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Foundations of Modal Type Theories

We focus on the � modality.

I Prawitz (1965) proposed a formulation with broken subject reduction.
I Formulations of the � modality was under intense investigations in the late ’90s

and the early 2000:

I IS4� (Bierman and de Paiva, 1996)
I Modal pure type system (Borghuis, 1994)
I The dual-context style (Pfenning and Davies, 2001; Davies and Pfenning, 2001)
I The Kripke style (Davies and Pfenning, 2001; Pfenning and Wong, 1995)

I Foundations of � still under active investigations (Hu and Pientka, 2022;
Valliappan et al., 2022; Gratzer et al., 2019; Gratzer, 2022, etc.).
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Goals of Thesis

Study general foundation for modal type theories; then focus on a particular
application to meta-programming

X Prove directly normalization of the Kripke-style λ→� (simply typed) by Davies
and Pfenning (2001); Pfenning and Wong (1995) (published in Hu and Pientka
(2022) at MFPS)

X Extend λ→� with dependent types, yielding Mint (submitted to JFP)

X Mechanize normalization proofs of these systems (submitted to JFP)

I Add pattern matching on code to modal type theory to strengthen its ability to do
dependently typed meta-programming
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Revisit λ→�

I The Kripke style has multiple advantages:

I Conceptually simple; direct modeling of the Kripke semantics
I Captures all four subsystems of S4
I Programming paradigm akin to typical meta-programming using quasi-quotes

I

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

I K : � (A → B) → � A → � B

K f x = box ((unbox1 f) (unbox1 x))

I Challenge: separate reasoning of substitutions and modal transformations leads to
complex analyses
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Kripke-style Substitutions

I In Hu and Pientka (2022), we propose Kripke-style substitutions as a substitution
calculus for λ→�

I K-substitutions: regular simultaneous substitutions extended with modal
information

I Modularly and uniformly capture the Kripke structure of λ→� both syntactically
and semantically

I One normalization-by-evaluation proof for all four subsystems

I Enable a formulation of contextual types (Nanevski et al., 2008) in the Kripke style
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Mint: Extensions to Dependent Types

I λ→� is simply typed; scales to dependent types naturally

I Mint, Modal Intuitionistic Type Theory, is developed:

I contains full Martin-Löf type theory
I supports inductive types, large elimination, a full cumulative universe hierarchy
I normalization by evaluation

I

−→
Γ ; · ` T : Sei
−→
Γ ` �T : Sei

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T

`
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

I Submitted to JFP
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Normalization of Mint

I The normalization proof of Mint is a moderate extension of Abel (2013).

I based on an untyped domain model
I the algorithm is explicitly given
I use the algebra of truncoid to capture the Kripke structure; inherent the modularity

of the normalization proof of λ→�

I Fully mechanized in Agda!

I foundation: MLTT + functional extensionality + induction-recursion; standard
extensions

I exposes various missing details about modeling universes
I a basis for others to experiment their extensions to MLTT
I the algorithm can be run in Haskell after extraction
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Pattern Matching on Code

I We focus on applications to meta-programming.

I �T denotes the type of code representing some T

I A missing feature: pattern matching on code

I Internal analysis of syntactic structure:

is-app : � T → Bool

is-app (box (f x)) = true

is-app _ = false
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Challenges of Extending Mint

I Philosophical clash: unbox in Mint uses � by projection; while pattern matching
on code does case analysis.

I Congruence of box in Mint breaks
confluence:

is-app (box ((λ x → x) 0))

There are two distinct reductions:

I is-app (box ((λ x → x) 0)) = true

I is-app (box ((λ x → x) 0))

= is-app (box 0)

= false

is-app : � T → Bool

is-app (box (f x)) = true

is-app _ = false
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No Easy Fix for Confluence

Is it possible to only pattern match on normal forms?

Confluence is still broken:

(λ x → is-app (box (unbox1 x))) (box (F T))

I (λ x → is-app (box (unbox1 x))) (box (F T))

= (λ x → false) (box (F T))

= false

I (λ x → is-app (box (unbox1 x))) (box (F T))

= is-app (box (F T))

= true
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Research Plan

I Take away congruence of box; move to the dual-context style

I Use the conversion relation instead of NbE; better control over terms

I [4 months] Follow experience in the Kripke style; start from simple types

I [3 months] Scale to dependent types afterwards

I [1 months] Case study

I Work out a paper proof before mechanization

I Possible implementation after PhD
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