disjoint:

z6=1+ : ∀ n → z 6= 1+ n

z6=1+ _ ()

Another way to consider inductive types is data generated by mere syntax.
In reality, however, we often want to have more structures in our data. For example, in simply typed lambda

calculus, we want to equate π1(s, t) and s. In MLTT, we have no choice but to use a separate equivalence relation
to encode this equality and show that many transformations we care about respect this relation. On the other
hand, with QITs, this equation is baked in as part of the definition and thus all transformations are required to have
accompanied proofs of preservation of equality. Thus, it is quite motivating to consider a prototypical implementation
of QITs. In this brief report, we will dissect this problem into a theoretical side and a practical side, which we shall
discuss next.

2 Quotient Inductive Types

The intended quotient inductive types to be implemented in this project is based on propositional extensional
type theory, in which we admit the axiom K or, equivalently, Uniqueness of Identity Proofs (UIP). This is very
important as we want to eliminate the computational content of equality, as opposed to homotopy type theory
(HoTT) [Univalent Foundations Program, 2013]. This is because if we do not eliminate the computational content
of equality proofs, then we fall back to the same situation as HoTT and the complexity grows immediately and
exponentially. This implementation choice induces that the resulting type theory is equivalent to hSet in HoTT.
This matches up our intuition as quotient is more or less a “set theoretic thing”.

2.1 Equality

Considering what the current Typer has, we shall define the notion of propositional equality into our type theory,
which is absent in Typer at the moment. Since the definition of a QIT requires to refer to the notion of equality, we
must introduce this notion and the language must be aware of it. Following are the rules:

Γ ` s : T Γ ` u : T

Γ ` s =T u : type

Γ ` t : T

Γ ` reflT (t) : t =T t

Γ `M : Π(x y : T).Π(x =T y).type Γ ` s : T Γ ` u : T Γ ` p : s =T u Γ ` q : M(s, s, reflT (s))

Γ ` JT (M, s, u, p; q) : M(s, u, p)

1We use Agda syntax for demonstration, but flip the usages of = and ≡ to comply with the standard notations.

mailto:zhong.s.hu@mail.mcgill.ca

We employ the notion of homogeneous equality here. =T means it is an equality between two terms of type T . We
very often omit this subscript from now on. refl(t) is its constructor, reflexivity; it proves t = t (up to definitional
equality) using reflexivity. J is the eliminator. M is the motive. J says that to prove M(s, u, p) is true, it is sufficient
to assume s in place of u everywhere and p is just refl(s).

According to [Univalent Foundations Program, 2013], mere J allows an equality proof to contain computational
content and that necessarily implies there can be two distinct proofs of s = u. Luckily, the computational content in
equality can be eliminated by imposing another axiom, K:

Γ `M : Π(x : T).Π(x =T x).type Γ ` s : T Γ ` p : s = s Γ ` q : M(s, reflT (s))

Γ ` KT (M, s, p; q) : M(s, p)

In its appearance, K seems to be a special case of J , but it is not. Effectively, it asserts that the reflexivity proof is
the only proof of s = s. That is

Γ ` t : T Γ ` p : t = t Γ ` q : t = t

Γ ` K(λx p′.p′ = q, t, p;K(λy q′.refl(t) = q′, t, q; refl(refl(t)))) : p = q

The above derivation defines UIP. By applying K twice, we can show that any two equality proofs of the same term
can be identified. Since refl is one of that, all proofs are identified with refl.

β equivalences are the following:

J(M, s, s, refl(s); q) ≡ q K(M, s, refl(s); q) ≡ q

2.2 Inductive Types

With propositional equality, we can then consider how QITs looks like. Let us begin with a simpler example and
generalize that to other cases.

2.2.1 An Example: Integers

Consider the theory of groups. We know that the free group generated by a singleton set is (isomorphic to) the
integers. Syntactically, we have the following definitions:

data Z : Set where

z : Z -- unit

1+ : Z → Z -- successor

_-1 : Z → Z -- predecessor

Next, we want to take quotient of this definition by neutralizing the effect of the successor and the predecessor. In
other words, 1+ and -1 should form isomorphism:

-- ...

1+-1 : ∀ x → 1+ (x -1) = x

-11+ : ∀ x → (1+ x) -1 = x

The elimination principle of Z is more curious: other than the cases for the term constructors, the elimination
principle should ensure the definition respect the custom equality. Since we claim that Z is a group, next we define
+ on the left hand side:

+ : Z → Z → Z

z + n ≡ n

(1+ m) + n ≡ 1+ (m + n)

(m -1) + n ≡ (m + n) -1

-- case for 1+-1

-- ∀ m → 1+ (m -1) ≡ m → (1+ (m -1)) + n = m + n

+ (1+-1 m) n ≡ 1+-1 (m + n)

-- case for -11+

-- ∀ m → (1+ m) -1 ≡ m → ((1+ m) -1) + n = m + n

+ (-11+ m) n ≡ -11+ (m + n)

-_ : Z → Z

- z ≡ z

- (1+ m) ≡ (- m) -1

- (m -1) ≡ 1+ (- m)

-- equality proofs

-_ (1+-1 m) ≡ -11+ (- m)

-_ (-11+ m) ≡ 1+-1 (- m)

Luckily, we do not have to resort to more complex proof for equality preservation. Let us reason about it
more carefully. Since the definition is based on elimination of the first argument, the elimination principle thus
requires _+_ to respect the additional equality of Z. As shown in the comment, the first equality requires to show
(1+ (m -1)) + n = m + n. We reason about the left hand side of the equation definitionally:

(1+ (m -1)) + n ≡ 1+ ((m -1) + n) ≡ 1+ ((m + n) -1)

We can see that 1+-1 discharges this obligation. The next equality is very similar.
The negation function -_ on the right hand side is defined very similarly. The proofs of the cases are flipped

precisely because negation flips the direction.

2.2.2 General Formulation

For simplicity, let us only consider algebraic data types. We will see that even with algebraic data types, the
elimination principle is already very complex. If we have more time, we might attempt to tackle general inductive
data types2. In the former case, we have the following formulation:

data T : Set where

ci : ∀ (x0 : S0) (x1 : S1(x0)) ... (xn : Sn(x0, ... , xn−1)) → T

-- ...

eqj : t1 = t2
-- ...

ci is some constructor, which has n arguments. eqj is the equality part (with the parameter omitted), in which two
terms of type T are equalized.

Let us consider the recursor next. Similar to standard inductive types, the recursor maps constructions of type
T to another type U. If the constructor is

ci : ∀ (x0 : S0) (x1 : S1(x0)) ... (xn : Sn(x0, ... , xn−1)) (xn+1 : T) ... (xn+m : T) → T

then the case for eliminator should have the following type

∀(x0 : S0) · · · (xn : Sn(x0, · · · , xn−1))(r1 : U) · · · (rm : U)→ U

Here we replace xn+1 to xn+m which are subterms of type T to r1 t orm of type U as the result of recursive calls. We
collect all these cases in the recursor for term constructors, recT . The computational behavior of recT is precisely
the same as usual inductive types.

QITs requires that equalities are coherent w.r.t. the quotient equality. That means we must supply the proof of
equality preservation. Thus for each quotient constructor eqj , we must have a proof of the following type:

∀(t1 t2 : T), t1 =T t2 → recT (t1) =U recT (t2)

We collect these cases in rec=T . Computationally, given eqj , rec
=
T dispatches to this case and return its implementation

given by the programmer. Nonetheless, we shall not be concerned about the computational behavior of rec=T due to
our assumption of UIP. We can unequivocally consider reflexivity is the proof.

Next we consider the induction principle. The induction principle requires a motive M : T → type. We must
construct from the cases so that the eliminator gives a term of type M(t) where t : T . We follow the usual formulation
of induction principles, for the constructor ci above, we require the following type for the corresponding case:

∀(x0 : S0) · · · (xn : Sn(x0, · · · , xn−1))(xn+1 : T) · · · (xn+m : T)(r1 : M(xn+1)) · · · (rn+m : M(xn+m))→
M(ci(x0, · · ·xn+m))

The inductive principles are r1 to rm for each of rn+1 to rn+m respectively. We collect these cases in the eliminator
elimT (M).

The preservation of equality is more complex. Notice that we cannot equalize terms of type M(t1) and M(t2) as
they are generally different, while propositional equality requires their equivalence up to definitional equality. Thus
we must use apply J to convert M(t1) to a M(t2) along eqj . In other words, we apply eqj as a substitution of obtain
a function eqj

∗ of type M(t1) → M(t2). If t′1 : M(t1) and t′2 : M(t2), notationally we write the desired equality as
t′1 =eqj t′2, which is precisely eqj

∗(t′1) =M(t2) t
′
2. We do not omit this superscript as it is essential in the meaning of

this equation. Thus the preservation requires the following equation to hold:

elimT (M, t1) =eqj elimT (M, t2)

These cases are collected in elim=
T (M).

2We probably should start inductive types with one index in that case.

2.3 Heterogeneous Equality

In the previous section, we can see that the preservation of equality in eliminator is rather complex because we
must express equality between two terms with different indices. It looks quite unnatural when the eliminator of a
subsequently defined type to rely on a particular application of J . One route to get around that is to consider using
heterogeneous equality [McBride, 2000]. Heterogeneous equality generalizes propositional equality and its elimination
implies the axiom K. It would be quite interesting to understand whether heterogeneous equality actually reacts better
than propositional equality.

3 Targeted Modifications to Typer

In the previous section, we list the related theoretical setup for this project. In this section, let us look into how we
can adapt Typer to QITs. As laid out in the previous section, we primarily have to deal with two concepts, equality
and inductive types.

3.1 Equality

Supporting QITs requires the language itself to have a fixed notion of equality. For this reason, we must implement
equality. There is also another benefit: in the current Typer, we do not have universe polymorphism, so if we define
equality as an inductive type, then we are bound to define one for each universe level.

The current plan to implement equality is as follows:

1. We add an extra case to lexp, Eq, to represent the equality. For convenience, it is in its fully applied form;
that is, it takes three arguments, a type and two terms. It’s partially applied form can still be obtained by
lambda abstracting. This representation also has the benefit in weak head normal form reduction.

This strategy handles homogeneous equality. If we go by heterogeneous equality, we shall have Eq to contain
two types.

2. We add an infix operator === to the grammar with proper fixity.

3. refl can be included as another case in lexp or as a builtin. The former probably has the benefit of making
the logic clear.

4. The elimination is done in case expression. We intend to follow [Cockx et al., 2014] without removing K. That
is

case t %% : x === y

| refl => ...

5. It might be convenient to have a builtin notion of substitution of the following type

subst : (T : Type) (M : T -> Type) (x y : T) -> x === y -> M x -> M y

subst T M x y p Mx = case p

| refl => Mx

Having the language be aware of this term will come in handy because as shown in Section 2.2.2 the elimination
principle would need to apply it.

3.2 Inductive Types

We have more freedom to handle inductive types. We essentially need to make two big changes to the language:

1. How do we add quotient equalities to the type constructor?

2. How do we change pattern matching so that it also expands on the quotient equalities?

Currently, types in Typer are constructed by typecons. This constructs a type with some given number of
constructors and arguments. We could add another builtin construct, typeeqcons, which is responsible for receiving
the quotient equalities. For example, the definition of integers in Section 2.2.1 can be defined as follows:

Z : Type;

Z = typeeqcons (typecons z (1+ Z) (-1 Z))

1+-1 ((x : Z) -> 1+ (-1 x) === x)

-11+ ((x : Z) -> -1 (1+ x) === x);

z = datacons Z z;

1+ = datacons Z 1+;

-1 = datacons Z -1;

typeeqcons requires at least one arguments, which must be returned by typecons. When there is no subsequent
arguments, typeeqcons behaves like an identity function. Subsequent arguments must come in pairs: the first is the
name of the quotient equality and the second is the type of that equality.

We also require another construct eqcons to map quotient equalities to definitions:

1+-1 = eqcons Z 1+-1;

-11+ = eqcons Z -11+;

We need to extend Inductive in lexp with one additional argument of type ltype SMap.t to remember these
equations. One invariant of each ltype is that it needs to have the form of (x : T) -> ... -> t1 === t2 where
t1 and t2 must have type of the currently defined type.

We might also improve the macro for type , so that it also takes equations. The intended syntax is as follows:

type Z

| z | 1+ Z | -1 Z

quotient

| 1+-1 : (x : Z) -> 1+ (-1 x) === x

| -11+ : (x : Z) -> -1 (1+ x) === x;

The quotient part is optional if no quotient is intended. This syntax also has the benefit of forcing a separation
between term constructors and quotient equalities.

Changes to pattern matching is more complex as it must handle the preservation proofs, and the preservation
proofs need to refer to the cases for constructors. To accommodate this requirement, we change the Case constructor
in lexp to take another SMap which maps the quotient equalities to the preservation proofs.

In the same spirit of separating cases for constructors and quotient equalities, we also need to change the syntax
of pattern matching to the following (fitting the use case to the integers example):

case t

| z => ...

| 1+ n => ...

| -1 n => ...

preserves

| 1+-1 n => ... %% The left hand side sends (1+ (-1 n)) to the pattern matching.

| -11+ n => ... %% This case goes similarly.

Cases after preserves are optional if the definition of the type does not have quotient equalities. We need to
implement a covering check so that when these equalities exist they must be handled. A potentially tricky part is
that the equality preservation part might need to apply subst depending on whether the result type depends on t

or not. In the current stage, it is hard to predict how complex this might become. If it is overwhelming, then we
would just consider recursors for simplicity.

At this point, we are hoping that we do not have to change the reduction of the language (modulo necessary
adaptations) because equalities do not have interesting computational content after all. Unlikely in cubical type
theory [Cohen et al., 2015], we do not even have a way to trigger the computational behavior of the preservation
proofs.

4 Summary

To summarize, in order to implement QITs, we need to, first, support equality and, second, extend inductive types.
Currently the intention is to only support quotient for algebraic data types. When one attempts to define quotient
for inductive types with indices, an error should be given to signify the limitation. Nonetheless, we should be able
to use quotiented algebraic data types as indices for inductive types out of the box. Pattern matching is extended
to require proofs of equality preservation.

References

[Altenkirch and Kaposi, 2016] Altenkirch, T. and Kaposi, A. (2016). Type theory in type theory using quotient
inductive types. In Bod́ık, R. and Majumdar, R., editors, Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, pages 18–29. ACM.

[Cockx et al., 2014] Cockx, J., Devriese, D., and Piessens, F. (2014). Pattern matching without K. In Proceedings of
the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden, September
1-3, 2014, pages 257–268.

[Cohen et al., 2015] Cohen, C., Coquand, T., Huber, S., and Mörtberg, A. (2015). Cubical type theory: A con-
structive interpretation of the univalence axiom. In Uustalu, T., editor, 21st International Conference on Types
for Proofs and Programs, TYPES 2015, May 18-21, 2015, Tallinn, Estonia, volume 69 of LIPIcs, pages 5:1–5:34.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[McBride, 2000] McBride, C. (2000). Dependently typed functional programs and their proofs. PhD thesis.

[Univalent Foundations Program, 2013] Univalent Foundations Program, T. (2013). Homotopy Type Theory: Uni-
valent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study.

https://homotopytypetheory.org/book

Implementing Quotient Inductive Types

Jason Z.S. Hu
McGill University

zhong.s.hu@mail.mcgill.ca

Abstract

Taking quotient is one of the fundamental and ubiquitous phenomena in set-theoretic mathematics:
a quotient group of a kernel group remains a group; a quotient space in linear algebra is a projection
to some hyperplane, etc. However, in type theories, taking quotient has not been easy, because type
theories primarily focus on manipulation of syntax, which is very difficult to reflect arbitrary quotient
equalities. In this work, we explore the notion of quotient inductive types, which add to usual inductive
types quotient equalities. We discuss the implementation in the Typer language and the corresponding
theory under the hood.

1 Introduction

Many fields in computer science and mathematics have been benefited from the development of type theories,
which allows automatic verification of logical proofs and thus amplifies our confidence on mechanized proofs.
However, during the translation from informal proofs to syntactic ones recognized by the type theories, we
must pick a syntactic representation for every involved concept, which places an unwanted importance on
the actual syntactic representation. Consider the definition of a list:

type List (A : Type)

| nil

| cons A (List A);

This inductive definition has two cases: nil represents the empty case while cons grows a list by one. This
effectively defines a free monoid generated by A. What about a free group generated by a set? One might
be tempted to add one case to represent the inverse operator in groups, e.g.:

type Group (A : Type)

| unit

| add (Group A) (Group A)

| neg (Group A);

Unfortunately, however the concept is defined, an additional constructor in a usual inductive type is disjoint
from the other ones, because type theories distinguish them by their distinct syntax. As a consequence, we
are not able to gracefully define many common set-theoretic concepts which require additional equational
structures in many common type theories.

In this work, we explore one possible solution to this problem, quotient inductive types
(QITs) [Altenkirch and Kaposi, 2016]. With QITs, we can introduce additional equalities (called quotient
equalities) between constructors to an inductive definition. The elimination principle of this type must then
be accompanied with the preservation proofs of those quotient equalities. QITs reconcile the differences
between different syntactic representations of the same concept to some extent and thus allow us to focus
on the actual problems of interest.

1

mailto:zhong.s.hu@mail.mcgill.ca

This work has been implemented as an extension to Typer, a dependently typed programming language.
We add to this language a built-in notion of equality, dependent pattern matching, and support for QITs.
We will discuss the choices made during the implementation as well as the theory underneath.

2 Disjointness in Inductive Types

In a typical inductive definition, constructors are disjoint. Consider the following definition of natural
numbers:

type Nat | zero | succ Nat;

Intuitively, we expect that zero and succ are completely distinguished, in the sense that the following lemma
is provable:

succ-zero-disjoint : (m : Nat) -> succ m === zero -> Void;

Here succ m === zero means succ m and zero are propositionally equal and Void is the falsehood. That
is, for any m : Nat, it is impossible to equate succ m and zero. In a type theory with strong pattern
matching, this lemma can be readily proved by pattern matching against the equality, but this proof does
not inform us how the Intuitively, J says that given the motive M, in order to prove M a b p, it suffices to
supply a proof for M a a (refl a), where refl a : a === a is the reflexivity proof. The insight here is
that we can control the motive M, so that M a a (refl a) is easily inhabited, but M a b p reduces to Void:

succ-zero-disjoint m eq =

J Nat (lambda x y _ -> case y

| succ _ => Unit

| zero => case x

| zero => Unit

| succ x => Void)

(succ m) zero eq

(lambda a -> case a

| zero => unit

| succ _ => unit);

In this proof, the motive is a double case split on both x and y, so that it reduces to Void when x is in the
succ case and y is zero. The proof holds because we only need to handle the reflexivity case, in which we just
need to supply a unit proof after a case split. If we look closer at the proof, we will see that for this proof to
work, it is important to supply the motive with two unrelated types, Unit and Void, behind a case split. The
disjointness of constructors is then a consequence: all branches of a case split are completely unrelated. This
proof technique uses nothing about Nat in particular; it can be used to prove disjointness of all constructors
in general. Observing this, we then understand how to overcome this restriction of inductive types: the
secrete lies in introducing equational obligations between branches of a case split, just as implemented in
the system.

In order to implement QITs, we must augment the system with two concepts:

1. propositional (homogeneous) equality: the version of Typer we base on does not have any notion
of equality, while in order for the system to recognize quotients, we would need a built-in notion of
equality.

2. QITs: with a built-in notion of equality, we can move on to support QITs. Our implementation splits in
three parts: formations, constructions and eliminations. Formations and constructions are relatively
easier. Eliminations are a bit trickier. Since we use pattern matching for eliminations, we need to
ensure the quotient equalities are preserved in a case split.

2

3 A Taste of Quotient Inductive Types

Let us consider a definition of integers with which the same numbers are propositionally equal:

type ZInt

| zero | succ ZInt | pred ZInt

quotient

| succ-pred : (x : ZInt) -> succ (pred x) === x

| pred-succ : (x : ZInt) -> pred (succ x) === x;

ZInt models integers via three constructions: an integer can either be zero, a successor of an integer, or a
predecessor of an integer. However, this definition as pure inductive one does not have good propositional
equality. For example, succ (pred zero) should just be the same as zero, but they cannot be related by
propositional equality. With QITs, we have an additional keyword, quotient, after which we list a number
of equations. The overall type is then the inductive definition taking the equations as quotients. As a result,
succ (pred zero) === zero becomes a fact and is witnessed by succ-pred zero.

In order to preserve consistency of the language, every elimination of ZInt must show that the quotients
are preserved. Consider the following definition of addition:

plus : ZInt -> ZInt -> ZInt;

plus x y = case x

| zero => y

| succ x => succ (plus x y)

| pred x => pred (plus x y)

preserves

| succ-pred x => succ-pred (plus x y)

| pred-succ x => pred-succ (plus x y);

The case split should be straightforward: we just move the constructors of x over to y until it hits zero.
What adds to the definition is the keyword preserves and the equational proofs after it. Intuitively, since
plus is defined via eliminating x, we must show that plus respects quotients of x. For the succ-pred case,
we must show plus (succ (pred x)) y === plus x y. By expanding the left hand side definitionally,
we see that this obligation can be discharged by succ-pred (plus x y). The case for pred-succ is very
similar.

If we compare this pattern matching with the previous disjointness proof, we will see that the constructors
of ZInt are no longer disjoint. Indeed, if we apply the same technique, we would be asked to provide a proof
of Unit === Void, which is infeasible.

4 Implementing Equality

One and the first of the major problems in support QITs is (propositional) equality. Indeed, quotients are
expressed as equations, so the type theory must recognize a unique notion of equality. Besides being able to
specify equalities, we also want to reason about them; that implies we want to enable pattern matching for
equality.

4.1 Representing Equality

Before worrying about the implementation, we shall begin by considering how one typically defines propo-
sitional equality:

Γ ` s : T Γ ` u : T

Γ ` s =T u : type

Γ ` t : T

Γ ` reflT (t) : t =T t

3

Γ `M : Π(x y : T).Π(x =T y).type
Γ ` s : T Γ ` u : T Γ ` p : s =T u Γ ` C : Π(x : T).M(x, x, reflT (x))

Γ ` JT (M, s, u, p;C) : M(s, u, p)

The rules indicate three elements to represent: the formation, the construction and the elimination of
equality. Since we use pattern matching as a uniform elimination form, we will just need to add two cases
in the internal syntax to represent the equality and the reflexivity proofs, respectively:

type lexp =

(* ... *)

| Eq of U.location * ltype * lexp * lexp

| Refl of U.location * lexp

The representation encodes all necessary information and is not very surprising. Eq represents equality and
Refl represents the reflexivity proof, written as refl in Typer. It is worth noting that _===_ does not have
a type in Typer. Our version of Typer does not implement universe polymorphism, while the universe in
which an instance of Eq resides is determined by the universe in which the ltype resides. In other words,
equality in our augmentation is universe-polymorphic, so we cannot find a type for Eq within the type theory.

4.2 Dependent Pattern Matching

After resolving the formation and the construction of equality, we shall look into the elimination of equality.
Besides the elimination principle J above, we also want the elimination to admit the following slightly
different principle:

Γ `M : Π(x : T).Π(x =T x).type Γ ` s : T Γ ` p : s =T s Γ ` C : Π(x : T).M(x, reflT (x))

Γ ` KT (M, s, p;C) : M(s, p)

In its appearance, K seems to be a special case of J , but it is not. In fact, this elimination principle has the
consequence of uniqueness of identity proofs, which means that any proof of s = s for any s is equal to the
reflexivity proof:

Γ ` t : T Γ ` p : t =T t

Γ ` KT (λx p′.p′ =x=T x reflT (x), t, p;λx.reflx=T x(reflT (x))) : p =t=T t reflT (t)

Though we often have no direct use of K, we need this elimination principle to reduce proof obligations in
pattern matching on QITs and lay the theoretical foundation down to a simpler and more set-theoretic one.
We will expand on this when discussing QITs.

To support pattern matching on equality, we need to decide how complex this pattern matcher should
be: on one hand, the one similar to Agda’s is too strong, because its pattern matching even has injectivity
and disjointness of constructors built in; one the other hand, the one close to Coq’s is probably too weak, as
writing out convoy pattern [Chlipala, 2013] is too tedious. We want to be able to prove J and K but still
control the power of pattern matching. We eventually come to a very simple criterion: pattern matching
on e1 === e2 is admitted only when e1 and e2 are convertible to variables. This strategy hits a sweet
spot: this criterion ensures that the unification must be successful (because unification of two variables must
succeed) and is general enough to prove J and K. Given a context x : T, y : T and the following code
with e1 has type x === y:

case e1 | refl z => e2

we follow the following steps in the type checking phase:

1. We extend the current typing context with z : T.

2. If x and y are the same variable, then we unify that variable with z. This effectively implements K.

4

3. If x and y are not the same variable, then we unify both variables with z. This effectively implements
J .

4. If e1 is convertible to a variable, then we unify that variable with refl z.

5. Then we proceed to type check e2.

This algorithm is much easier to understand and reason about than stronger pattern matcher presented in
e.g. [Cockx et al., 2014] while we can still use it to prove J and K, which indicates that equality has all
logical strength that we want it to have. Moreover, with quotients, injectivity and disjointness of constructors
are no longer natural, so they should be removed from pattern matching after all:

J : (A : Type) -> (M : (a : A) -> (b : A) -> (p : a === b) -> Type) ->

(a : A) -> (b : A) -> (p : a === b) -> (C : (a : A) -> M a a (refl a)) -> M a b p;

J A M a b p C = case p | refl x => C x;

K : (A : Type) -> (M : (a : A) -> (p : a === a) -> Type) ->

(a : A) -> (p : a === a) -> (C : (a : A) -> M a (refl a)) -> M a p;

K A M a p C = case p | refl x => C x;

One disadvantage of this strategy is that if we have a proof of x === f y, then we cannot use pattern
matching alone to substitute x with f y. Instead, we must rely on helper functions to achieve this:

subst : (A : Type) -> (M : A -> Type) -> (a : A) -> (b : A) -> a === b -> M a -> M b;

subst A M a b p Ma = case p | refl _ => Ma;

4.3 A Note on Unification

In the previous section, we left the details of unification vague. Indeed, there are many ways to perform
unification, but we employed a method which we believe is not quite typical. Specifically, we use negative
de Bruijn indices. In the previous section, when unifying the variable x with z, since x appears before z, we
use a negative de Bruijn index to create a let binding from x to z. For example, if the top of the context
is x : T, z : T, then we update the context to x = z[-2] : T, z : T, where [-2] indicates that from
x’s perspective, z has de Bruijn index -2. Nonetheless, when we actually normalize x, we will performance
enough shifting so that all de Bruijn indices are nonnegative.

This treatment is quite strange because negative de Bruijn indices are not common, but if we regard the
typing context as a constraint set, then this idea becomes more acceptable. Negative de Bruijn indices are
just forward referencing in a constraint set. As long as the variable actually exists (which must be the case
because unification only occurs after an extension of the context), an enough shifting guarantees that the
eventual reference will have a nonnegative index. Moreover, this treatment implicitly makes the effect of
unification transitive. Consider the following proof of transitivity:

eq-trans : (A : Type) -> (a : A) -> (b : A) -> (c : A) -> a === b -> b === c -> a === c;

eq-trans A a b c p q = case p | refl x => q;

After pattern matching p, we simply use q as the proof. It is quite intuitive at the first glance, but a closer
look will show that this proof type checks because of our treatment. Since both a and b forward reference
x, the convertibility checker will see that they are both convertible to x, and thus accepts q as a proof.

4.4 Computational Behavior

Since our system admits K, the computational behavior of propositional equality is not important, as K
“kills it off”. Nevertheless, we have implemented it for completeness. The following program

case refl t | refl x => e

reduces to e[t/x], which is the capture-avoiding substitution of x for t in e.

5

5 Quotient Inductive Types

Having implemented equality, we can now consider how to implement QITs. In this project, this goal is a
little bit simplified: Typer only has algebraic data types, so we do not have to worry about how quotient
equations should react to J applied to an index of a type. To add quotient equations to algebraic data types,
we need to represent these equations in all of the formation, the construction and the elimination, which is
naturally reflected in the internal syntax:

type lexp =

(* ... *)

| Inductive of U.location * ((vname * ltype) list) SMap.t * quotient SMap.t

| EqCons of ltype * symbol

| Case of U.location * lexp

* ltype (* The type of the return value *)

* (U.location * vname list * lexp) SMap.t

* (vname * lexp) option (* default branch *)

* (U.location * vname list * lexp) SMap.t (* proofs of preservation *)

and quotient = {

premises: (vname * ltype) list; qloc: U.location;

lhs: lexp; rhs: lexp }

Let us explain the representation in more details.

5.1 Formation and Construction of QITs

In Typer, a QIT has the following general form1:

type Name (S1 : Type) ... (Sn : Type)

| c1 (x1 : T1) ... Tm

...

quotient

| eq1 : (x1 : T1) -> ... (xk : Tk) -> e1 === e2

...

That is, we augment usually algebraic data types with a number of quotient equations. Moreover, each
equation (say eq1) must satisfy the following criteria:

1. It has to be well-typed.

2. e1 and e2 must have type Name S1 ... Sn.

Each quotient equation is represented as a quotient in OCaml and all of them are collected in a string map
(SMap). A quotient remembers the premises (the arguments of the quotient), the location and both sides
of the equation.

Each QIT has two kinds of constructors: term constructors and quotient constructors. Term constructors
are regular constructors of the type. Quotient constructors represent the quotient equations, represented by
EqCons in the internal syntax. We can easily infer the type of a quotient constructor given the inductive
type it belongs to and its name.

5.2 Quotient Pattern Matching

Finally let us consider how pattern matching should handle QITs. Intuitively, when pattern matching against
a QIT, we would expect that the quotient equations are preserved by the branches. In Typer, we have the
following general front-end syntax:

1This form is the ideal frontend sytnax, which has not been implemented, but the primitives for supporting QITs are ready.

6

case e

| c1 x1 ... xm => branch1

...

preserves

| eq1 x1 ... xk => proof1

...

Everything before the preserves keyword is just typical in any pattern matching. It splits e by cases.
Each case handles a constructor of the inductive type which e has. With quotients, we in addition require
preservation proofs, with an extra field of proofs of preservation in Case. These proofs are responsible
for relating the branches with equational obligations.

Before supporting quotient pattern matching, we also need to extend pattern matching on inductive
types with the unification handling shown in Section 4.2 as well. That is, when type checking a branch, say
branch1, if e1 is convertible to a variable, then we unify it with c1 x1 ... xm. This allows us not only to
prove general fact about an inductively defined type, but also to support the necessary equational reasoning
after the preserves keyword.

The preservation proofs are type checked according to the following criteria:

1. The scrutinee of pattern matching must be convertible to a variable. This is essential for performing
unification, so that the obligations of preservation proofs can actually be meaningfully generated.

2. If the result type of the pattern matching is an equality type, then there must be no preservation
proofs. That is, if the overall type of a pattern matching has type x === y, then we do no need
preservation proofs, because if the branches are type checked, then all obligations of the preservation
proofs must hold due to the consequence of uniqueness of identity proofs (UIP) of K. This is why
we must support K even though we do not often have explicit use of it. K is very important for the
underlying mathematics to work out for this type theory. We even took a further step to forbid any
proofs to reduce unnecessary type checking effort.

3. If the result type is not an equality, then we demand preservation proofs of all quotients.

4. Moreover, we require the result type must not depend on the scrutinee of the pattern matching. That
is, if we have

case x | ... preserves | ...

Then this expression must not in any form has a type containing x as a free variable (except for equality
type, but this criterion only applies for non-equality result types). This criterion is not theoretically
necessary, but is added to simplify the proof obligations. Imagine for a moment the result type of the
overall expression is M x for some irreducible motive M. Furthermore let us assume a quotient between
two distinct constructors c1 and c2: c1 === c2. Then this quotient will generate an equation with
both sides having type M c1 and M c2, respectively. However, these two types are not convertible.
Since we implement homogeneous equality, terms of the types cannot be equated directly. We could
use the subst function in Section 4.2, but this adds some complexity to the type system. Nevertheless,
this limitation is not substantial, so we leave it as a future work.

5. Finally we require the preservation proofs to be well-typed.

5.3 Quotient Checking

When we look at a piece of complete code, we often have an intuitive understanding of what preservation
of quotients means. In the implementation, we need to make this intuition concrete. Consider again the
general syntax of quotient pattern matching:

7

case e

| c1 x1 ... xm => branch1

...

preserves

| eq1 x1 ... xk => proof1

...

we formulate the preservation checking steps as follows:

1. Let the pattern matching before the preserves keyword be E. That is, let E be

case e

| c1 x1 ... xm => branch1

...

2. We also know e must be convertible to a variable. Let that variable be x.

3. Now we move on to type checking the preservation proofs. Let us consider the eq1 case without loss
of generality. We first extend the context with x1 to xk.

4. If eq1 x1 ... xk has type e1 === e2, then the proof obligation is E[e1/x] === E[e2/x]. If e is not
convertible to a variable, we would not be able to formulate the goal using substitution.

5. We then check whether branch1 has the specified obligation.

One advantage of this schema is again simple to understand and implement. Moreover, this schema
naturally extends to nested pattern matching. The nested layers will require correct equational obligations
at the end.

5.4 Computational Behavior

The computational behavior of quotient pattern matching is identical to the usual pattern matching. In
particular, the preservation proofs do not participate in any computation. This is intended and is theoretically
justified by the admissibility of K.

6 Notes on Limitations

Due to the general design of the system, our implementation has certain limitations which do not have
theoretical implications. In this section, we discuss these limitations, potential solutions, and their causes.

6.1 Recursion in Quotient Pattern Matching

In quotient pattern matching, we often need to refer to the function being currently recursively defined in
the equational obligations. In our current implementation, we have problems handling recursive calls behind
a quotient pattern matching. Consider the following program:

type Foo

| c1 Nat

| c2 Nat

preserves

eq : (x : Nat) -> c1 x === c2 x;

bar x = case x

| c1 y => bar (c2 y)

| c2 y => y

preserves

| eq y => refl y;

On the left hand side, we define a (trivial) type Foo, and on the right hand side, we have a fancy way to
extract the Nat in it. Consider the equational obligation in the eq case, we should prove, according to the
precise schema, the following equational obligation:

8

case c1 y

| c1 y => bar (c2 y)

| c2 y => y

===

case c2 y

| c1 y => bar (c2 y)

| c2 y => y

It reduces to bar (c2 y) === y. We know it is true and should be provable using refl y, except that
Typer will not accept it. This behavior is a natural limitation of how Typer is structured. In Typer, there
is an elaboration phase, in which an elaborator might perform some type directed operation to turn a parse
tree into an internal syntax tree. The dilemma here is that in order to know that bar (c2 y) is convertible
to y, we need an already parsed internal syntax tree; but since we cannot learn this convertibility relation
without the internal syntax tree, the elaborator refuses to parse, and thus this program is rejected.

In general, the system has problems accepting certain programs, the proofs of equational obligations of
which require expansion of the recursive function that is being defined. Depending on the problem, we might
be able to work around this limitation by reorganizing code or employ an alternative definition.

6.2 Overcoming Quotient Obligations

Mandatory obligations in quotient pattern matching are very nice and helpful as it ensures that pattern
matching respects the quotients everywhere. However, it might soon become a limitation for some problems
or for some intended solutions.

Consider the ZInt type defined in Section 3. We might be interested in its “syntactic normal form”,
namely, those in the form of either zero, a number of succ of zero, or a number of pred of zero. We can
definitely define a normalize function, but this function has much less use than intended. Imagine how we
obtain the sign of a ZInt. Given a normal form, the sign function simply inspects its first constructor: if it
is a zero, then we return zero2, if it is a succ, we return positive, and if it is a pred, we return negative:

type Sign | Zero | Pos | Neg;

sign : ZInt -> Sign;

sign x = case normalize x

| zero => Zero

| succ _ => Pos

| pred _ => Neg

preserves

??? %% we are not able to generate proper obligations here

Clearly the pattern matching does not generally respect quotients at all! Its correctness is based on the
special syntactic property of a normalized ZInt. Nonetheless, the result of composing normalize and the
pattern matching does respect quotients. That is, this solution is valid, but its intermediate step violates
the “preservation everywhere” requirement from the type theory.

The question to ask is whether we can relax the type theory somehow, such that this form of “internal
violations” becomes acceptable. This would be particularly useful in the study of programming languages,
where we most of time are concerned about structure preserving transformation, except that some properties
are about the mere syntax.

7 Conclusion

In this project, we considered the theoretical aspects of quotient inductive types and provided an experi-
mental implementation in the Typer programming language. We discuss some critical design choices in the
implementation enabling the feature. Though this feature has demonstrated benefits, the current implemen-
tation and the theoretical foundation have various degrees of limitation and room for future improvements.
We outlined two possible future directions for further investigation.

2Let us say zero has its own sign.

9

References

[Altenkirch and Kaposi, 2016] Altenkirch, T. and Kaposi, A. (2016). Type theory in type theory using
quotient inductive types. In Bod́ık, R. and Majumdar, R., editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, pages 18–29. ACM.

[Chlipala, 2013] Chlipala, A. (2013). Certified Programming with Dependent Types - A Pragmatic Introduc-
tion to the Coq Proof Assistant. MIT Press.

[Cockx et al., 2014] Cockx, J., Devriese, D., and Piessens, F. (2014). Pattern matching without K. In
Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg,
Sweden, September 1-3, 2014, pages 257–268.

10

	Introduction
	Quotient Inductive Types
	Equality
	Inductive Types
	An Example: Integers
	General Formulation

	Heterogeneous Equality

	Targeted Modifications to Typer
	Equality
	Inductive Types

	Summary
	Introduction
	Disjointness in Inductive Types
	A Taste of Quotient Inductive Types
	Implementing Equality
	Representing Equality
	Dependent Pattern Matching
	A Note on Unification
	Computational Behavior

	Quotient Inductive Types
	Formation and Construction of QITs
	Quotient Pattern Matching
	Quotient Checking
	Computational Behavior

	Notes on Limitations
	Recursion in Quotient Pattern Matching
	Overcoming Quotient Obligations

	Conclusion

