
Foundations and Applications of Modal Type Theories

Jason Hu

McGill University

Proposal Examination



2

Applications of Modalities

Jason Hu — Foundations and Applications of Modal Type Theories



3

Foundations of Modal Type Theories

We focus on the � modality.

I Prawitz (1965) proposed a formulation with broken subject reduction.
I Formulations of the � modality was under intense investigations in the late ’90s

and the early 2000:

I IS4� (Bierman and de Paiva, 1996)
I Modal pure type system (Borghuis, 1994)
I The dual-context style (Pfenning and Davies, 2001; Davies and Pfenning, 2001)
I The Kripke style (Davies and Pfenning, 2001; Pfenning and Wong, 1995)

I Foundations of � still under active investigations (Hu and Pientka, 2022;
Valliappan et al., 2022; Gratzer et al., 2019; Gratzer, 2022, etc.).

Jason Hu — Foundations and Applications of Modal Type Theories



3

Foundations of Modal Type Theories

We focus on the � modality.

I Prawitz (1965) proposed a formulation with broken subject reduction.

I Formulations of the � modality was under intense investigations in the late ’90s
and the early 2000:

I IS4� (Bierman and de Paiva, 1996)
I Modal pure type system (Borghuis, 1994)
I The dual-context style (Pfenning and Davies, 2001; Davies and Pfenning, 2001)
I The Kripke style (Davies and Pfenning, 2001; Pfenning and Wong, 1995)

I Foundations of � still under active investigations (Hu and Pientka, 2022;
Valliappan et al., 2022; Gratzer et al., 2019; Gratzer, 2022, etc.).

Jason Hu — Foundations and Applications of Modal Type Theories



3

Foundations of Modal Type Theories

We focus on the � modality.

I Prawitz (1965) proposed a formulation with broken subject reduction.
I Formulations of the � modality was under intense investigations in the late ’90s

and the early 2000:

I IS4� (Bierman and de Paiva, 1996)
I Modal pure type system (Borghuis, 1994)
I The dual-context style (Pfenning and Davies, 2001; Davies and Pfenning, 2001)
I The Kripke style (Davies and Pfenning, 2001; Pfenning and Wong, 1995)

I Foundations of � still under active investigations (Hu and Pientka, 2022;
Valliappan et al., 2022; Gratzer et al., 2019; Gratzer, 2022, etc.).

Jason Hu — Foundations and Applications of Modal Type Theories



3

Foundations of Modal Type Theories

We focus on the � modality.

I Prawitz (1965) proposed a formulation with broken subject reduction.
I Formulations of the � modality was under intense investigations in the late ’90s

and the early 2000:
I IS4� (Bierman and de Paiva, 1996)

I Modal pure type system (Borghuis, 1994)
I The dual-context style (Pfenning and Davies, 2001; Davies and Pfenning, 2001)
I The Kripke style (Davies and Pfenning, 2001; Pfenning and Wong, 1995)

I Foundations of � still under active investigations (Hu and Pientka, 2022;
Valliappan et al., 2022; Gratzer et al., 2019; Gratzer, 2022, etc.).

Jason Hu — Foundations and Applications of Modal Type Theories



3

Foundations of Modal Type Theories

We focus on the � modality.

I Prawitz (1965) proposed a formulation with broken subject reduction.
I Formulations of the � modality was under intense investigations in the late ’90s

and the early 2000:
I IS4� (Bierman and de Paiva, 1996)
I Modal pure type system (Borghuis, 1994)

I The dual-context style (Pfenning and Davies, 2001; Davies and Pfenning, 2001)
I The Kripke style (Davies and Pfenning, 2001; Pfenning and Wong, 1995)

I Foundations of � still under active investigations (Hu and Pientka, 2022;
Valliappan et al., 2022; Gratzer et al., 2019; Gratzer, 2022, etc.).

Jason Hu — Foundations and Applications of Modal Type Theories



3

Foundations of Modal Type Theories

We focus on the � modality.

I Prawitz (1965) proposed a formulation with broken subject reduction.
I Formulations of the � modality was under intense investigations in the late ’90s

and the early 2000:
I IS4� (Bierman and de Paiva, 1996)
I Modal pure type system (Borghuis, 1994)
I The dual-context style (Pfenning and Davies, 2001; Davies and Pfenning, 2001)

I The Kripke style (Davies and Pfenning, 2001; Pfenning and Wong, 1995)

I Foundations of � still under active investigations (Hu and Pientka, 2022;
Valliappan et al., 2022; Gratzer et al., 2019; Gratzer, 2022, etc.).

Jason Hu — Foundations and Applications of Modal Type Theories



3

Foundations of Modal Type Theories

We focus on the � modality.

I Prawitz (1965) proposed a formulation with broken subject reduction.
I Formulations of the � modality was under intense investigations in the late ’90s

and the early 2000:
I IS4� (Bierman and de Paiva, 1996)
I Modal pure type system (Borghuis, 1994)
I The dual-context style (Pfenning and Davies, 2001; Davies and Pfenning, 2001)
I The Kripke style (Davies and Pfenning, 2001; Pfenning and Wong, 1995)

I Foundations of � still under active investigations (Hu and Pientka, 2022;
Valliappan et al., 2022; Gratzer et al., 2019; Gratzer, 2022, etc.).

Jason Hu — Foundations and Applications of Modal Type Theories



3

Foundations of Modal Type Theories

We focus on the � modality.

I Prawitz (1965) proposed a formulation with broken subject reduction.
I Formulations of the � modality was under intense investigations in the late ’90s

and the early 2000:
I IS4� (Bierman and de Paiva, 1996)
I Modal pure type system (Borghuis, 1994)
I The dual-context style (Pfenning and Davies, 2001; Davies and Pfenning, 2001)
I The Kripke style (Davies and Pfenning, 2001; Pfenning and Wong, 1995)

I Foundations of � still under active investigations (Hu and Pientka, 2022;
Valliappan et al., 2022; Gratzer et al., 2019; Gratzer, 2022, etc.).

Jason Hu — Foundations and Applications of Modal Type Theories



4

Goals of Thesis

Study general foundation for modal type theories; then focus on a particular
application to meta-programming

X Prove directly normalization of the Kripke-style λ→� (simply typed) by Davies
and Pfenning (2001); Pfenning and Wong (1995) (published in Hu and Pientka
(2022) at MFPS)

X Extend λ→� with dependent types, yielding Mint (submitted to JFP)

X Mechanize normalization proofs of these systems (submitted to JFP)

I Add pattern matching on code to modal type theory to strengthen its ability to do
dependently typed meta-programming

Jason Hu — Foundations and Applications of Modal Type Theories



4

Goals of Thesis

Study general foundation for modal type theories; then focus on a particular
application to meta-programming

X Prove directly normalization of the Kripke-style λ→� (simply typed) by Davies
and Pfenning (2001); Pfenning and Wong (1995) (published in Hu and Pientka
(2022) at MFPS)

X Extend λ→� with dependent types, yielding Mint (submitted to JFP)

X Mechanize normalization proofs of these systems (submitted to JFP)

I Add pattern matching on code to modal type theory to strengthen its ability to do
dependently typed meta-programming

Jason Hu — Foundations and Applications of Modal Type Theories



4

Goals of Thesis

Study general foundation for modal type theories; then focus on a particular
application to meta-programming

X Prove directly normalization of the Kripke-style λ→� (simply typed) by Davies
and Pfenning (2001); Pfenning and Wong (1995) (published in Hu and Pientka
(2022) at MFPS)

X Extend λ→� with dependent types, yielding Mint (submitted to JFP)

X Mechanize normalization proofs of these systems (submitted to JFP)

I Add pattern matching on code to modal type theory to strengthen its ability to do
dependently typed meta-programming

Jason Hu — Foundations and Applications of Modal Type Theories



4

Goals of Thesis

Study general foundation for modal type theories; then focus on a particular
application to meta-programming

X Prove directly normalization of the Kripke-style λ→� (simply typed) by Davies
and Pfenning (2001); Pfenning and Wong (1995) (published in Hu and Pientka
(2022) at MFPS)

X Extend λ→� with dependent types, yielding Mint (submitted to JFP)

X Mechanize normalization proofs of these systems (submitted to JFP)

I Add pattern matching on code to modal type theory to strengthen its ability to do
dependently typed meta-programming

Jason Hu — Foundations and Applications of Modal Type Theories



4

Goals of Thesis

Study general foundation for modal type theories; then focus on a particular
application to meta-programming

X Prove directly normalization of the Kripke-style λ→� (simply typed) by Davies
and Pfenning (2001); Pfenning and Wong (1995) (published in Hu and Pientka
(2022) at MFPS)

X Extend λ→� with dependent types, yielding Mint (submitted to JFP)

X Mechanize normalization proofs of these systems (submitted to JFP)

I Add pattern matching on code to modal type theory to strengthen its ability to do
dependently typed meta-programming

Jason Hu — Foundations and Applications of Modal Type Theories



5

Revisit λ→�

I The Kripke style has multiple advantages:

I Conceptually simple; direct modeling of the Kripke semantics
I Captures all four subsystems of S4
I Programming paradigm akin to typical meta-programming using quasi-quotes

I

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

I K : � (A → B) → � A → � B

K f x = box ((unbox1 f) (unbox1 x))

I Challenge: separate reasoning of substitutions and modal transformations leads to
complex analyses

Jason Hu — Foundations and Applications of Modal Type Theories



5

Revisit λ→�

I The Kripke style has multiple advantages:
I Conceptually simple; direct modeling of the Kripke semantics

I Captures all four subsystems of S4
I Programming paradigm akin to typical meta-programming using quasi-quotes

I

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

I K : � (A → B) → � A → � B

K f x = box ((unbox1 f) (unbox1 x))

I Challenge: separate reasoning of substitutions and modal transformations leads to
complex analyses

Jason Hu — Foundations and Applications of Modal Type Theories



5

Revisit λ→�

I The Kripke style has multiple advantages:
I Conceptually simple; direct modeling of the Kripke semantics
I Captures all four subsystems of S4

I Programming paradigm akin to typical meta-programming using quasi-quotes

I

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

I K : � (A → B) → � A → � B

K f x = box ((unbox1 f) (unbox1 x))

I Challenge: separate reasoning of substitutions and modal transformations leads to
complex analyses

Jason Hu — Foundations and Applications of Modal Type Theories



5

Revisit λ→�

I The Kripke style has multiple advantages:
I Conceptually simple; direct modeling of the Kripke semantics
I Captures all four subsystems of S4
I Programming paradigm akin to typical meta-programming using quasi-quotes

I

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

I K : � (A → B) → � A → � B

K f x = box ((unbox1 f) (unbox1 x))

I Challenge: separate reasoning of substitutions and modal transformations leads to
complex analyses

Jason Hu — Foundations and Applications of Modal Type Theories



5

Revisit λ→�

I The Kripke style has multiple advantages:
I Conceptually simple; direct modeling of the Kripke semantics
I Captures all four subsystems of S4
I Programming paradigm akin to typical meta-programming using quasi-quotes

I

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

I K : � (A → B) → � A → � B

K f x = box ((unbox1 f) (unbox1 x))

I Challenge: separate reasoning of substitutions and modal transformations leads to
complex analyses

Jason Hu — Foundations and Applications of Modal Type Theories



5

Revisit λ→�

I The Kripke style has multiple advantages:
I Conceptually simple; direct modeling of the Kripke semantics
I Captures all four subsystems of S4
I Programming paradigm akin to typical meta-programming using quasi-quotes

I

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

I K : � (A → B) → � A → � B

K f x = box ((unbox1 f) (unbox1 x))

I Challenge: separate reasoning of substitutions and modal transformations leads to
complex analyses

Jason Hu — Foundations and Applications of Modal Type Theories



5

Revisit λ→�

I The Kripke style has multiple advantages:
I Conceptually simple; direct modeling of the Kripke semantics
I Captures all four subsystems of S4
I Programming paradigm akin to typical meta-programming using quasi-quotes

I

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

I K : � (A → B) → � A → � B

K f x = box ((unbox1 f) (unbox1 x))

I Challenge: separate reasoning of substitutions and modal transformations leads to
complex analyses

Jason Hu — Foundations and Applications of Modal Type Theories



6

Kripke-style Substitutions

I In Hu and Pientka (2022), we propose Kripke-style substitutions as a substitution
calculus for λ→�

I K-substitutions: regular simultaneous substitutions extended with modal
information

I Modularly and uniformly capture the Kripke structure of λ→� both syntactically
and semantically

I One normalization-by-evaluation proof for all four subsystems

I Enable a formulation of contextual types (Nanevski et al., 2008) in the Kripke style

Jason Hu — Foundations and Applications of Modal Type Theories



6

Kripke-style Substitutions

I In Hu and Pientka (2022), we propose Kripke-style substitutions as a substitution
calculus for λ→�

I K-substitutions: regular simultaneous substitutions extended with modal
information

I Modularly and uniformly capture the Kripke structure of λ→� both syntactically
and semantically

I One normalization-by-evaluation proof for all four subsystems

I Enable a formulation of contextual types (Nanevski et al., 2008) in the Kripke style

Jason Hu — Foundations and Applications of Modal Type Theories



6

Kripke-style Substitutions

I In Hu and Pientka (2022), we propose Kripke-style substitutions as a substitution
calculus for λ→�

I K-substitutions: regular simultaneous substitutions extended with modal
information

I Modularly and uniformly capture the Kripke structure of λ→� both syntactically
and semantically

I One normalization-by-evaluation proof for all four subsystems

I Enable a formulation of contextual types (Nanevski et al., 2008) in the Kripke style

Jason Hu — Foundations and Applications of Modal Type Theories



6

Kripke-style Substitutions

I In Hu and Pientka (2022), we propose Kripke-style substitutions as a substitution
calculus for λ→�

I K-substitutions: regular simultaneous substitutions extended with modal
information

I Modularly and uniformly capture the Kripke structure of λ→� both syntactically
and semantically

I One normalization-by-evaluation proof for all four subsystems

I Enable a formulation of contextual types (Nanevski et al., 2008) in the Kripke style

Jason Hu — Foundations and Applications of Modal Type Theories



6

Kripke-style Substitutions

I In Hu and Pientka (2022), we propose Kripke-style substitutions as a substitution
calculus for λ→�

I K-substitutions: regular simultaneous substitutions extended with modal
information

I Modularly and uniformly capture the Kripke structure of λ→� both syntactically
and semantically

I One normalization-by-evaluation proof for all four subsystems

I Enable a formulation of contextual types (Nanevski et al., 2008) in the Kripke style

Jason Hu — Foundations and Applications of Modal Type Theories



7

Mint: Extensions to Dependent Types

I λ→� is simply typed; scales to dependent types naturally

I Mint, Modal Intuitionistic Type Theory, is developed:

I contains full Martin-Löf type theory
I supports inductive types, large elimination, a full cumulative universe hierarchy
I normalization by evaluation

I

−→
Γ ; · ` T : Sei
−→
Γ ` �T : Sei

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T

`
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

I Submitted to JFP

Jason Hu — Foundations and Applications of Modal Type Theories



7

Mint: Extensions to Dependent Types

I λ→� is simply typed; scales to dependent types naturally
I Mint, Modal Intuitionistic Type Theory, is developed:

I contains full Martin-Löf type theory
I supports inductive types, large elimination, a full cumulative universe hierarchy
I normalization by evaluation

I

−→
Γ ; · ` T : Sei
−→
Γ ` �T : Sei

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T

`
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

I Submitted to JFP

Jason Hu — Foundations and Applications of Modal Type Theories



7

Mint: Extensions to Dependent Types

I λ→� is simply typed; scales to dependent types naturally
I Mint, Modal Intuitionistic Type Theory, is developed:

I contains full Martin-Löf type theory

I supports inductive types, large elimination, a full cumulative universe hierarchy
I normalization by evaluation

I

−→
Γ ; · ` T : Sei
−→
Γ ` �T : Sei

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T

`
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

I Submitted to JFP

Jason Hu — Foundations and Applications of Modal Type Theories



7

Mint: Extensions to Dependent Types

I λ→� is simply typed; scales to dependent types naturally
I Mint, Modal Intuitionistic Type Theory, is developed:

I contains full Martin-Löf type theory
I supports inductive types, large elimination, a full cumulative universe hierarchy

I normalization by evaluation

I

−→
Γ ; · ` T : Sei
−→
Γ ` �T : Sei

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T

`
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

I Submitted to JFP

Jason Hu — Foundations and Applications of Modal Type Theories



7

Mint: Extensions to Dependent Types

I λ→� is simply typed; scales to dependent types naturally
I Mint, Modal Intuitionistic Type Theory, is developed:

I contains full Martin-Löf type theory
I supports inductive types, large elimination, a full cumulative universe hierarchy
I normalization by evaluation

I

−→
Γ ; · ` T : Sei
−→
Γ ` �T : Sei

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T

`
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

I Submitted to JFP

Jason Hu — Foundations and Applications of Modal Type Theories



7

Mint: Extensions to Dependent Types

I λ→� is simply typed; scales to dependent types naturally
I Mint, Modal Intuitionistic Type Theory, is developed:

I contains full Martin-Löf type theory
I supports inductive types, large elimination, a full cumulative universe hierarchy
I normalization by evaluation

I

−→
Γ ; · ` T : Sei
−→
Γ ` �T : Sei

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T

`
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

I Submitted to JFP

Jason Hu — Foundations and Applications of Modal Type Theories



7

Mint: Extensions to Dependent Types

I λ→� is simply typed; scales to dependent types naturally
I Mint, Modal Intuitionistic Type Theory, is developed:

I contains full Martin-Löf type theory
I supports inductive types, large elimination, a full cumulative universe hierarchy
I normalization by evaluation

I

−→
Γ ; · ` T : Sei
−→
Γ ` �T : Sei

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ` t : �T

`
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

I Submitted to JFP

Jason Hu — Foundations and Applications of Modal Type Theories



8

Normalization of Mint

I The normalization proof of Mint is a moderate extension of Abel (2013).

I based on an untyped domain model
I the algorithm is explicitly given
I use the algebra of truncoid to capture the Kripke structure; inherent the modularity

of the normalization proof of λ→�

I Fully mechanized in Agda!

I foundation: MLTT + functional extensionality + induction-recursion; standard
extensions

I exposes various missing details about modeling universes
I a basis for others to experiment their extensions to MLTT
I the algorithm can be run in Haskell after extraction

Jason Hu — Foundations and Applications of Modal Type Theories



8

Normalization of Mint

I The normalization proof of Mint is a moderate extension of Abel (2013).
I based on an untyped domain model

I the algorithm is explicitly given
I use the algebra of truncoid to capture the Kripke structure; inherent the modularity

of the normalization proof of λ→�

I Fully mechanized in Agda!

I foundation: MLTT + functional extensionality + induction-recursion; standard
extensions

I exposes various missing details about modeling universes
I a basis for others to experiment their extensions to MLTT
I the algorithm can be run in Haskell after extraction

Jason Hu — Foundations and Applications of Modal Type Theories



8

Normalization of Mint

I The normalization proof of Mint is a moderate extension of Abel (2013).
I based on an untyped domain model
I the algorithm is explicitly given

I use the algebra of truncoid to capture the Kripke structure; inherent the modularity
of the normalization proof of λ→�

I Fully mechanized in Agda!

I foundation: MLTT + functional extensionality + induction-recursion; standard
extensions

I exposes various missing details about modeling universes
I a basis for others to experiment their extensions to MLTT
I the algorithm can be run in Haskell after extraction

Jason Hu — Foundations and Applications of Modal Type Theories



8

Normalization of Mint

I The normalization proof of Mint is a moderate extension of Abel (2013).
I based on an untyped domain model
I the algorithm is explicitly given
I use the algebra of truncoid to capture the Kripke structure; inherent the modularity

of the normalization proof of λ→�

I Fully mechanized in Agda!

I foundation: MLTT + functional extensionality + induction-recursion; standard
extensions

I exposes various missing details about modeling universes
I a basis for others to experiment their extensions to MLTT
I the algorithm can be run in Haskell after extraction

Jason Hu — Foundations and Applications of Modal Type Theories



8

Normalization of Mint

I The normalization proof of Mint is a moderate extension of Abel (2013).
I based on an untyped domain model
I the algorithm is explicitly given
I use the algebra of truncoid to capture the Kripke structure; inherent the modularity

of the normalization proof of λ→�

I Fully mechanized in Agda!

I foundation: MLTT + functional extensionality + induction-recursion; standard
extensions

I exposes various missing details about modeling universes
I a basis for others to experiment their extensions to MLTT
I the algorithm can be run in Haskell after extraction

Jason Hu — Foundations and Applications of Modal Type Theories



8

Normalization of Mint

I The normalization proof of Mint is a moderate extension of Abel (2013).
I based on an untyped domain model
I the algorithm is explicitly given
I use the algebra of truncoid to capture the Kripke structure; inherent the modularity

of the normalization proof of λ→�

I Fully mechanized in Agda!
I foundation: MLTT + functional extensionality + induction-recursion; standard

extensions

I exposes various missing details about modeling universes
I a basis for others to experiment their extensions to MLTT
I the algorithm can be run in Haskell after extraction

Jason Hu — Foundations and Applications of Modal Type Theories



8

Normalization of Mint

I The normalization proof of Mint is a moderate extension of Abel (2013).
I based on an untyped domain model
I the algorithm is explicitly given
I use the algebra of truncoid to capture the Kripke structure; inherent the modularity

of the normalization proof of λ→�

I Fully mechanized in Agda!
I foundation: MLTT + functional extensionality + induction-recursion; standard

extensions
I exposes various missing details about modeling universes

I a basis for others to experiment their extensions to MLTT
I the algorithm can be run in Haskell after extraction

Jason Hu — Foundations and Applications of Modal Type Theories



8

Normalization of Mint

I The normalization proof of Mint is a moderate extension of Abel (2013).
I based on an untyped domain model
I the algorithm is explicitly given
I use the algebra of truncoid to capture the Kripke structure; inherent the modularity

of the normalization proof of λ→�

I Fully mechanized in Agda!
I foundation: MLTT + functional extensionality + induction-recursion; standard

extensions
I exposes various missing details about modeling universes
I a basis for others to experiment their extensions to MLTT

I the algorithm can be run in Haskell after extraction

Jason Hu — Foundations and Applications of Modal Type Theories



8

Normalization of Mint

I The normalization proof of Mint is a moderate extension of Abel (2013).
I based on an untyped domain model
I the algorithm is explicitly given
I use the algebra of truncoid to capture the Kripke structure; inherent the modularity

of the normalization proof of λ→�

I Fully mechanized in Agda!
I foundation: MLTT + functional extensionality + induction-recursion; standard

extensions
I exposes various missing details about modeling universes
I a basis for others to experiment their extensions to MLTT
I the algorithm can be run in Haskell after extraction

Jason Hu — Foundations and Applications of Modal Type Theories



9

Pattern Matching on Code

I We focus on applications to meta-programming.

I �T denotes the type of code representing some T

I A missing feature: pattern matching on code

I Internal analysis of syntactic structure:

is-app : � T → Bool

is-app (box (f x)) = true

is-app _ = false

Jason Hu — Foundations and Applications of Modal Type Theories



9

Pattern Matching on Code

I We focus on applications to meta-programming.
I �T denotes the type of code representing some T

I A missing feature: pattern matching on code

I Internal analysis of syntactic structure:

is-app : � T → Bool

is-app (box (f x)) = true

is-app _ = false

Jason Hu — Foundations and Applications of Modal Type Theories



9

Pattern Matching on Code

I We focus on applications to meta-programming.
I �T denotes the type of code representing some T

I A missing feature: pattern matching on code

I Internal analysis of syntactic structure:

is-app : � T → Bool

is-app (box (f x)) = true

is-app _ = false

Jason Hu — Foundations and Applications of Modal Type Theories



9

Pattern Matching on Code

I We focus on applications to meta-programming.
I �T denotes the type of code representing some T

I A missing feature: pattern matching on code

I Internal analysis of syntactic structure:

is-app : � T → Bool

is-app (box (f x)) = true

is-app _ = false

Jason Hu — Foundations and Applications of Modal Type Theories



10

Challenges of Extending Mint

I Philosophical clash: unbox in Mint uses � by projection; while pattern matching
on code does case analysis.

I Congruence of box in Mint breaks
confluence:

is-app (box ((λ x → x) 0))

There are two distinct reductions:

I is-app (box ((λ x → x) 0)) = true

I is-app (box ((λ x → x) 0))

= is-app (box 0)

= false

is-app : � T → Bool

is-app (box (f x)) = true

is-app _ = false

Jason Hu — Foundations and Applications of Modal Type Theories



10

Challenges of Extending Mint

I Philosophical clash: unbox in Mint uses � by projection; while pattern matching
on code does case analysis.

I Congruence of box in Mint breaks
confluence:

is-app (box ((λ x → x) 0))

There are two distinct reductions:

I is-app (box ((λ x → x) 0)) = true

I is-app (box ((λ x → x) 0))

= is-app (box 0)

= false

is-app : � T → Bool

is-app (box (f x)) = true

is-app _ = false

Jason Hu — Foundations and Applications of Modal Type Theories



10

Challenges of Extending Mint

I Philosophical clash: unbox in Mint uses � by projection; while pattern matching
on code does case analysis.

I Congruence of box in Mint breaks
confluence:

is-app (box ((λ x → x) 0))

There are two distinct reductions:
I is-app (box ((λ x → x) 0)) = true

I is-app (box ((λ x → x) 0))

= is-app (box 0)

= false

is-app : � T → Bool

is-app (box (f x)) = true

is-app _ = false

Jason Hu — Foundations and Applications of Modal Type Theories



10

Challenges of Extending Mint

I Philosophical clash: unbox in Mint uses � by projection; while pattern matching
on code does case analysis.

I Congruence of box in Mint breaks
confluence:

is-app (box ((λ x → x) 0))

There are two distinct reductions:
I is-app (box ((λ x → x) 0)) = true

I is-app (box ((λ x → x) 0))

= is-app (box 0)

= false

is-app : � T → Bool

is-app (box (f x)) = true

is-app _ = false

Jason Hu — Foundations and Applications of Modal Type Theories



11

No Easy Fix for Confluence

Is it possible to only pattern match on normal forms?

Confluence is still broken:

(λ x → is-app (box (unbox1 x))) (box (F T))

I (λ x → is-app (box (unbox1 x))) (box (F T))

= (λ x → false) (box (F T))

= false

I (λ x → is-app (box (unbox1 x))) (box (F T))

= is-app (box (F T))

= true

Jason Hu — Foundations and Applications of Modal Type Theories



11

No Easy Fix for Confluence

Is it possible to only pattern match on normal forms?
Confluence is still broken:

(λ x → is-app (box (unbox1 x))) (box (F T))

I (λ x → is-app (box (unbox1 x))) (box (F T))

= (λ x → false) (box (F T))

= false

I (λ x → is-app (box (unbox1 x))) (box (F T))

= is-app (box (F T))

= true

Jason Hu — Foundations and Applications of Modal Type Theories



11

No Easy Fix for Confluence

Is it possible to only pattern match on normal forms?
Confluence is still broken:

(λ x → is-app (box (unbox1 x))) (box (F T))

I (λ x → is-app (box (unbox1 x))) (box (F T))

= (λ x → false) (box (F T))

= false

I (λ x → is-app (box (unbox1 x))) (box (F T))

= is-app (box (F T))

= true

Jason Hu — Foundations and Applications of Modal Type Theories



11

No Easy Fix for Confluence

Is it possible to only pattern match on normal forms?
Confluence is still broken:

(λ x → is-app (box (unbox1 x))) (box (F T))

I (λ x → is-app (box (unbox1 x))) (box (F T))

= (λ x → false) (box (F T))

= false

I (λ x → is-app (box (unbox1 x))) (box (F T))

= is-app (box (F T))

= true

Jason Hu — Foundations and Applications of Modal Type Theories



12

Research Plan

I Take away congruence of box; move to the dual-context style

I Use the conversion relation instead of NbE; better control over terms

I [4 months] Follow experience in the Kripke style; start from simple types

I [3 months] Scale to dependent types afterwards

I [1 months] Case study

I Work out a paper proof before mechanization

I Possible implementation after PhD

Jason Hu — Foundations and Applications of Modal Type Theories



12

Research Plan

I Take away congruence of box; move to the dual-context style

I Use the conversion relation instead of NbE; better control over terms

I [4 months] Follow experience in the Kripke style; start from simple types

I [3 months] Scale to dependent types afterwards

I [1 months] Case study

I Work out a paper proof before mechanization

I Possible implementation after PhD

Jason Hu — Foundations and Applications of Modal Type Theories



12

Research Plan

I Take away congruence of box; move to the dual-context style

I Use the conversion relation instead of NbE; better control over terms

I [4 months] Follow experience in the Kripke style; start from simple types

I [3 months] Scale to dependent types afterwards

I [1 months] Case study

I Work out a paper proof before mechanization

I Possible implementation after PhD

Jason Hu — Foundations and Applications of Modal Type Theories



12

Research Plan

I Take away congruence of box; move to the dual-context style

I Use the conversion relation instead of NbE; better control over terms

I [4 months] Follow experience in the Kripke style; start from simple types

I [3 months] Scale to dependent types afterwards

I [1 months] Case study

I Work out a paper proof before mechanization

I Possible implementation after PhD

Jason Hu — Foundations and Applications of Modal Type Theories



12

Research Plan

I Take away congruence of box; move to the dual-context style

I Use the conversion relation instead of NbE; better control over terms

I [4 months] Follow experience in the Kripke style; start from simple types

I [3 months] Scale to dependent types afterwards

I [1 months] Case study

I Work out a paper proof before mechanization

I Possible implementation after PhD

Jason Hu — Foundations and Applications of Modal Type Theories



12

Research Plan

I Take away congruence of box; move to the dual-context style

I Use the conversion relation instead of NbE; better control over terms

I [4 months] Follow experience in the Kripke style; start from simple types

I [3 months] Scale to dependent types afterwards

I [1 months] Case study

I Work out a paper proof before mechanization

I Possible implementation after PhD

Jason Hu — Foundations and Applications of Modal Type Theories



12

Research Plan

I Take away congruence of box; move to the dual-context style

I Use the conversion relation instead of NbE; better control over terms

I [4 months] Follow experience in the Kripke style; start from simple types

I [3 months] Scale to dependent types afterwards

I [1 months] Case study

I Work out a paper proof before mechanization

I Possible implementation after PhD

Jason Hu — Foundations and Applications of Modal Type Theories



Bibliography I

Bibliography

Abel, A. (2013). Normalization by evaluation: dependent types and impredicativity. Habilitation thesis, Ludwig-Maximilians-Universität München.

Bierman, G. and de Paiva, V. (1996). Intuitionistic necessity revisited. Technical Report CSR–96–10, University of Birmingham.

Borghuis, V. A. J. (1994). Coming to terms with modal logic : on the interpretation of modalities in typed lambda-calculus. PhD Thesis,
Mathematics and Computer Science.

Davies, R. and Pfenning, F. (2001). A modal analysis of staged computation. Journal of the ACM, 48(3):555–604.

Gratzer, D. (2022). Normalization for Multimodal Type Theory. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’22, pages 1–13, New York, NY, USA. Association for Computing Machinery.

Gratzer, D., Sterling, J., and Birkedal, L. (2019). Implementing a modal dependent type theory. Proceedings of the ACM on Programming
Languages, 3(ICFP):107:1–107:29.

Hu, J. Z. S. and Pientka, B. (2022). A categorical normalization proof for the modal lambda-calculus. In Proceedings 38th Conference on
Mathematical Foundations of Programming Semantics, MFPS 2022, EPTCS.

Nanevski, A., Pfenning, F., and Pientka, B. (2008). Contextual modal type theory. ACM Transactions on Computational Logic, 9(3):23:1–23:49.

Pfenning, F. and Davies, R. (2001). A judgmental reconstruction of modal logic. Mathematical Structures in Computer Science, 11(04).

Pfenning, F. and Wong, H. (1995). On a modal lambda calculus for S4. In Brookes, S. D., Main, M. G., Melton, A., and Mislove, M. W., editors,
Eleventh Annual Conference on Mathematical Foundations of Programming Semantics, MFPS 1995, Tulane University, New Orleans, LA, USA,
March 29 - April 1, 1995, volume 1 of Electronic Notes in Theoretical Computer Science, pages 515–534. Elsevier.

Prawitz, D. (1965). Natural Deduction: A Proof-theoretical Study. Stockholm.

Valliappan, N., Ruch, F., and Tomé Cortiñas, C. (2022). Normalization for fitch-style modal calculi. Proc. ACM Program. Lang., 6(ICFP):772–798.


