
Foundations and Applications of Modal
Type Theories

Jason Z. S. Hu
Doctor of Philosophy

School of Computer Science

McGill University

Montreal, Quebec, Canada

December 3, 2024

A thesis submitted to McGill University in partial

fulfillment of the requirements of the degree of

Doctor of Philosophy

©Jason Z. S. Hu, 2024

Abstract

Over the past few decades, type theories as mathematical foundations have been exten-

sively studied and are well understood. Many proof assistants implement type theories

and have found important applications to provide critical security guarantees. In these

applications, users often write meta-programs, programs that generate other programs,

to implement proof search heuristics and improve their work efficiency. However, as op-

posed to the deep understanding of type theories, it remains unclear what foundation

is suitable to support meta-programming in proof assistants. In this thesis, I investi-

gate modal type theories, a specific approach to this problem. In modal type theories,

modalities are a way to shallowly embed syntax into the systems, so users can write

meta-programs that manipulate syntax through these modalities.

I explore two different styles of modal systems. In the first part, I investigate the

Kripke-style systems, which faithfully model the familiar quasi-quoting style of meta-

programming. I develop an explicit substitution calculus and scale it to dependent

types, introducing Mint. I prove strong normalization of Mint, which implies its

logical consistency, using an untyped domain model.

Nevertheless, the Kripke-style systems only support composition and execution of

code, and they cannot easily support a general recursion principle on the structure of

code. To support such a general recursion principle, I develop the layered style, where

a system is divided into nested layers of sub-languages. The layered style scales quite

naturally to dependent types, introducing DeLaM. DeLaM allows users to compose,

execute and recurse on dependently typed code. I prove that DeLaM is weakly nor-

malizing and its convertibility problem between types and terms is decidable. Hence,

DeLaM provides a type-theoretic foundation to support type-safe meta-programming

in proof assistants.

i

Abrégé

Au cours des dernières décennies, les théories des types comme fondements mathématiques

ont été étudiées en détails et sont maintenant bien compises. Plusieurs assistants de

preuve implémentent les théories des types et ont établi des applications pour fournir

d’importantes garanties de sécurité. Dans ces applications, les utilisateur écrivent des

méta-programmes, c’est-à-dire des programmes générant d’autres programmes, dans le

but d’implémenter des heuristiques de recherche de preuve et ainsi d’améliorer l’efficacité

de leur travail. Néanmoins, malgré la grande compréhension des théories des types,

les fondements adéquats pour la méta-programmation dans les assistants de preuves

demeurent incertains. Dans cette thèse, j’investigue les théories des types modaux,

une approche spécifique tentant de résoudre ce problème. Dans les théories des types

modaux, les modalités fournissent une encapsulation superficielle de la syntax dans le

système, permettant aux utilisateurs d’écrire des méta-programmes qui manipulent la

syntaxe à travers ces modalités.

J’explore deux styles distincts de systèmes modaux. D’abord, j’explore les systèmes

de style Kripke, qui modélisent fidèlement l’approche familière de méta-programmation

appelée quasi-citation (traduit de l’anglais quasi-quotation). Je définis un calcul de

substitution explicite, puis l’étends aux types dépendents, menant à l’introduction de

Mint. Je prouve la normalization forte de Mint, qui implique sa consistence logique,

en utilisant un modèle de domaine non-typé.

Cependant, les systèmes de styles Kripke supportent seulement la composition et

l’éxécution de code, et permettent difficilement le support d’un principe général de

récursion sur la structure du code. Afin de supporter un principe général de récursion,

je développe le style stratifié, dans lequel un système est séparé en strates imbriqués de

sous-langages. Le style stratifié s’étend de façon naturelle aux types dépendents, menant

ii

à l’introduction de DeLaM. DeLaM permet la composition, l’éxécution, et la récursion

sur du code à type dépendent. Je prouve la normalization faible de DeLaM et que le

problème de convertibilité entre les types et les termes est décidable. Conséquemment,

DeLaM offre un fondement dans la théorie des types pour la méta-programmation

sécuritaire dans les assistants de preuve.

iii

Contributions

In this thesis, each chapter in Parts I and II is a type theory that I have developed.

I am the first and main author of corresponding publications and technical reports.

Publications are coauthored with my supervisor Prof. Brigitte Pientka. Junyoung

(Clare) Jang also coauthored (Hu et al., 2023). Contents in Chapters 2 and 4 are new;

they have not been published.

• Chapter 2 re-examines the system λ� by Davies and Pfenning (2001). The nor-

malization proof extends the one for simply typed λ calculus by Abel (2013). The

mechanization is solely done by myself.

• Chapter 3 introduces a new dependent type theory, Mint. The normalization

proof extends the one for Martin-Löf type theory by Abel (2013). The mecha-

nization is about 80% done by myself. The rest is accomplished as a collaboration

with Junyoung (Clare) Jang. This chapter is published work (Hu et al., 2023).

• Chapter 4 introduces layered modal type theory, which has certain overlaps with

the system by Pfenning and Davies (2001). The weak normalization and the

decidability of convertibility is based on Abel et al. (2018).

• Chapter 5 introduces a dependent type theory for intensional analysis, DeLaM.

This system extends layered modal type theory from Chapter 4. The weak nor-

malization and the decidability of convertibility is based on Abel et al. (2018).

This chapter is published work (Hu and Pientka, 2025).

iv

Publications

• Jason Z. S. Hu and Brigitte Pientka. 2025. A Dependent Type Theory for Meta-

programming with Intensional Analysis. Proc. ACM Program. Lang. 9, POPL

(2025).

• Jason Z. S. Hu and Brigitte Pientka. 2024. Layered Modal Type Theory: Where

Meta-programming Meets Intensional Analysis. In Proceedings of the 33rd Eu-

ropean Symposium on Programming on Programming Languages and Systems,

ESOP 2024, Held as Part of the European Joint Conferences on Theory and Prac-

tice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024,

Part I (Lecture Notes in Computer Science, Vol. 14576), Stephanie Weirich (Ed.).

Springer, 52–82.

• Jason Z. S. Hu, Junyoung Jang, and Brigitte Pientka. 2023. Normalization by

Evaluation for Modal Dependent Type Theory. J. Funct. Program. 33 (2023).

• Jason Z. S. Hu and Brigitte Pientka. 2022. A Categorical Normalization Proof

for the Modal Lambda-Calculus. In Proceedings of the 38th Conference on the

Mathematical Foundations of Programming Semantics, MFPS XXXXVIII, Cor-

nell University, Ithaca, NY, USA, with a satellite event at IRIF, Denis Diderot

University, Paris, France, and online, July 11-13, 2022 (EPTICS, Vol. 1), Justin

Hsu and Christine Tasson (Eds.). EpiSciences.

v

Acknowledgements

In the breeze of the sixth fall since my return to Montreal, I finally see the end of my

PhD study at McGill University. It was a long, difficult, yet fun period of time, and

I was definitely not able to go through it without support from many people. In the

past a bit over five years, I owe the most to my supervisor, Prof. Brigitte Pientka.

She not only guided me in my research with care, but also assisted me in developing a

professional life. Her advice style was critical to our dynamics even during the difficult

COVID time. I also enjoyed every part of freedom under her supervision, because of

which I had a very good personal life outside of research.

During this long PhD study, I surely did not work alone. Clare Jang and I col-

laborated on many projects. Interactions and discussions with him were often help-

ful and inspiring. Members in the CompLogic group had helped me in many ways,

including teaching and research. Some off-track chitchats were great ways to relax

my nerves. They have my appreciations (not in any particular order): David Thi-

bodeau, Jake Errington, Antoine Gaulin, Hanneli Tavante, Marc-Antoine Ouimet, Jo-

hanna Schwartzentruber, Max Kopinsky, Daniel Zackon, Ryan Kavanagh, Chuta Sano,

etc..

The Agda programming language/proof assistant has constituted an important part

of my PhD study. The Agda community has been very welcoming, and many dis-

cussions about type theories inspired me to do a PhD in dependent type theory. A

non-exhaustive list of people includes Prof. Matthew Daggitt, G. Allais, Prof. Jacques

Carette, Prof. Wolfram Kahl, among many others.

My progress committee members have also been very supportive: Prof. Prakash

Panangaden, Prof. Clark Verbrugge and Prof. Stefan Monnier. I would also like to

thank my internal examiner Prof. Marcin Sabok, my external examiner Prof. Dominic

vi

Orchard, and my defense committee chair Prof. Mathieu Blanchette.

My journey to the grad school would not have started in the same way without

my master’s supervisor, Prof. Ondřej Lhoták, who offered great help for me to return

to the academia after years in the industry. Prof. Arie Gurfinkel and Prof. Richard

Trefler supported my PhD applications and wrote recommendation letters, which were

very important to pave my way to a PhD study.

Besides an academic career, I also developed a professional life in the industry at

Amazon Web Services (AWS) during the summers. Without Mike Whalen’s recognition,

it would not have been possible, so I feel very grateful to him. He is the best manager

that I could hope for. Nathan Chong is also a fun and great manager. There are many

other people whom I received help from and feel also grateful to: Daniel Schwartz-

Narbonne, Mark Tuttle, Michael Tautschnig, Dominic Mulligan, Konrad Slind, Bruno

Dutertre, Aaron Bradley, Soonho Kong and many others.

Outside of my study, I have developed a very delightful personal life. Among all

activities, I cherish badminton the most. Badminton has critical importance in my PhD

life, especially during difficult times. I would like to thank my coaches Tyler Patt and

Zhifeng Chen for training me and improving my badminton skills. I would also like to

thank the numerous badminton mates who I met at McGill’s gym, CEPSUM and many

other places. They are the ones who let me understand how great sports truly are.

All these beautiful experiences would not have been possible without my mom’s

support for me to come to Canada. Pierre Grondin and my mom offered the best

they could to help me settle a life in Canada. My dad’s and other family members’

understanding is important for me to take a pause on the industry and start a long

grad life. I hope they also feel that the time spent has paid off.

At last, I would like to thank my funding agencies. Without their stable financial

supports, I would not have been able to invest time on my research to the full extent.

My research was supported by the Natural Sciences and Engineering Research Coun-

cil (NSERC) through Postgraduate Scholarships-Doctoral program (PGS D), Fonds de

recherche du Québec-Nature et technologies (FRQNT) through Doctoral (B2X) Re-

search Scholarship, and McGill University through Trottier Accelerator Award and the

Charity Exercise Award.

vii

Contents

Abstract i

Abrégé ii

Contributions iv

Publications v

Acknowledgements vi

1 Introduction 1

1.1 Simply Typed λ-calculus as Type Theory 8

1.2 Methodology . 13

1.3 Contributions . 14

1.4 Conventions . 16

I Kripke-style Modal Type Theories 17

2 Kripke-style Modal λ-Calculus 18

2.1 Syntax of λ� . 19

2.2 Modal Transformations . 24

2.3 Explicit K-substitutions . 25

2.4 Truncation and Truncation Offset . 27

2.5 Untyped Domain Model . 31

2.6 Untyped Modal Transformations (UMoTs) 34

viii

2.7 Evaluation . 36

2.8 Readback Functions . 38

2.9 PER Model And Completeness . 39

2.10 Restricted Weakenings . 42

2.11 Gluing Model And Soundness . 43

2.12 Summary . 46

3 Mint: A Kripke-style Modal Dependent Type Theory 47

3.1 Introducing Mint by Examples . 48

3.1.1 Laws in S4 . 48

3.1.2 Lifting of Natural Numbers . 49

3.1.3 Generating N-ary Sum . 50

3.1.4 Soundness of N-ary Sum . 53

3.2 Definition of Mint . 54

3.3 Scaling Untyped Domain Model . 58

3.4 Evaluation and Readback . 61

3.5 PER Model . 63

3.6 Properties for PERs . 66

3.6.1 U Irrelevance . 66

3.6.2 U and El are PERs . 66

3.6.3 Monotonicity . 67

3.6.4 Cumulativity and Lowering . 68

3.6.5 Realizability . 68

3.7 Semantic Judgments And Completeness 69

3.8 Gluing Model . 72

3.9 Properties of Gluing Model . 77

3.9.1 Monotonicity . 77

3.9.2 Realizability . 77

3.9.3 Cumulativity and Lowering . 78

3.10 Fundamental Theorems and Soundness 78

3.11 Summary . 82

ix

II Layered Modal Type Theories 83

4 A Layered Modal Type Theory for Intensional Analysis 84

4.1 Example Programs in 2-layered Modal Type Theory 89

4.1.1 A Layered Multiplication Function 89

4.1.2 Contextual Types for Open Code 90

4.1.3 Pattern Matching for Intensional Analysis 91

4.2 Syntax And Well-formedness . 93

4.3 Pattern Matching on Code . 101

4.4 Syntactic Properties . 105

4.5 Weak-head Reduction . 107

4.6 Generic Equivalence . 109

4.7 Reducibility Predicates at Layer 0 . 113

4.8 Semantic Pattern Matching And Reducibility Predicates at Layer 1 . . 118

4.9 Semantic Judgments And Fundamental Theorems 121

4.10 Convertibility Checking . 128

4.11 Comparison with Homogeneous and Heterogeneous Styles 130

4.12 Summary . 132

5 DeLaM: Dependent Layered Modal Type Theory 134

5.1 DeLaM by Examples . 137

5.1.1 Recursion on Code Objects Describing MLTT Terms 137

5.1.2 Recursion on Code Objects Describing MLTT Types 141

5.2 Syntax of DeLaM . 142

5.2.1 Explicit Universe Polymorphism 142

5.2.2 Variables, Contexts and Substitutions 144

5.2.3 Non-cumulative Tarski-Style Universes and Types 144

5.2.4 Dissecting Types and Terms of DeLaM 145

5.3 Syntactic Judgments in DeLaM . 147

5.3.1 Well-Formed Regular and Meta-Context 148

5.3.2 Types and Terms . 149

5.3.3 Static Code and Lifting Lemma 153

x

5.3.4 Universe, Regular and Meta-Substitutions 155

5.3.5 Weak-Head Reductions . 157

5.3.6 Recursion on Code . 160

5.4 Kripke Logical Relations . 163

5.4.1 Generic Equivalences . 164

5.4.2 Logical Relations for Types and Terms in MLTT 165

5.4.3 Properties of Logical Relations 169

5.4.4 Semantics for MLTT and Code 172

5.4.5 Logical Relations for Meta-Contexts and

Meta-Substitutions . 175

5.4.6 Logical Relations for Layer M 176

5.4.7 Semantic Judgments and Fundamental Theorems 179

5.5 Consequences of Fundamental Theorems 181

5.5.1 First Instantiation: Syntactic Equivalence 181

5.5.2 Conversion Checking . 184

5.5.3 Second Instantiation: Conversion Checking Algorithm 185

5.6 Summary . 186

III Discussions and Conclusions 188

6 Related Work And Discussions 189

6.1 Modal Type Theories . 189

6.2 Normalization for Type Theories . 194

6.3 Mechanization of Normalization for Type Theories 196

6.4 Modalities, Meta-programming and Intensional Analysis 198

6.5 Future Work . 200

6.5.1 Russell-Style Universes in DeLaM 200

6.5.2 NbE for DeLaM . 201

6.5.3 Mechanization of DeLaM . 203

6.5.4 Other Extensions for DeLaM 204

6.6 An Outline of Implementing DeLaM 204

xi

7 Conclusions 207

Bibliography 209

Appendices 231

A Missing Typing Rules for Chapter 2 232

B Full Set of Rules for Mint 235

C Substitutions for Layered Modal Type Theory 243

D Adding Recursor for Natural Numbers 247

E Conversion Checking for Neutral Pattern Matching 249

F Well-formedness and Reductions of Branches 251

F.1 Branches for Types . 252

F.1.1 Type of Universes . 252

F.1.2 Type of Natural Numbers . 252

F.1.3 Π Types . 253

F.1.4 Decoder El . 253

F.2 Branches for Terms . 254

F.2.1 Variables . 254

F.2.2 Encoding of Universes . 255

F.2.3 Encoding of Natural Numbers 255

F.2.4 Encoding of Π Types . 256

F.2.5 Zero Case . 256

F.2.6 Successor Case . 257

F.2.7 Function Abstractions . 257

G Semantic Judgments for Code 259

xii

List of Figures

2.1 Typing judgments and some chosen equivalence judgments 23

2.2 Typing judgments for K-substitutions 25

3.1 Selected rules for Mint . 57

3.2 Selected rules for Mint (Cont’d) . 58

4.1 Comparison between heterogenous, homogenous, and layered meta-programming

systems . 85

4.2 Well-formedness of meta- and regular contexts and types 94

4.3 Typing rules for layered modal type theory 97

4.4 Equivalence judgment . 98

4.5 judgments for pattern matching and branches 102

4.6 Covering judgment for all branches . 104

4.7 One-step reduction . 108

4.8 Judgments for meta-and regular weakenings 110

4.9 Illustration of semantic action on function applications 115

4.10 Semantic judgment for code . 119

4.11 Conversion checking algorithm . 129

5.1 Layer hierarchy of DeLaM . 135

5.2 An implementation of an equality checker modulo AC 138

5.3 Syntax of DeLaM . 143

5.4 Typing rules for terms . 151

5.5 Structure of logical relations . 164

5.6 Logical relations for types in MLTT 166

xiii

5.7 Logical relations for contexts . 168

5.8 Selected rules for semantic judgment for code 173

5.9 Logical relations for meta-contexts . 175

5.10 Logical relations for types at layer m 177

5.11 Selected rules for conversion checking algorithm 183

5.12 Selected rules for conversion checking algorithm for neutral terms . . . 184

6.1 Impossible tetrahedron for meta-programming foundations 198

xiv

List of Tables

1.1 Comparison of type theories in this thesis 14

2.1 Modal type theories, K, T , K4, S4 . 20

4.1 A comparison of features among different systems 86

5.1 Characteristics of each layer . 147

xv

1
Introduction

In the past few decades, computer programs have gained more and more significance

in society. Today, computer software governs many important areas of everyone’s life:

finances, national defense systems, aerospace and astronautics industries, etc.. Fail-

ures and bugs in computer programs have or could have caused many catastrophes in

the history. During the Cold War, both the US (Burr, 2020) and the Soviet (Wash-

ington Post, 2007) had false alarms for missiles coming from the other side. In 2012,

the Heartbleed bug (Durumeric et al., 2014) was reported and was only patched two

years later. It was a security vulnerability in the OpenSSL cryptographic library. The

library is widely used in browsers and many secured communication channels. Heart-

bleed exploited a buffer over-read in the implementation and allowed arbitrary access

to memory, including sensitive data. The Y2K problem (Committee on Government

Reform and Oversight, 1998), or the millennium bug, was a bug in date representation

and handling prior to the year of 2000 and caused a large public panic. This bug was

predicted to have catastrophic consequences in the financial industry and the airline

companies, but also had unexpected social effects due to the general public’s misunder-

1

standings. These examples illustrate that the proper functioning of the modern society

critically depends on the correct behaviors of computer programs. But how do we know

that a computer program, when being written, is going to execute correctly? One im-

portant and frequent solution is testing. We feed some inputs to the program and check

whether the outputs match our expectations. However, most programs have a very

large number of possible inputs, if not infinite, so testing does not generally provide full

correctness guarantees. In practice, testing all corner cases of a program is usually a

non-trivial task. The question now is: can we guarantee the correctness of a program?

One alternative to testing is formal software verification. We establish mathemat-

ical models for programs and prove some theorems to describe the behaviors of the

programs. Unlike testing, this method provides strong mathematical guarantees; we

know for sure that a program cannot go wrong as far as the model and the theorems

describe.1 These models are usually very sophisticated for practical software like com-

pilers and operating systems, so it is not sufficient to simply sketch some proofs on a

piece of paper and declare that the programs have been verified. To check proofs on a

large scale, many researchers (Martin-Löf, 1975; Martin-Löf, 1984; Coquand and Huet,

1988; Pfenning and Paulin-Mohring, 1989; Luo, 1990, etc.) have designed mathematical

foundations suitable for computer-based proof checking and implemented some of these

foundations as proof assistants, the software that checks correctness of proofs. The

foundation that I am particularly interested in this thesis, is type theories. Type theo-

ries were originally designed to formalize mathematics but are also successfully used in

many software verification projects. These successful applications include CompCert,

a certified optimizing C compiler (Leroy et al., 2016), and CertikOS, a preemptive,

concurrent operating system kernel (Gu et al., 2011). Both projects are accomplished

in the Coq proof assistant (soon to be renamed to Rocq) (The Coq Development Team,

2023). Coq is also widely used in mechanizing mathematics. The famous four-color

problem was mechanized in Coq (Gonthier et al., 2008).2 Nowadays, the Coq commu-

nity has developed and maintains a large collection of formal mathematical libraries.

1If the model or the theorems are too weak, however, it is still possible for a proven correct program
to break. This is called a “side channel”. What a model and a theorem should be is non-trivial and
collectively decided by the research community.

2The first proof of this problem was given by Appel and Haken (1977). The proof was controversial at
the time because they used a computer program to exhaustively test 1936 different map configurations.

2

A few notable ones include C-Corn (Cruz-Filipe et al., 2004) for real analysis and al-

gebra, Mathematical Components (Mahboubi and Tassi, 2022) for group theory, and

many libraries for category theory (Wiegley, 2019; Huet and Säıbi, 2000; Timany and

Jacobs, 2016; Gross et al., 2014; Ahrens et al., 2015). Another popular proof assistant

in the mathematical community is Lean (de Moura et al., 2015; de Moura and Ullrich,

2021), which is more recently developed. The Lean community has actively mecha-

nized a significant portion of mathematics (The Mathlib Community, 2020). Lean also

has attracted world-renowned mathematicians to mechanize their cutting-edge develop-

ment (Gowers et al., 2023) and has helped them to catch mistakes in their work (Tao,

2023). My choice of proof assistant for this thesis is Agda (The Agda Team, 2024;

Norell, 2007). It is also used to mechanize some mathematics like category theory by

various groups (Peebles et al., 2018; Hu and Carette, 2021). Agda is widely used in the

programming language community for experiments and research.

A particular strength of type theories, as opposed to more traditional logic, is that

type theories are computational. Definitions in type theories have computational be-

haviors and can be treated as programs. The dual reading of type-theoretic definitions

as proofs and as programs is called the Curry-Howard Correspondence. Many people

might find type theories quite familiar when encountered for the first time, because su-

perficially types theories just look like functional programming languages. In a syntax

similar to Haskell and Agda’s, multiplication of natural numbers is defined as:

mult : Nat → Nat → Nat

mult zero n = 0

mult (succ m) n = mult m n + n

For clarity, I abbreviate succ ... (succ zero) as numbers, e.g. 1 is notation for succ zero.

Readers having some experience in functional programming might already find this def-

inition intuitive. Multiplication takes two natural numbers and returns another natural

number. It is defined by recursion on the first natural number. If the first natural

number is zero, then the result is just zero. In the successor case, a recursion occurs

and the sum of the recursive result and n is returned. In addition to writing functions

as in a functional programming language, we can also write proofs in type theories. The

computational behaviors often reduce the sizes of proofs, as computation is implicitly

3

carried out during proof checking (or type checking) to relate two terms,3 whereas in

logic, the equality between two terms must be explicitly established. The following

proves that 1 is the left identity of mult:

left -identity -mult : ∀ m → mult 1 m ≡ m

left -identity -mult m = refl -- mult 1 m = mult 0 m + m = 0 + m = m

Here refl is the reflexivity proof. The type theory computes mult 1 m to m so the proof

of this property is just a one-liner.4 In type theory, the programming language and the

proof language are identical, so its learning curve is in fact quite gentle.

Though computation is already quite helpful in reducing the manual effort in a

proving activity, for some complicated problems, it is nevertheless time-consuming,

tedious and even counterproductive to write down every last detail in a proof. It

would be even more convenient, if some part of the proof can be generated by some

programs. The art of meta-programming does precisely that. A meta-program is a

program that generates other programs. Meta-programming has existed for a long

time. Scheme/Lisp (Clinger and Rees, 1991; Kohlbecker et al., 1986; Abelson and

Sussman, 1996) includes one of the earliest meta-programming systems. It adopts a

quasi-quoting style of meta-programming, which has a significant influence on many

subsequent systems (Taha and Sheard, 1997, 2000; Culpepper et al., 2019; Sheard and

Peyton Jones, 2002; Parreaux et al., 2017; Mainland, 2012, etc.). There are three key

operations in a quasi-quoting system: quote, splice and run. We quote a program to

obtain its code. We then compose pieces of code by splicing them together, and once

we are finished, we run the result code as a program. The multiplication function above

can be turned into a meta-program using quasi-quoting as follows:

meta -mult : Nat → Code (Nat → Nat)

meta -mult zero = quote (λ n. 0)

meta -mult (succ m) = quote (λ n. splice (meta -mult m) n + n)

The meta-mult function takes a natural number and returns a piece of code for a function.

The purpose of meta-mult m is to generate code that adds the argument of the returned

3As an example, computation in type theory is taken advantages of and heavily relied on in Coq’s
mechanization of the four-color theorem (Gonthier, 2023, Sec. 4).

4In Principia Mathematica, Whitehead and Russell (1927) spent over 400 pages to prove 1 + 1 = 2.
This is sometimes used as a counter-argument for formal mathematics. It is clear that our science has
gone a long way in the past century.

4

function code m times. In the zero case, a quote operation constructs Code, which de-

scribes a constant function of zero. In the step case, the recursive call is invoked. The

recursion meta-mult m returns Code of a function, which is spliced in the λ abstraction.

This generated function is applied to n to give the code for the multiplication of m and

n. Another addition of n gives the correct result. The code generated by meta-mult runs

as if it was manually written:

run (meta -mult 2) 5 -- computes to 10

In practical programming languages, meta-programming has become a common way to

improve productivity, gain modularity and optimize program performance.

In the settings of proof assistants, meta-programming plays an important role in

the form of tactic systems and contributes to the successes of type-theory-based proof

assistants. Tactics in a broad sense are algorithms that compute proofs. Under the

Curry-Howard Correspondence, since proofs are just programs, tactics can also be seen

as a special kind of meta-programs. Tactics as a way of proof automation are often used

to capture common patterns of proofs to eliminate tedious proof steps, and encode

proof heuristics based on domain-specific knowledge. They often further shrink the

size of a proof script drastically. Moreover, constructing proofs using tactics helps

to make proof scripts more robust. Proofs established by tactics are often resilient to

changes to definitions or assumptions, so a moderate adjustment to upstream definitions

might require little or even no change to downstream proof scripts at all. Tactics are

also used to improve presentations of proof contexts and user experience in the proof

assistants (Krebbers et al., 2017, 2018; Cao et al., 2018).

In practice, tactic systems in proof assistants are results of engineering and are usu-

ally implemented by instrumenting the type checking kernels. For example, Agda (van der

Walt and Swierstra, 2012), Idris (Christiansen and Brady, 2016) and Lean (Ebner

et al., 2017) support meta-programming via reflection, which is a mechanism to re-

flect programs into (usually untyped) abstract syntax trees (ASTs). With reflection,

meta-programs are programs that manipulate and output ASTs. In Coq, Ltac (De-

lahaye, 2000) and Ltac2 (Pédrot, 2019) are frequent choices, which are implemented

as a separate language on top of Coq’s proof language. Other options in Coq include

Mtac (Ziliani et al., 2013) and Mtac2 (Kaiser et al., 2018), which are implemented as

an instrumentation of Coq’s kernel. They allow users to write meta-programs directly

5

in Coq. MetaCoq (Sozeau et al., 2020; Anand et al., 2018) is originally designed to

formalize Coq inside of Coq itself, but it also provides an infrastructure to support

meta-programming in Coq using some reflection mechanism. One primary problem

with all these tools is that they cannot always guarantee the well-scopedness and well-

formedness of generated programs and proofs. Tactics written by these tools could lead

to errors, which further require additional error reporting and handling mechanisms.

Debugging support is limited so finding out what goes wrong is a painful experience.

These tools do not truly leverage the full power of the type theories implemented by the

proof assistants. Ultimately, reflection and instrumentation are some external mecha-

nisms and hence have no type-theoretic foundation.

On the theoretical end, more than 20 years ago, Davies and Pfenning discovered

that the necessity modality (�) in modal logic S4 can be used to model simply typed

meta-programming (Davies and Pfenning, 2001; Pfenning and Davies, 2001). They

investigated two different styles of modal type theories, the Kripke style and the dual-

context style, and showed that both styles model meta-programming in two different

flavors. The Kripke style provides a foundation for the quasi-quoting style of meta-

programming introduced above, where the Code type constructor is modeled by the �

modality. The dual-context style, on the contrary, models a less common comonadic

style of meta-programming. In this style, we have access to a meta-language to manip-

ulate code through the � modality. The multiplication example can be rewritten in the

dual-context style as:

meta -mult2 : Nat → Code (Nat → Nat)

meta -mult2 zero = quote (λ n. 0)

meta -mult2 (succ m) = let quote u ← meta -mult2 m

in quote (λ n. u n + n)

The main difference is in the step case. In this case, the recursive call is invoked

outside of quote. The result of the call is extracted by let quote and is bound to a

meta-variable u. This meta-variable represents a hole in the code, and is used in quote

where u n describes the code for multiplying m and n. Later in the thesis, I will describe

how both styles are substantially different. Davies and Pfenning’s work serves as the

first step towards type-safe meta-programming in different settings for many subsequent

works (Nanevski et al., 2008; Jang et al., 2022; Pientka et al., 2019), including my own

6

work to be discussed in the rest of this thesis.

In this thesis, I add support for meta-programming to dependent type theory. This

setting is not entirely covered by previous investigations and is particularly interesting

to those who want to leverage the full expressive power provided by the dependent

type theory implemented by a proof assistant when writing tactics. One particular

feature that I would like to achieve is intensional analysis. Intensional analysis allows

meta-programs to analyze the syntactic structure of code, so it is especially useful for

tactics in proof assistants. However, the correspondence with modal logic S4 observed

by Davies and Pfenning does not reveal how intensional analysis can be supported in

a type theory. How to enable intensional analysis without resorting to some external

mechanism in a dependent type theory while retaining the consistency of the overall

system poses a major technical challenge. Metaphorically speaking, intensional analysis

using instrumentation or alike is like a surgery on code. What I aim at in this thesis is

to ask a surgeon to perform surgery on him- or herself.5 The results presented in this

thesis provide an alternative to the engineering work above, where we are able to make

full use of dependent types provided by the proof assistants, and demonstrate how one

could support meta-programming within the system itself (or other extensions to a type

theory) via systematic thoughts.

This thesis largely extends work by Davies and Pfenning (2001); Pfenning and Davies

(2001). In Part I, I first investigate the Kripke-style systems. One main result of Part I

is Mint, a Kripke-style dependent type theory, which can be used as a program logic for,

e.g., MetaML (Taha and Sheard, 1997, 2000). Nevertheless, one limitation of Kripke-

style systems is that it is unclear how the Kripke style and intensional analysis are

compatible. Intensional analysis is particularly important in proof assistants, because

we often need to analyze the structure of a goal in order to give an algorithm to construct

a proof. To support intensional analysis, or more specifically recursion on the structure

of code, in Part II, I introduce the layered style, based on the dual-context style. It turns

out that the comonadic style of meta-programming is the right step towards enabling

intensional analysis. I introduce the matryoshka principle, which is a design guideline

5Medically, it is called a “self-surgery”, which does not occur too often. The first successful self-
surgery is believed to be carried out by Dr. Evan O’Neill Kane, who performed an appendectomy on
himself in 1921.

7

to simultaneously enable code composition, code running and code recursion in type

theories. At the end of Part II, I define DeLaM, a dependent type theory that builds

on the matryoshka principle and supports code running and recursions on the code of

types and terms coherently.

In the rest of this introduction,

• I will first give a brief introduction to type theory using simply typed λ-calculus.

In this part, I will discuss the recipe for designing a type theory and the two main

theorems which I care about in this thesis: normalization and the decidability of

convertibility.

• Then I will describe the methodology I used during the investigations.

• At last I will list the contributions I make in this thesis and outline the structure

for the rest of this thesis.

1.1 Simply Typed λ-calculus as Type Theory

In this section, I would like to briefly discuss a common framework of type theories,

which I follow throughout this thesis. In particular, I focus on two important properties,

normalization and the decidability of convertibility, which I will use to justify my own

work in later chapters. The simply typed λ-calculus (STLC) with natural numbers is

my running example.

Let us begin with the syntax of types and terms of STLC.

S, T := Nat | S −→ T (Types)

x, y (Variables)

s, t := x | zero | succ t | recT s (x, y.s′) t | λx.t | t s (Terms)

Γ,∆ := · | Γ, x : T (Typing Contexts)

Types are ranged over by S and T , which include Nat, the type for natural numbers,

and a function space. Terms are ranged over by s and t. Variables are ranged over by

x and y. A natural number can be constructed either by zero or succ t, which represent

zero and the successor, respectively. To eliminate a natural number, recT s (x, y.s′) t

8

performs a recursion on a natural number t. Here s is the base case and s′ is the step

case. For the step case, x stands for the predecessor and y is the result of the recursive

call on the predecessor. I call the type which a recursion returns a motive, which in

this case is T . The term being recursed on is called a scrutinee, which is t. Finally,

λx.t introduces a function and t s applies a function t to an argument s. The typing

context Γ is used in a typing judgment to describe the ambient variables of a term.

To describe a type theory, I follow a recipe which includes five kinds of rules:

• formation rules, which define how a type is well-formed,

• variable rules, which define when and how to use a variable,

• introduction rules, which define how a term of a given type is constructed,

• elimination rules, which define how a term of a given type is used, and

• equivalence rules, which define how two terms of the same type are related.

Let us consider what are the rules in STLC for each kind.

Formation rules It turns out that STLC needs no formation rule. That is, all

syntactically valid types are well-formed.

Nat wf

S wf T wf

S −→ T wf

This however is not always the case in other systems. For example, with dependent

types, a type could contain as complex computation as a term and thus formation rules

are necessary. We will see in later chapters that my work includes non-trivial formation

rules.

Variable rules Variables rules govern when and how variables are used. In STLC,

there is only one variable rule:

x : T ∈ Γ

Γ ` x : T

9

The rule simply allows us to refer to a variable at any time as long as it is bound in the

context. However, in later chapters, variable rules become less trivial.

In this thesis, I uniformly assume variables represented by de Bruijn indices (de

Bruijn, 1972), so that the α-renaming problem is trivial, though for presentation pur-

poses, I still use x, y to refer to variables.

Introduction rules The introduction rules are typing rules that describe how to

construct a term of a given type. In STLC, there are the following introduction rules

for Nat and functions:

Γ ` zero : Nat

Γ ` t : Nat

Γ ` succ t : Nat

Γ, x : S ` t : T

Γ ` λx.t : S −→ T

The first two rules are the introduction rules for natural numbers. The first rule says

that zero always has type Nat and the second rule says that in order for succ t to have

type Nat, t must also have type Nat. The third rule introduces a function through a λ.

The body t must have type T within a context extended with x : S.

Elimination rules The elimination rules describe ways to make use of a type. In

STLC, we have

Γ ` s : T Γ, x : Nat, y : T ` s′ : T Γ ` t : Nat

Γ ` recT s (x, y.s′) t : T

Γ ` t : S −→ T Γ ` s : S

Γ ` t s : T

The first rule instructs that we can make use of a natural number by recursing on it.

To recurse on the scrutinee t, we must specify two branches, each handling the case

when t computes to zero or a successor, respectively. In the step case s′, x is replaced

by the predecessor and y is replaced by the recursive call. The second rule makes use

of a function by applying it to an argument.

Equivalence rules So far, the rules given above are relatively simple. There is pre-

cisely one rule for each term. Since a type theory computes, these terms should have

non-trivial interactions. The computational behaviors are described by the equivalence

rules. The equivalence rules are further split into three kinds: the PER6 rules, the

6partial equivalence relation

10

congruence rules and the computation rules. The PER rules are always fixed. They

state that the equivalence judgment Γ ` t ≈ t′ : T is symmetric and transitive. The

congruence rules are directly derived from the typing rules described above. For ex-

ample, the congruence rule for λ is derived by replacing typing with equivalence in its

typing rule:

Γ, x : S ` t : T

Γ ` λx.t : S −→ T
=⇒

Γ, x : S ` t ≈ t′ : T

Γ ` λx.t ≈ λx.t′ : S −→ T

This congruence rule allows computation to continue in the body of a λ expression.

The same principle applies for all other terms. In this thesis, the congruence rules are

necessarily derived in this way, which I consider a conceptually clean way to approach

type theories. The congruence rules allow us to trigger a computation in an arbitrary

place, something that we often want in mathematics.

The computation rules are the final and the most complex ingredient to a type

theory. They govern how actually interesting computation occurs. There are a number

of β rules for each type, which describe how an elimination form interacts with an

introduction form. Sometimes, there are also η rules, which describe how a type can be

re-introduced by a vacuous elimination. For functions, the computation rules are

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx.t) s ≈ t[s/x] : T
β

Γ ` t : S −→ T

Γ ` t ≈ λx.t x : S −→ T
η

The first rule is the β rule. It states that when a λ expression is applied to an argument,

we replace s with x everywhere in t. This action is denoted by [s/x], which is a

substitution of s for x. The second rule is the η rule. It says that if t has a function

type, then we can expand it to a λ expression.

η rules do not always exist. The following β rules are the only available computation

11

rules for Nat:

Γ ` s : T Γ, x : Nat, y : T ` s′ : T

Γ ` recT s (x, y.s′) zero ≈ s : T

Γ ` s : T Γ, x : Nat, y : T ` s′ : T Γ ` t : Nat

Γ ` recT s (x, y.s′) (succ t) ≈ s′[t/x, recT s (x, y.s′) t/y] : T

When the recursor hits zero, it simply computes the base case. Otherwise, it computes

the step case, with t for x and the recursive call for y. I follow the typical practice

in type theory and do not include η rules for inductively defined types, for example,

natural numbers.

Compared to a programming language A type theory can also be treated as

a programming language due to the computational behaviors. A type theory and a

programming language often share typing rules. In a programming language, instead of

an equivalence relation, we often fix a reduction strategy and examine that the reduction

strategy is compatible with the typing rules. Type safety is often characterized by

syntactic properties like progress and preservation (Wright and Felleisen, 1994). In a

type theory, besides the same properties as programming languages, we need stronger

properties to justify the logical consistency of a type theory due to the dual reading of

a type theory as a logic. In this thesis, I focus on two properties, normalization and

the decidability of convertibility.

Normalization and Convertibility Normalization states that all well-typed terms

in a type theory are equivalent to a subset of terms called normal forms. Normalization

immediately implies the termination of all well-typed programs in a type theory. There-

fore, a consistent type theory is Turing-incomplete. This, unfortunately, is a tradeoff for

the logical consistency of the overall system. In this thesis, all normalization properties

accompany normalization algorithms. I will give an explicitly procedure to normalize

terms for each type theory.

The other property that I care about is the decidability of convertibility. The con-

version checking checks if two terms of the same type are equivalent. Its decidability

ensures that this checking procedure always terminates. This procedure is a critical

12

component in a type-checker. As part of the conversion checking, normalization is a

necessary step.

A normalization algorithm must have the soundness theorem:

Theorem 1.1 (Soundness). If Γ ` t : T , then Γ ` t ≈ normalize(t) : T .

The theorem says that all well-typed terms are equivalent to their normal forms.

This theorem makes sure the correctness of the normalization algorithm. The com-

pleteness theorem is optional; it might not hold for some normalization algorithms:

Theorem 1.2 (Completeness). If Γ ` t ≈ t′ : T , then normalize(t) = normalize(t′).

The theorem says that if two terms are equivalent, then their normal forms are syn-

tactically equal. If a normalization algorithm has both theorems, then the normalization

algorithm is a strong one, because the completeness theorem takes into account all pos-

sible congruences and still ensures equal normal forms. Otherwise, it is a weak one.

Having a strong normalization algorithm is convenient, because both soundness and

completeness theorems together state that syntactically equivalent terms must have

syntactically equal normal forms. Therefore, testing convertibility becomes trivially

testing the syntactic equality of normal forms. Thus, when I give strong normalization

proofs in Chapters 2 and 3, I elide the discussion about convertibility.

Without completeness, on the other hand, convertibility needs a dedicated, non-

trivial algorithm. This method is taken by many (Abel et al., 2018; Pientka et al.,

2019; Pujet and Tabareau, 2022, 2023, etc.), including myself in Chapters 4 and 5.

Though this method leads to longer proofs, one benefit is that in an implementation,

the testing often fails fast if two terms are actually not equivalent.

1.2 Methodology

In this thesis, I investigate two different styles of modal type theory (the Kripke and

the layered styles in Parts I and II, resp.). In each part, I always first consider the

simply typed version and observe some structures or properties. Then I scale the whole

system up to dependent types using the observations from simple types as a guidance.

I find this method particularly enlightening. Though the ultimate goal is to design

dependent type theories, the technicality induced by a dependent type theory is often

13

System λ� Mint
Layered modal type
theory

DeLaM

Chapter 2 3 4 5
Dependent types 7 X 7 X
Style Kripke Kripke Layered Layered
Code composition,
running

X X X X

Intensional analysis 7 7 pattern matching recursion
Normalization strong strong weak weak

Table 1.1: Comparison of type theories in this thesis

too overwhelming to make concise and crucial observations. In both parts, I always

make observations from simple types that scale up to dependent types with little or

no change. When handling dependent types, I only need to worry about technicalities

incrementally.

The design of type theories in this thesis follows the recipe that I outlined in the

previous section.

1.3 Contributions

The contributions made in this thesis are:

• In Chapter 2, I revisit Kripke-style λ� introduced by Davies and Pfenning (2001)

and prove its strong normalization using an untyped domain model, following

Abel (2013). I define K-substitutions (Kripke-style substitutions), which form a

substitution calculus for Kripke-style λ�, unifying substitutions and modal trans-

formations given separately by Davies and Pfenning (2001). I reformulate λ� into

an explicit substitution calculus. I then use truncoids to capture common alge-

braic structures appearing in both syntax and semantics. This chapter is fully

mechanized in Agda.

• In Chapter 3, I scale Kripke-style λ� and its strong normalization in Chapter 2

to full Martin-Löf type theory, obtaining Mint. Mint models staged com-

putation with dependent types, giving a program logic for similar systems to

MetaML (Taha and Sheard, 1997, 2000). I verified that new concepts like K-

14

substitutions and truncoids introduced in Chapter 2 scale nicely to dependent

types. The normalization property through an untyped domain model also scales

up nicely to dependent types. This chapter is also fully mechanized in Agda, with

the help of Junyoung (Clare) Jang. The full mechanization of Part I is available

online.7

• In Chapter 4, I introduce the matryoshka principle, which leads to layered modal

type theory. This principle adds a layering index to the typing judgment of the

(contextual) dual-context-style λ� by Davies and Pfenning (2001); Nanevski et al.

(2008). Layering leads to two important properties, static code and lifting, which

enable pattern matching on code and code running, respectively, without jeop-

ardizing normalization. I then give a weak normalization algorithm based on

reducibility and a decidable conversion checking algorithm.

• In Chapter 5, I scale the simply typed layered modal type theory to full Martin-

Löf type theory, introducing DeLaM. I continue to use the static code and the

lifting properties to guide the design in DeLaM. In DeLaM, we are able to not

only compose and run code of Martin-Löf type theory, but also perform recursions

on the code of types and terms. I establish a layered semantic model by scaling

the one from Chapter 4. From this model, I prove the weak normalization of

DeLaM and its decidability of convertibility.

A quick summary can be found in Table 1.1.

Though many of my publications use category theory, I decide to not involve any

category theory in this thesis. I hope that this decision will make this thesis more

friendly to readers without a strong categorical background. In principle, this thesis

should be self-contained, only requiring standard knowledge in programming language

theory, i.e. understandings of inference rules, computational reductions and some dis-

crete mathematics. Some experience in type-theory-based proof assistants definitely

helps, though I do not rely on that. For this reason, most contents in this thesis are

new. Chapter 3 has been fully published (Hu et al., 2023), though the narrative in

Chapter 2 overlaps with (Hu et al., 2023). The proof in Chapter 2 is new and different

7https://hustmphrrr.github.io/mech-type-theories/

15

https://hustmphrrr.github.io/mech-type-theories/

from the one in (Hu and Pientka, 2022a). In Chapter 4, I present a slightly more com-

plex version than the one in (Hu and Pientka, 2024b), and a weak normalization proof,

for the continuity in Chapter 5. Chapter 5 is also published (Hu and Pientka, 2025).

Technical reports are also available. For Part I, the technical report is given by Hu

and Pientka (2022b). For Part II, the technical reports are given by Hu and Pien-

tka (2023, 2024a). This thesis is intentionally kept high-level and only presents proof

structures. Proof details can be found in the Agda mechanization and the technical

reports.

1.4 Conventions

To develop meta-theories for the type theories, in this thesis I assume an informal

meta-type theory akin to safe Agda with induction-recursion (Dybjer, 2000; Dybjer

and Setzer, 2001, 2003) and the axiom of functional extensionality. This is the standard

meta-type theory also assumed in many previous works (Abel, 2013; Abel et al., 2018;

Pientka et al., 2019, etc.).

I use the following notational conventions:

• The scripted letters C, D, etc. denote derivations in the meta-type theory.

• A colon (:) is used to denote a typing relation in a type theory. For example, t : T

means that the term t has type T .

• Two colons (::) are used to denote a typing relation in the meta-type theory.

I use this notation in the semantics for dependent type theories. For example,

D :: Γ ` t : T means that D is the name for the typing derivation Γ ` t : T .

• The equality sign (=) denotes mathematical equality as usual. When used be-

tween two terms, types, etc., it means that two terms, types, resp. are syntacti-

cally equal.

• The assignment sign (:=) means definitions. The definition f := g defines f as g.

16

Part I

Kripke-style Modal Type Theories

17

2
Kripke-style Modal λ-Calculus

In this chapter, I revisit Kripke-style λ� introduced by Pfenning and Wong (1995);

Davies and Pfenning (1996, 2001) and prove its strong normalization. A Kripke-style

modal system involves a stack of contexts. Contexts in the stack are pushed and popped

as we interact with the � modality. In Pfenning and Davies’ original presentation,

there are two separate operations on terms: ordinary substitutions, which replaces

variables with terms, and modal transformations, which maps contexts between two

stacks. The distinction between two operations imposes separate characterizations of

syntactic properties and adds difficulties to giving a uniform substitution calculus and

scaling to dependent types.

In this chapter, I introduce K-substitutions (Kripke-style substitutions), which uni-

fies ordinary substitutions and modal transformations. A unified substitution calculus

further leads to a normalization algorithm based on an untyped domain model. This

normalization algorithm is both sound and complete. The content in this chapter has

been fully mechanized in Agda.8

8https://hustmphrrr.github.io/mech-type-theories/Unbox.README.html

18

https://hustmphrrr.github.io/mech-type-theories/Unbox.README.html

The normalization proof in this chapter is completely new. I have published a

different strong normalization proof using a presheaf model (Hu and Pientka, 2022a),

which is also based on K-substitutions.

2.1 Syntax of λ�

As indicated by its name, Kripke-style λ� is inspired by Kripke semantics (Kripke,

1963) (see (Davies and Pfenning, 1996, Section 3) and (Davies and Pfenning, 2001,

Section 4)). In λ�, instead of one context as in STLC, a stack of contexts is used in the

typing judgment. It is convenient to view the stack as a travel path in a Kripke universe

along its accessibility relation. Each context in the stack represents a Kripke world and

assumptions in it in the universe. Hence, in this part, I often use “context” and “world”

interchangeably. The context stack is always non-empty. Initially, we begin the stack

with an empty context.

ε; Γ1; . . . ; Γn ` t : A or
−→
Γ ` t : A

The rightmost context in the stack is the top and represents the current world. In the

stack, worlds from left to right go from the past to the future. The � modality is used

to represent facts or truths that are available in future worlds. For instance, if t has

type �A, then we can say that A is true in the future, or equivalently �A is currently

true. The introduction form of � sends us to the next new world (a new empty context

pushed into the stack). On the other hand, the elimination form of unboxn t travels n

worlds back in the stack and use t of type �A to establish the truth of A in the current

world. Which world A is true in is determined by the possible values of n. Here, n

is called a modal offset. Controlling the possible values of modal offsets corresponds

to controlling reflexivity and transitivity of the accessibility relation among worlds, or

equivalently the modal laws in the Kripke semantics.

−→
Γ ; · ` t : A

−→
Γ ` box t : �A

−→
Γ ` t : �A

−→
Γ ; ∆1; . . . ; ∆n ` unboxn t : A

The choice of the modal offset n corresponds to reflexivity and transitivity of the

19

Kripke Structure Law \ System K T K4 S4
K: �(A −→ B) −→ �A −→ �B X X X X

Reflexivity T : �A −→ A X X
Transitivity 4: �A −→ ��A X X
modal offset n { 1 } { 0, 1 } N+ N

Table 2.1: Modal type theories, K, T , K4, S4

accessibility relation between worlds in the Kripke semantics. The relation between

modal offsets and possible modal laws are summarized in Table 2.1. The table shows

that λ� is a parameterized system. This parametricity is crucial to give one modular

normalization proof for all four systems at the same time. By setting possible values of

modal offsets to different sets, we obtain different systems. Among the possible laws,

the law K necessarily holds, which requires 1 to always be a possible value of modal

offsets. In terms of meta-programming, this law permits code composition.

K : �(A −→ B) −→ �A −→ �B

K := λf x.(unbox1 f) (unbox1 x)

The law T extracts A from �A. In Kripke semantics, it corresponds to reflexivity. It

means that the next world includes the current world, so if A is true in the future, then

it is also currently true. For A to be true, a modal offset must be able to take 0. In

meta-programming, this law corresponds to the capability of code running.

T : �A −→ A

T := λx.unbox0 x

The law 4 duplicates �. It states that truths in one step in the future also appear two

steps in the future. Iteratively applying this law concludes that a truth in one step

in the future is a truth in all possible futures. In Kripke semantics, it corresponds to

transitivity. To model transitivity, modal offsets must be able to take all values ≥ 2.

20

In meta-programming, this laws allows to write meta-programs for meta-programs.

A4 : �A −→ ��A

A4 := λx.box (box (unbox2 x))

Worlds in which variables reside are cleanly separated by � and unbox with the right

modal offset is necessary to access variables in previous worlds. For example, neither

unbox1 nor unbox3 is a valid change in A4 and the resulting term is not well-typed

because x is not visible.

The four sub-systems of S4 are results of choosing the admissibility of the laws

T and 4. Among the four systems, S4 admits all three laws. Under Curry-Howard

Correspondence, S4 corresponds to meta-programming in the quasi-quoting style. The

laws K and 4 splice code from the same and some previous worlds, respectively. The

law T runs the code. Thus, we can use λ� to model meta-programming when modal

offsets take all natural numbers. The multiplication example in Chapter 1 is encoded

in λ� as follows:

meta -mult : Nat → � (Nat → Nat)

meta -mult zero = box (λ n. zero)

meta -mult (succ m) = box (λ n. unbox 1 (meta -mult m) n + n)

The generated code is run by unbox0:

unbox 0 (meta -mult 2) 5 -- computes to 10

However, looking at the laws, it is not quite clear how it is possible to support intensional

analysis in this system. I indeed consider this as a limitation of the Kripke-style systems

and this problem is addressed in Part II by layered modal type theories. Nevertheless,

λ� is still a good model for some practical meta-programming systems in the quasi-

quoting style, e.g. MetaML (Taha and Sheard, 1997, 2000), where intensional analysis

is intentionally avoided.

21

The full syntax of λ� is given below:

A,B := Base | �A | A −→ B (Types, Typ)

k, l,m, n (Modal Offsets, N)

x, y (Variables, Var)

s, t, u := x | box t | unboxn t | λx.t | s t (Terms, Exp)

Γ,∆ := · | Γ, x : A (Contexts, Ctx)
−→
Γ ,
−→
∆ := ε |

−→
Γ ; Γ (Context Stack,

−→
Ctx)

w := v | box w | λx.w (Normal Form, Nf)

v := x | v w | unboxn v (Neutral Form, Ne)

In this minimal system, I only consider some base type Base, functions and the modal

type �A. The terms are standard. There are variables, box and unbox to introduce and

eliminate a modal type �A, and λ and function applications for functions. The normal

and neutral forms are also standard. Neutral forms include variables and elimination

forms. Normal forms include neutral forms and introduction forms. Recall that I use

de Bruijn indices for variables in this thesis, so that the discussion also aligns with

the mechanization closely. Interested readers could find an immediate correspondence

between this chapter and the Agda code.9

As discussed previously, the typing judgment in λ� uses a (non-empty) context

stack, which contains a number of contexts. Each context simply binds a variable to a

type. I use |
−→
Γ | to count the number of contexts in the stack.

The typing and equivalence judgments are described in Fig. 2.1. There is no for-

mation rule; all syntactically well-formed types are valid. By the variable rule, only

variables in the current world (the topmost context) are visible. The introduction and

elimination rules for �A have been discussed. The rules for functions are standard. λ

abstractions only push variables to the current world.

The equivalence rules are given following the recipe given in Chapter 1. The PER

rules are fixed and the congruence rules are derived from the typing rules, so I omit

them here. The only interesting rules are the computation rules. The β and η rules for

functions follow immediately from STLC. For �A, the η rule says that a term t of type

9https://hustmphrrr.github.io/mech-type-theories/Unbox.README.html

22

https://hustmphrrr.github.io/mech-type-theories/Unbox.README.html

−→
Γ ` t : A Term t has type A in context stack

−→
Γ

x : A ∈ Γ
−→
Γ ; Γ ` x : A

−→
Γ ; · ` t : A

−→
Γ ` box t : �A

−→
Γ ` t : �A |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : A

−→
Γ ; Γ, x : A ` t : B

−→
Γ ; Γ ` λx.t : A −→ B

−→
Γ ` t : A −→ B

−→
Γ ` s : A

−→
Γ ` t s : B

−→
Γ ` t ≈ t′ : A Terms t and t′ have type A and are equivalent in context stack

−→
Γ

β equivalence:

−→
Γ ; (Γ, x : A) ` t : B

−→
Γ ; Γ ` s : A

−→
Γ ; Γ ` (λx.t) s ≈ t[s/x] : B

−→
Γ ; · ` t : A |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn (box t) ≈ t{n/0} : A

η equivalence:

−→
Γ ` t : A −→ B

−→
Γ ` t ≈ λx.(t x) : A −→ B

−→
Γ ` t : �A

−→
Γ ` t ≈ box (unbox1 t) : �A

Figure 2.1: Typing judgments and some chosen equivalence judgments

�A can be expanded to box (unbox1 t). Note that in this rule, I directly refer to the

modal offset 1. This is fine because in all four sub-systems modal offsets must be able

to take 1. The β rule for � is also interesting. For a concrete example, what should

the right hand side of unbox2 (box t) be when n = 2?

−→
Γ ; ∆0; ∆1 ` unbox2 (box t) : A

where
−→
Γ ; · ` t : A

unbox2 (box t) cannot simply reduce to t because the context stacks disagree. To match

up the context stacks, Davies and Pfenning (2001) introduce the modal transformation

(MoT) operation, written as {n/l}, which means to insert n − 1 contexts to the l’th

position in the stack from top, to adjust the context stack of t. In the example, the

23

right hand side should be t{2/0}. I will explain this operation in more details in the

next section. The modal transformation operation is quite difficult to reason about

and does not seem compatible with ordinary substitutions. It also poses some troubles

in previous attempts to give a unified substitution calculus (Goubault-Larrecq, 1996).

Thus, to understand Kripke-style systems better, I shall first give a unified substitution

calculus which subsumes both ordinary substitutions and modal transformations.

2.2 Modal Transformations

The modal transformation operation is a structural operation; it characterizes the struc-

tural property of a context stack. This operation given by Davies and Pfenning (2001)

includes the follow two cases:

box t{n/l} := box (t{n/l + 1})

unboxm t{n/l} :=

unboxm (t{n/l −m}) if m ≤ l

unboxn+m−1 t if m > l

Let us not focus too much on the concrete details in this definition. A quick intuition

is that this operation is not very simple to reason about. In the unbox case, there is a

case analysis which involves a subtraction in each case. The purpose of this complex

arithmetic is to maintain the following structural property:

Lemma 2.1 (Structural Property of Context Stacks). If
−→
Γ ; Γ0; ∆0; · · · ; ∆l ` t : A,

then
−→
Γ ; Γ0; · · · ; (Γn,∆0); · · · ; ∆l ` t{n/l} : A, where Γ1 to Γn−1 are new and arbitrary

contexts.

This lemma is complex because it simultaneously characterizes modal fusion (when

n = 0) and modal weakening (otherwise). To give a few examples:

• When n = l = 0, the lemma states that if
−→
Γ ; Γ0; ∆0 ` t : A, then

−→
Γ ; (Γ0,∆0) ` t{0/0} : A. Note that Γ0 and ∆0 are fused in the conclusion,

hence “modal fusion”.

• When n = 2 and l = 0, the lemma states that if
−→
Γ ; Γ0; ∆0 ` t : A, then

−→
Γ ; Γ0; Γ1; (Γ2,∆0) ` t{2/0} : A. A new context Γ1 is inserted into the stack

and the topmost context is (locally) weakened by Γ2, hence “modal weakening”.

24

−→
Γ ` t : A New addition to the typing rules

−→
∆ ` t : T

−→
Γ ` −→σ :

−→
∆

−→
Γ ` t[−→σ] : T

−→
Γ ` −→σ :

−→
∆ K-substitution −→σ maps

−→
Γ to

−→
∆

−→
Γ `
−→
I :
−→
Γ

−→
Γ ; (Γ, x : A) ` wk :

−→
Γ ; Γ

−→
Γ ` −→σ :

−→
Γ ′; Γ

−→
Γ ` t : A

−→
Γ ` −→σ , t :

−→
Γ ′; (Γ, x : A)

−→
Γ ′ ` −→σ :

−→
Γ ′′

−→
Γ `
−→
δ :
−→
Γ ′

−→
Γ ` −→σ ◦

−→
δ :
−→
Γ ′′

−→
Γ ` −→σ :

−→
∆ |

−→
Γ ′| = n

−→
Γ ;
−→
Γ ′ ` −→σ ;⇑n:

−→
∆; ·

Figure 2.2: Typing judgments for K-substitutions

• In the β rule for �, {n/0} is used to transform t in context stack
−→
Γ ; · to

−→
Γ ;
−→
∆

where |
−→
∆ | = n.

• When l > 0, the leading l contexts are skipped. When n = 2 and l = 1, the lemma

states that if
−→
Γ ; Γ0; ∆0; ∆1 ` t : A, then

−→
Γ ; Γ0; Γ1; (Γ2,∆0); ∆1 ` t{2/1} : A. Here

∆1 is kept as is.

In λ�, ordinary substitutions are responsible for individual contexts in the stack while

modal transformations handle the structure of context stacks. A unified substitution

calculus needs to handle both individual contexts and context stacks at the same time.

Is such a substitution calculus possible?

2.3 Explicit K-substitutions

The question left at the end of the previous section is positively answered in this section

by K-substitutions (or Kripke-style substitutions). Compared to ordinary substitutions,

which are typically just lists of terms mapping between two contexts, K-substitutions

map between two context stacks and add a modal offset whenever the codomain context

stack enters a new world. In other words, a K-substitutions not only contains a list

of terms, but also a number of modal offsets. Moreover, to prepare for the normaliza-

25

tion proof using an untyped domain model, I formulate K-substitutions as an explicit

substitution calculus (Abadi et al., 1991; Abel, 2013). A non-explicit substitution for-

mulation is available in my MFPS paper (Hu and Pientka, 2022a). The adjustments to

the syntax are given below:

s, t, u := · · · | t[−→σ] (Application of a K-substitution)
−→σ ,
−→
δ :=

−→
I | wk | −→σ , t | −→σ ◦

−→
δ | −→σ ;⇑n (K-substitutions, Substs)

The typing rules for K-substitutions are given in Fig. 2.2. The additional syntax for

terms t[−→σ] applies a K-substitution to a term. In this thesis, the binding precedence

for substitution applications is very low. When I write t s[−→σ], I mean (t s)[−→σ]. Paren-

theses are used when ambiguities occur. t (s[−→σ]) unambiguously applies −→σ only to s.

Similarly, unboxn t[
−→σ] denotes (unboxn t)[

−→σ]. In an explicit substitution calculus, sub-

stitutions have their own syntax. In this case, there are five cases for a K-substitution.
−→
I is the identity K-substitution. It maps a context stack to itself. wk is the (local)

weakening K-substitution. It weakens the topmost context by dropping the topmost

variable. There are other ways to formulate a local weakening (K-)substitution but

for minimality, the current formulation suffices. −→σ , t extends −→σ with a term t. The

added term t replaces the topmost variable in the codomain context stack. Then there

is composition −→σ ◦
−→
δ , which composes two K-substitutions. So far, these four cases

also appear in an explicit formulation for ordinary substitutions. What is different in

K-substitutions, is the last case. −→σ ;⇑n is a modal extension. It modal-extends −→σ with

a new world:

−→
Γ ` −→σ :

−→
∆ |

−→
Γ ′| = n

−→
Γ ;
−→
Γ ′ ` −→σ ;⇑n:

−→
∆; ·

After the modal extension, the codomain context stack is necessarily extended with

an empty context. The domain context stack, on the other hand, grows from
−→
Γ to

−→
Γ ,
−→
Γ ′, as long as |

−→
Γ ′| = n. This operation resembles the modal transformation {n/0}

26

described in the previous section, which is the exact adjustment in the β rule for �:

−→
Γ ; · ` t : A |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn (box t) ≈ t[

−→
I ;⇑n] : A

−→
Γ ; (Γ, x : A) ` t : B

−→
Γ ; Γ ` s : A

−→
Γ ; Γ ` (λx.t) s ≈ t[

−→
I , s] : B

An explicit K-substitution formulation requires another judgment
−→
Γ ` −→σ ≈

−→
δ :
−→
∆

to characterize the equivalence between K-substitutions and additional rules to capture

how K-substitutions interact with terms and among themselves. These additional rules

are available in (Hu and Pientka, 2022b, Sec. 6) and are also placed in Appendix A for

completeness.

2.4 Truncation and Truncation Offset

Consider the typing rule for unbox, how should a K-substitution interact with it? Con-

cretely, if
−→
∆ ` t : �A and |

−→
∆ ′| = n, then

−→
∆ ,
−→
∆ ′ ` unboxn t : A. Further assuming

−→
Γ ` −→σ :

−→
∆;
−→
∆ ′, what should be the result of unboxn t[

−→σ]? First, since t lives in
−→
∆, there should be a K-substitution derived from −→σ with

−→
∆ as the codomain context

stack. This is easy as the codomain context stack of −→σ is
−→
∆;
−→
∆ ′, which is longer than

−→
∆. Also |

−→
∆ ′| = n. Intuitively, a truncation −→σ | n truncates −→σ by n and returns the

desired K-substitution.

? ` −→σ | n :
−→
∆

Then −→σ | n can be applied to t since the codomain context stack matches up. However,

what should be the domain context stack? The typing rule of modal extensions poten-

tially adds an arbitrary number of contexts to the domain context stacks, but luckily,

this number is precisely identical to the modal offset. Therefore, another operation,

truncation offset O(−→σ , n), is needed to add all the modal offsets in the part truncated

from −→σ . This fills in the question mark above:

−→
Γ | O(−→σ , n) ` −→σ | n :

−→
∆

where
−→
Γ | O(−→σ , n) truncates the context stack

−→
Γ by simply dropping O(−→σ , n) top-

most contexts from it. The truncation and truncation offset operations are particularly

27

important in the equivalence rule for K-substituting unbox:

−→
∆ ` t : �A

−→
Γ ;
−→
Γ ′ ` −→σ :

−→
∆;
−→
∆ ′ |

−→
∆ ′| = n |

−→
Γ ′| = O(−→σ , n)

−→
Γ ;
−→
Γ ′ ` unboxn t[−→σ] ≈ unboxO(−→σ ,n) (t[−→σ | n]) : A

Note that on the right hand side, the new modal offset of unbox is O(−→σ , n).

One advantage of the current explicit K-substitution calculus is that these two op-

erations are defined simply by a recursion on the structures of the inputs:

Truncation (|) −→σ | 0 := −→σ
−→
I | 1 + n :=

−→
I

(−→σ , t) | 1 + n := −→σ | 1 + n

wk | 1 + n :=
−→
I

(−→σ ;⇑m) | 1 + n := −→σ | n
(−→σ ◦

−→
δ) | 1 + n := (−→σ | 1 + n) ◦ (

−→
δ | O(−→σ , 1 + n))

Truncation Offset (O(,)) O(−→σ , 0) := 0

O(
−→
I , 1 + n) := 1 + n

O((−→σ , t), 1 + n) := O(−→σ , 1 + n)

O(wk, 1 + n) := 1 + n

O(−→σ ;⇑m, 1 + n) := m+O(−→σ , n)

O(−→σ ◦
−→
δ , 1 + n) := O(

−→
δ ,O(−→σ , 1 + n))

Both operations satisfy the following coherence conditions:

Lemma 2.2 (Coherence conditions).

• Coherence of addition: for all −→σ , m and n, −→σ | (n+m) = (−→σ | n) | m and

O(−→σ , n+m) = O(−→σ , n) +O(−→σ | n,m).

• Coherence of composition: for all −→σ ,
−→
δ and m,

(−→σ ◦
−→
δ) | n = (−→σ | n) ◦ (

−→
δ | O(−→σ , n)) and O(−→σ ◦

−→
δ , n) = O(

−→
δ ,O(−→σ , n)).

The truncation and truncation offset operations recur in both syntax and semantics.

In fact, truncation and truncation offset form an algebra, which I refer to as a truncoid.

Essentially, the semantic study of λ� is just a study of various truncoids. Therefore, it

28

is worth writing down the definitions of these truncoids before going into the discussion

on semantics. A general truncoid is defined as follows:

Definition 2.1. A truncoid is a triple (S, | ,O(,)), where

• S is a set;

• the truncation operation | takes an S and a modal offset and returns an S;

• the truncation offset operation O(,) takes an S and a modal offset and returns

a modal offset.

where the coherence of addition hold:

s | 0 = s and s | (n+m) = (s | n) | m
O(s, 0) = 0 and O(s, n+m) = O(s, n) +O(s | n,m)

Following the common mathematical practice, I directly call S a truncoid. I have

already shown that K-substitutions are a truncoid. Note that both operations use modal

offsets. In particular, truncation offset even returns a modal offset. Thus truncation

offset is required to be closed under possible value sets in Table 2.1. For K-substitutions,

let us quickly examine this fact.

• In System K, 1 is the only possible value, so O(−→σ , 1) is the only possible trunca-

tion offset expression, and this necessarily returns 1.

• In System T , a modal offset is either 0 or 1. Then the sum of zero or one number

from {0, 1} is also 0 or 1.

• In System K4, a modal offset takes all positive values. O(−→σ , n) adds a positive

number of positive numbers, which must result in a positive number.

• In System S4, the closure condition is trivial.

This closure condition modularizes the normalization proof so that I only need to give

one proof for the normalization properties of all four sub-systems.

In later sections, I will describe truncoids other than K-substitutions. In fact, most

truncoids have richer structures. Applicative truncoids allow a truncoid to be applied

to another:

29

Definition 2.2. An applicative truncoid consists of a triple of truncoids (S0, S1, S2)

and an additional apply operation [] which takes S0 and S1 and returns S2. Moreover,

the apply operation satisfies an extra coherence condition:

s[s′] | n = (s | n)[s′ | O(s, n)] and O(s[s′], n) = O(s′,O(s, n))

Most semantic models in the semantics are applicative. For example, evaluation

environments in Sec. 2.5 are applicative. K-substitutions are also applicative, as the

apply operation is just composition. Generalizing this intuition, a specific applicative

truncoid which behaves like substitutions is called a substitutional truncoid :

Definition 2.3. A substitutional truncoid S is an applicative truncoid (S, S, S) with

an identity id ∈ S. The apply operation is essentially composition, so I just write ◦ .

The extra coherence conditions are for identity:

id | n = id, O(id, n) = n, id ◦ s = s and s ◦ id = s

and associativity:

(s0 ◦ s1) ◦ s2 = s0 ◦ (s1 ◦ s2)

K-substitutions are a substitutional truncoid. The semantic counterpart of K-

substitutions, the untyped modal transformations (UMoTs), which model the Kripke

structure in the semantics, are also substitutional. Another way to enrich an applicative

truncoid, is to ask S1 to be substitutional, which results in a closed truncoid :

Definition 2.4. A closed truncoid (S0, S1) is an applicative truncoid triple (S0, S1, S0)

where S1 is a substitutional truncoid. id and ◦ are identity and composition of S1.

The following additional conherence conditions are required:

• coherence of identity: s[id] = s.

• coherence of composition: s[s1 ◦ s2] = s[s1][s2]

We say that S0 is closed under S1. In the semantics, the evaluation environments

are closed under UMoTs. K-substitutions are also closed under themselves. The laws of

applicative and closed truncoids cover all the necessary properties for the normalization

proof. Not all applicative truncoids are closed, e.g. the evaluation operation of K-

substitutions in Sec. 2.7.

30

2.5 Untyped Domain Model

In this section, I define an untyped domain model (Abel, 2013). The purpose of this

model is to establish a normalization by evaluation proof. Normalization by evaluation

(NbE) is a specific way to prove normalization. It typically has two steps: first, terms are

evaluated into some mathematical structure (in this case, the untyped domain model),

and then second, normal forms are extracted from this structure.

In this case, the NbE algorithm has two components:

• In the first component (Sec. 2.7), an evaluation function evaluates well-typed

terms into some values in the domain. During the evaluation process, all β redexes

are eliminated.

• In the second component (Sec. 2.8), a readback function converts domain values

into normal forms. The readback function is type-directed, and during the process,

it does η expansion. Therefore, the results of the NbE algorithm are β-η normal

forms.

One major advantage of this NbE algorithm is its simplicity to understand. A program-

mer could easily implement the NbE algorithm given below in the functional program-

ming language of their choice. After finishing describing the NbE algorithm, I prove

the completeness and soundness of the algorithm.

• In Sec. 2.9, I establish the completeness theorem, which states that equivalent

terms are normalized to syntactically equal normal forms. Completeness is proved

by constructing a partial equivalence relation (PER) model, which relates two

values from the untyped domain.

• In Sec. 2.10 and 2.11, I establish the soundness theorem, which states that a

well-typed term is equivalent to the normal form returned by the algorithm. The

model to prove soundness is more sophisticated as it relies on the PER model

defined for completeness. The model for soundness must glue both values in the

untyped domain and the syntactic terms, so this model is a gluing model.

31

The untyped domain model is defined as follows:

z (Domain Variables in de Bruijn Levels, N)

a, b := Λ(t,−→ρ) | box(a) | ↑A (c) (Domain Values, D)

c := z | c d | unbox(k, c) (Neutral Domain Values, DNe)

d := ↓A (a) (Normal Domain Values, DNf)

ρ ∈ Env := N→ D (Local Evaluation Environments)
−→ρ ∈ Envs := N→ N× Env ((Global) Evaluation Environments)

In the untyped domain, variables are represented by de Bruijn levels. Consider

a topmost context Γ, x : A,∆ in some stack. The de Bruijn index of x is |∆|. Its

corresponding de Bruijn level z, on the other hand, equals to |Γ|. De Bruijn levels

assign a unique absolute name to each variable in each context to avoid handling local

weakening of variables in the semantics. Evidently, these two representations satisfy

z + x + 1 = |Γ, x : A,∆|. This equation will be used in the readback functions to

correspond syntactic and semantic variables.

In this untyped domain, values are effectively partially β-reduced values and classi-

fied into three categories: values (D), neutral values (DNe) and normal values (DNf).

In D, box(a) models the values of box’ed term. A neutral value c is embedded into

D when annotated with a type A by ↑. Following Abel (2013), I use defunctionaliza-

tion (Ager et al., 2003; Reynolds, 1998) to capture open terms in the domain together

with their surrounding evaluation environments, which enables formalization in Agda.

A domain value Λ(t,−→ρ) models a λ term and describes a syntactic body t together

with an environment −→ρ which provides values for all the free variables in t except the

topmost one bound by λ in the syntax.

A normal domain value is a domain value annotated with a type by ↓.
The NbE algorithm relies on local and global environments in the evaluation pro-

cess. Local evaluation environments (Env) are functions mapping de Bruijn indices to

domain values. Global evaluation environments (Envs), or just environments, are func-

tions mapping modal offsets to tuples of modal offsets and Env’s. An environment can

be viewed as a stream of local environments paired with modal offsets. In the NbE

algorithm, when evaluating a well-typed term, only a finite prefix of an environment is

32

used, which is ensured by soundness.

emp :: Env defines the empty local environment and empty :: Envs defines the empty

global environment.

emp :: Env

emp() := ze

empty :: Envs

empty() := (1, emp)

Their definitions do not matter here because they only provide default values which are

guaranteed to be never used by soundness. There are two ways to extend environments.

The ext function extends an environment with a modal offset n:

ext :: Envs→ N→ Envs

ext(−→ρ , n)(0) := (n, emp)

ext(−→ρ , n)(1 +m) := −→ρ (m)

Furthermore, ext(−→ρ) is an abbreviation for ext(−→ρ , 1). The ext function models modal

extensions of a K-substitution (−→σ ;⇑n), so n is not associated with any local environ-

ment, hence emp.

The lext function locally extends an environment with a value by inserting it into

the topmost local environment. The lext’ function is a helper which conses a value to

a local environment and is used in lext:

lext’ :: Env→ D → Env

lext’(ρ, a)(0) := a

lext’(ρ, a)(1 +m) := ρ(m)

lext :: Envs→ D → Envs

lext(−→ρ , a)(0) := (n, lext’(ρ, a)) (where (n, ρ) := −→ρ (0))

lext(−→ρ , a)(1 +m) := −→ρ (1 +m)

The drop function drops the zeroth mapping from the topmost Env. It is needed for

33

the interpretation of wk:

drop :: Envs→ Envs

drop(−→ρ)(0) := (n,m 7→ ρ(1 +m)) (where (n, ρ) := −→ρ (0))

drop(−→ρ)(1 +m) := −→ρ (1 +m)

Last, environments form a truncoid. The truncation and truncation offset operations

on −→ρ are defined as:

| :: Envs→ N→ Envs

(−→ρ | n)(m) := −→ρ (n+m)

O(,) :: Envs→ N→ N
O(−→ρ , 0) := 0

O(−→ρ , 1 + n) := m+O(−→ρ | 1, n) (where (m,) := −→ρ (0))

2.6 Untyped Modal Transformations (UMoTs)

To model �, the semantics must handle the Kripke structure of λ�. In the untyped

domain model, I employ an internal approach, where the Kripke structure is internalized

by untyped modal transformations (UMoTs), ranged over by κ. Formally, a UMoT is

just a function of type N → N, modeling a stream of modal offsets. Given a domain

value a ∈ D and a UMoT κ, the UMoT application operation a[κ] applies κ to a and

denotes sending a to another world according to κ. The internalization further requires

subsequent models to satisfy monotonicity w.r.t. UMoTs (see Lemmas 2.4 and 2.8),

which is the root of other properties involving UMoTs. The internalization of UMoTs

provides certain modularity. UMoTs have sufficiently captured the Kripke structures

of all Systems K, T , K4 and S4, so as a bonus, their normalization is established in

one single proof.

This approach is in contrast to the external approach by Gratzer et al. (2019), where

the model is parameterized by an extra layer of poset10 to capture the Kripke structure

of �. Subsequent proofs thus must explicitly quantify over this poset, making their

proof more difficult to adapt to other modalities (Gratzer et al., 2020).

10partial order set

34

UMoTs include the following basic definitions:

Truncation of UMoTs | :: UMoT→ N→ UMoT

(κ | n) (m) := κ(n+m)

Identity UMoT
−→
1 :: UMoT

−→
1 () := 1

Truncation Offset of UMoTs O(,) :: UMoT→ N→ N
O(κ, 0) := 0

O(κ, 1 + n) := κ(0) +O(κ | 1, n)

Cons of UMoTs ;⇑ :: UMoT→ N→ UMoT

(κ;⇑n) (0) := n

(κ;⇑n) (m) := κ(1 +m)

Composition of UMoTs ◦ :: UMoT→ UMoT→ UMoT

(κ ◦ κ′) (0) := O(κ′, κ(0))

(κ ◦ κ′) (1 + n) := ((κ | 1) ◦ (κ′ | κ(0)))(n)

Cons of UMoTs is defined in a way similar to environments. UMoTs have composition,

and we use
−→
1 to represent the identity UMoT in our setting. As previously mentioned,

UMoTs form a substitutional truncoid. A quick intuition is that UMoTs behave like

substitutions in the semantics, except that they only bring values from one world to

another without touching the variables.

35

Then I give the definitions for applying a UMoT to domain values and environments:

box(a)[κ] := box(a[κ;⇑1])

Λ(t,−→ρ)[κ] := Λ(t,−→ρ [κ])

↑A (c)[κ] := ↑A (c[κ])

z[κ] := z

c d[κ] := (c[κ]) (d[κ])

unbox(k, c)[κ] := unbox(O(κ, k), c[κ | k])

↓A (a)[κ] := ↓A (a[κ])

−→ρ [κ](0) := (O(κ, k), ρ[κ]) (where (k, ρ) := −→ρ (0))
−→ρ [κ](1 + n) := −→ρ | 1[κ | O(−→ρ , 1)](n)

Similar to the syntax, a[κ] takes a very low parsing precedence. Most cases just recur-

sively push κ inwards, except the box and unbox cases. In the box case, κ;⇑1 instructs

the recursion to enter a new world, indicated by cons’ing 1 to κ. The unbox case is

similar to the rule in Sec. 2.4. The recursion is c[κ | n] because c is in the n-th previous

world. The unbox level is adjusted to O(κ, n) for coherence with the Kripke structure.

The apply operation for a local environment ρ is just defined by applying κ to all values

within pointwise. The apply operation for −→ρ can be motivated by making the triple

(Envs,UMoT,Envs) an applicative truncoid. Indeed, this is the unique definition (up

to isomorphism) to prove −→ρ [κ] | n = (−→ρ | n)[κ | O(−→ρ , n)]. Here, the formulation

of truncoids does pay off; it provides guidance to quickly derive the right definition

of operations. Moreover, since UMoTs are substitutional, Envs intuitively should be

closed under UMoTs. Indeed, this fact can be examined by checking the necessary laws

imposed by a closed truncoid.

2.7 Evaluation

Next I define the evaluation functions (J K), which, given −→ρ , evaluates a syntactic

term to a domain value or evaluates a K-substitution to another environment. The

procedure only terminates for well-formed terms and substitutions, and might loop for

ill-typed inputs. In the following sections, I will define a number of partial functions

36

(denoted by ⇀), which cannot be directly formalized in Agda. Instead, I define them as

functional relations between inputs and outputs, and prove that equal inputs produce

equal outputs. When a conclusion refers to a result of a partial function, this result is

implicitly existentially quantified.

J K : Exp ⇀ Envs→ D

JxK(−→ρ) := ρ(x) (where (, ρ) := −→ρ (0))

Jbox tK(−→ρ) := box(JtK(ext(−→ρ)))

Junboxn tK(−→ρ) := unbox · (O(−→ρ , n), JtK(−→ρ | n))

Jλx.tK(−→ρ) := Λ(t,−→ρ)

Jt sK(−→ρ) := JtK(−→ρ) · JsK(−→ρ)

Jt[−→σ]K(−→ρ) := JtK(J−→σ K(−→ρ))

J K :: Substs ⇀ Envs→ Envs

J
−→
I K(−→ρ) := −→ρ

JwkK(−→ρ) := drop(−→ρ)

J−→σ , tK(−→ρ) := lext(J−→σ K(−→ρ), JtK(−→ρ))

J−→σ ;⇑nK(−→ρ) := ext(J−→σ K(−→ρ | n),O(−→ρ , n))

J−→σ ◦
−→
δ K(−→ρ) := J−→σ K(J

−→
δ K(−→ρ))

Note that here (Substs,Envs,Envs) forms an applicative truncoid when the evaluation

terminates. To evaluate function applications and unbox, the following partial functions

either perform β reductions or form neutral values:

unbox· : N ⇀ D ⇀ D

unbox · (k, box(a)) := a[
−→
1 ;⇑k]

unbox · (k, ↑�A (c)) := ↑A (unbox(k, c))

· : D ⇀ D ⇀ D

(Λ(t,−→ρ)) · a := JtK(lext(−→ρ , a))

(↑A−→B (c)) · a := ↑B (c ↓A (a))

The reduction case for unbox matches the syntactic β rule by applying a UMoT
−→
1 ;⇑k

to a. This UMoT sends a to k worlds in the future.

37

2.8 Readback Functions

After evaluating a term to D, all β redexes are eliminated. The last step is the readback

functions, which read from D back to normal forms and do the η expansion at the same

time to obtain β-η normal forms:

RNf :
−→
N ⇀ DNf ⇀ Nf

RNf−→z (↓�A (a)) := box RNf−→z ;0(↓A (unbox · (1, a)))

RNf−→z ;z(↓A−→B (a)) := λx.RNf−→z ;z+1(↓B (a· ↑A (z)))

RNf−→z (↓Base (↑Base (c))) := RNe−→z (c)

RNe :
−→
N ⇀ DNe ⇀ Ne

RNe−→z ;z′(z) := x

(where the de Bruijn index of x is computed by max(z′ − z − 1, 0))

RNe−→z (c d) := RNe−→z (c) RNf−→z (d)

RNe−→z (unbox(k, c)) := unboxk RNe−→z |k(c)

The readback process consists of two functions: RNf reads back a normal form and

RNe reads back a neutral form. RNf is type-directed, so η expansion is performed. A

readback function takes as an argument −→z ::
−→
N , which is a nonempty list of natural

numbers. Each number in this list records the length of the context in that position

of the context stack. This list supplies new de Bruijn levels (i.e. new absolute and

fresh names) as the readback process continues. In the �A case, 0 is pushed to the list

because box enters a new world with no assumptions. In the function case, the topmost

context is extended by one due to the argument of λ, so the topmost de Bruijn level is

also incremented by one. In the unbox case, −→z is truncated by n in order to correctly

keep track of the lengths of contexts in the stack as the context stack is also truncated.

In the variable case in RNe, the de Bruijn index of x is computed by the aforementioned

formula z′ − z − 1. If readback is applied to the result of evaluating a well typed term,

then this formula is always non-negative, so the cut off at 0 is neglected most of the

time.

Given evaluation and readback, the NbE algorithm is defined as first evaluating a

term to the domain and then reading back as a normal form:

38

Definition 2.5. For
−→
Γ ` t : A, the NbE algorithm is

nbeA−→
Γ

(t) := RNf

map(Γ7→|Γ|,
−→
Γ)

(↓A (JtK(↑
−→
Γ)))

where the initial environment ↑
−→
Γ is defined by the structure of

−→
Γ :

↑
−→
Γ :: Envs

↑ε := empty

↑
−→
Γ ;Γ (0) := (1, x 7→↑A (z) if x : A ∈ Γ)

↑
−→
Γ ;Γ (1 + n) := ↑

−→
Γ (n)

where the de Bruijn level of z is computed by |Γ| − x− 1 as described in Sec. 2.5.

2.9 PER Model And Completeness

The full NbE algorithm has been given in the previous sections. In this section, I fol-

low Abel (2013) and define a partial equivalence relation (PER) model for the untyped

domain. The idea of the PER model is to relate two “equivalent” domain values once

they are read back as normal forms. The PER model is defined by recursion on the

structure of types, which determines how terms are equivalent. Then I prove the com-

pleteness theorem, which states that equivalent terms evaluate to an equal normal form.

There are two steps to establish completeness:

• the fundamental theorems which prove soundness of the PER model, and

• the realizability theorem, which states that values related by the PER model have

an equal normal form.

The following two inference rules define two special PERs between two domain

values:

∀ −→z , κ . RNf−→z (d[κ]) = RNf−→z (d′[κ])

d ≈ d′ ∈ Nf

∀ −→z , κ . RNe−→z (c[κ]) = RNe−→z (c′[κ])

c ≈ c′ ∈ Ne

where Nf ⊆ DNf ×DNf and Ne ⊆ DNe ×DNe. Nf relates two normal domain values iff

their readbacks are equal given any context stack and UMoT. Ne is defined similarly.

39

Later, the realizability theorem (Theorem 2.3) shows that the PER model to be given

below is subsumed by Nf, so any two related values have equal readbacks as normal

forms, through which completeness is established.

The PER model is universally quantified over UMoTs. This universal quantification

is crucial in the PER model. Due to the substitutional truncoid structure of UMoTs,

universally quantifying UMoTs internalizes the Kripke structure of λ� and delegates

the handling of the said structure to UMoTs, so that the whole normalization proof is

completely oblivious to the exact structure � possesses, making the proof applicable to

all four systems without any modification as described in Sec. 2.6.

The PER model is defined recursively on a type and relates two domain values:

JAK ⊆ D ×D
JBaseK := { (↑Base (c), ↑Base (c′)) | c ≈ c′ ∈ Ne }
J�AK := { (a, b) | ∀ k, κ . unbox · (k, a[κ]) ≈ unbox · (k, b[κ]) ∈ JAK }

JA −→ BK := { (a, b) | ∀ κ, a′ ≈ b′ ∈ JAK . a[κ] · a′ ≈ b[κ] · b′ ∈ JBK }

In the � case, two values are related if the results of unbox are related under any offset

k and any UMoT κ. Functions are related in a similar way. Two values are related if

the results of function applications remain related under any UMoT κ and given any

related arguments.

The realizability theorem below states that related values are read back equal. Real-

izability of the PER model is essential to establish the completeness and the soundness

theorems.

Theorem 2.3 (Realizability). For all type A,

• if c ≈ c′ ∈ Ne, then ↑A (c) ≈↑A (c′) ∈ JAK;

• if a ≈ b ∈ JAK, then ↓A (a) ≈↓A (b) ∈ Nf.

Proof. Induction on A.

The PER model between values is scaled to a PER between local evaluation envi-

ronments. The PER model between global environments are defined by also requiring

40

modal offsets to be equal pointwise.

JΓK ⊆ Env× Env

JΓK := { (ρ, ρ′) | ρ(x) ≈ ρ′(x) ∈ JAK if x : A ∈ Γ }

J
−→
Γ K ⊆ Envs× Envs

JεK := { (−→ρ ,−→ρ ′) }
J
−→
Γ ; ΓK := { (−→ρ ,−→ρ ′) | k = k′ and ρ ≈ ρ′ ∈ Γ and −→ρ | 1 ≈ −→ρ ′ | 1 ∈ J

−→
Γ K

where (k, ρ) := −→ρ (0) and (k′, ρ′) := −→ρ ′(0) }

In the base case, two environments are related unconditionally. This is fine because

context stacks are always non-empty, so this case is never hit.

The monotonicity lemma ensures that the Kripke structure is successfully internal-

ized, so subsequent proofs are unaware of the exact structure of �, making the NbE

proof structure very general. Due to the composition of UMoTs, all properties describ-

ing the Kripke structure eventually boil down to monotonicity.

Lemma 2.4 (Monotonicity).

• If a ≈ b ∈ JT K, then a[κ] ≈ b[κ] ∈ JT K.

• If −→ρ ≈ −→ρ ′ ∈ J
−→
Γ K, then −→ρ [κ] ≈ −→ρ ′[κ] ∈ J

−→
Γ K.

The lemma says that the PER models are invariant under any UMoT.

The semantic judgments for completeness are defined as:

−→
Γ � t ≈ t′ : A := ∀ −→ρ ≈ −→ρ ′ ∈ J

−→
Γ K . JtK(−→ρ) ≈ Jt′K(−→ρ ′) ∈ JAK

−→
Γ � −→σ ≈ −→σ ′ :

−→
∆ := ∀ −→ρ ≈ −→ρ ′ ∈ J

−→
Γ K . J−→σ K(−→ρ) ≈ J−→σ ′K(−→ρ ′) ∈ J

−→
∆K

−→
Γ � t : A :=

−→
Γ � t ≈ t : A

−→
Γ � −→σ :

−→
∆ :=

−→
Γ � −→σ ≈ −→σ :

−→
∆

Soundness of the semantic judgments are proved by the following fundamental theorem.

Theorem 2.5 (Fundamental).

• If
−→
Γ ` t : T , then

−→
Γ � t : T .

• If
−→
Γ ` −→σ :

−→
∆ , then

−→
Γ � −→σ :

−→
∆ .

41

• If
−→
Γ ` t ≈ t′ : T , then

−→
Γ � t ≈ t′ : T .

• If
−→
Γ ` −→σ ≈ −→σ ′ :

−→
∆ , then

−→
Γ � −→σ ≈ −→σ ′ :

−→
∆ .

Proof. Proceed by a mutual induction on the syntactic judgments.

The fundamental theorem states that all syntactic judgments are semantically sound

w.r.t. the semantic judgments. More specifically, the completeness theorem of the NbE

algorithm is an instantiation of the fundamental theorem.

Theorem 2.6 (Completeness). If
−→
Γ ` t ≈ t′ : T , then nbeT−→

Γ
(t) = nbeT−→

Γ
(t′).

Proof.
−→
Γ ` t ≈ t′ : T implies

−→
Γ � t ≈ t′ : T by the fundamental theorem. Combining

realizability, the goal is concluded.

2.10 Restricted Weakenings

In the previous section, I have established the completeness theorem. In the next step,

I will establish the soundness proof, central to which is a Kripke gluing model. The

gluing model is Kripke because it is monotonic w.r.t. a special class of K-substitutions,

restricted weakenings. Similar to completeness, the proof of soundness also has two

steps:

• the fundamental theorems, and

• the realizability theorem stating that a term is equivalent to the readback of its

related value.

In this section, I first give the definition of restricted weakenings.

Restricted weakenings are a special class of K-substitutions which characterize the

possible changes in context stacks during evaluation. Therefore, if a term and a value

are related, their relation must be stable under restricted weakenings, hence introducing

a Kripke structure to the gluing model.

42

Definition 2.6. A K-substitution −→σ is a restricted weakening if it inductively satisfies

−→
Γ ` −→σ ≈

−→
I :
−→
∆

−→
Γ `r −→σ :

−→
∆

−→
Γ `r −→σ ′ :

−→
∆; ∆, x : A

−→
Γ ` −→σ ≈ wk ◦ −→σ ′ :

−→
∆; ∆

−→
Γ `r −→σ :

−→
∆; ∆

−→
Γ `r −→σ ′ :

−→
∆ |

−→
Γ ′| = n

−→
Γ ; Γ′ ` −→σ ≈ −→σ ′;⇑n:

−→
∆; ·

−→
Γ ; Γ′ `r −→σ :

−→
∆; ·

Effectively, a restricted weakening can only do either local weakenings (wk) or modal

extensions (;⇑n), because only these two cases are possible during evaluation. Since

restricted weakenings also have identity and composition, we require the gluing model

to respect them.

2.11 Gluing Model And Soundness

In this section, I will define the gluing model t ∼ a ∈ LT M −→
Γ

to relate a well-typed term

with a domain value a. As previously said, the gluing model is Kripke, in the sense

that it should respect restricted weakenings. Though it is quite clear that a restricted

weakening is directly applicable to a term t, how does a domain value a respect a K-

substitution? This is achieved by UMoT extraction (mt())11, which extracts a UMoT

from a K-substitution (not just a restricted weakening).

mt() :: Substs→ UMoT

mt(
−→
I) :=

−→
1

mt(wk) :=
−→
1

mt(−→σ , t) := mt(−→σ)

mt(−→σ ;⇑n) := mt(−→σ);⇑n

mt(−→σ ◦
−→
δ) := mt(−→σ) ◦ mt(

−→
δ)

Moreover, for conciseness, given a K-substitution −→σ and a domain value a, I write a[−→σ]

for a[mt(−→σ)] unless the distinction is worth emphasizing.

The following are two gluing relations. They state that a term and a value are

related if they are syntactically equivalent after respective readback under any restricted

11mt() stands for “we modal transform a K-substitution into a UMoT.”

43

weakening. In particular, the soundness theorem simply requires A −→
Γ

to relate any well-

typed term and its evaluation.

A −→
Γ
⊆ Exp×D

A −→
Γ

:= { (t, ↑A (c)) |
−→
Γ ` t : A and ∀

−→
∆ `r −→σ :

−→
Γ .
−→
∆ ` t[−→σ] ≈ RNe−→z (c[−→σ]) : A }

A −→
Γ
⊆ Exp×D

A −→
Γ

:= { (t, a) |
−→
Γ ` t : A and ∀

−→
∆ `r −→σ :

−→
Γ .
−→
∆ ` t[−→σ] ≈ RNf−→z (↓A (a[−→σ])) : A }

where −→z := map(∆ 7→ |∆|,
−→
∆). In other words, −→z measures the lengths of all contexts

in the stack. It is used to generate new de Bruijn levels as we proceed reading back.

The goal of these two relations is to show that the gluing model LAM −→
Γ

is subsumed by

A −→
Γ

via realizability (Theorem 2.7), which is then used to prove the soundness theorem.

The gluing model is defined as

LAM −→
Γ
⊆ Exp×D

LBaseM −→
Γ

:= Base −→
Γ

L�AM −→
Γ

:= { (t, a) |
−→
Γ ` t : �A and

∀
−→
∆ ′,
−→
∆ `r −→σ :

−→
Γ . unbox|−→∆ ′| (t[−→σ]) ∼ unbox · (|

−→
∆ ′|, a[−→σ]) ∈ LAM −→

∆;
−→
∆ ′
}

LA −→ BM −→
Γ

:= { (t, a) |
−→
Γ ` t : A −→ B and

∀
−→
∆ `r −→σ :

−→
Γ , s ∼ b ∈ LAM −→

∆
. t[−→σ] s ∼ a[−→σ] · b ∈ LBM −→

∆
}

In the �A case, t and a are related if the results of unbox from any future work are

related under any restricted weakening. In the function case, t and a are related if the

results of function applications are related under any restricted weakening given any

related arguments.

The gluing model also has a realizability theorem:

Theorem 2.7 (Realizability). A −→
Γ
⊆ LAM −→

Γ
⊆ A −→

Γ
, i.e.

• If t ∼ a ∈ A −→
Γ

, then t ∼ a ∈ LAM −→
Γ

.

• If t ∼ a ∈ LAM −→
Γ

, then t ∼ a ∈ A −→
Γ

.

Proof. Induction on A.

44

The gluing model for types is then generalized to the gluing model for context stacks.

L
−→
Γ M −→

∆
⊆ Substs× Envs

LεM −→
∆

:= { (−→σ ,−→ρ) }
L
−→
Γ ; ΓM −→

∆
:= { (−→σ ,−→ρ) |

−→
∆ ` −→σ :

−→
Γ ; Γ and O(−→σ , 1) = k and −→σ | 1 ∼ −→ρ | 1 ∈ L

−→
Γ M −→

∆|k

and ∀ x : A ∈ Γ . x[−→σ] ∼ ρ(x) ∈ LAM −→
∆

where (k, ρ) := −→ρ (0) }

Again, the base case for ε will not be hit for well-formed judgments so it is simply set as

true. Otherwise, to relate −→σ and −→ρ , their truncation and truncation offset must agree.

Also terms in the K-substitution and values in the environment must also be related

pointwise.

The monotonicity of the gluing model is characterized as

Lemma 2.8 (Monotonicity).

• If t ∼ a ∈ JAK −→
∆

and
−→
Γ `r −→σ :

−→
∆ , then t[−→σ] ∼ a[−→σ] ∈ LAM −→

Γ
.

• If −→σ ∼ −→ρ ∈ L
−→
Γ M −→

∆
, given

−→
∆ ′ `r

−→
δ :
−→
∆ , then −→σ ◦

−→
δ ∼ −→ρ [

−→
δ] ∈ L

−→
Γ M −→

∆ ′
.

Proof. Induction on A.

Monotonicity ensures that the gluing model is stable under restricted weakenings.

Restricted weakenings apply to both syntax and semantics because they contain modal

extensions to instruct both sides to travel among Kripke worlds.

Semantic judgments for the soundness theorem are defined as follows:

−→
Γ
 t : A := ∀ −→σ ∼ −→ρ ∈ L

−→
Γ M −→

∆
. t[−→σ] ∼ JtK(−→ρ) ∈ LAM −→

∆−→
Γ

−→
δ :
−→
Γ ′ := ∀ −→σ ∼ −→ρ ∈ L

−→
Γ M −→

∆
.
−→
δ ◦ −→σ ∼ J

−→
δ K(−→ρ) ∈ L

−→
Γ ′M −→

∆

Soundness of the semantic judgments for the gluing model is proved by the fundamental

theorem.

Theorem 2.9 (Fundamental).

• If
−→
Γ ` t : T , then

−→
Γ
 t : T .

• If
−→
Γ ` −→σ :

−→
∆ , then

−→
Γ
 −→σ :

−→
∆ .

45

Proof. Proceed by a mutual induction on the syntactic judgments.

Theorem 2.10 (Soundness). If
−→
Γ ` t : T , then

−→
Γ ` t ≈ nbeT−→

Γ
(t) : T .

Proof. Applying the fundamental theorem gives t[
−→
I] ∼ JtK −→

Γ
(↑
−→
Γ) ∈ LT M −→

Γ
. The goal

is concluded by realizability.

2.12 Summary

At this point, I have finished the strong normalization proof of λ�. The convertibility

problem is trivially decidable, because I can simply compare equality between normal

forms after normalization. In this chapter, I develop K-substitutions, a uniform repre-

sentation of a substitution calculus of λ�, and an NbE algorithm. This setup continues

to scale naturally in dependent types as we will see very soon in the next chapter. This

also shows the effectiveness of my methodology discussed in Sec. 1.2.

46

3
Mint: A Kripke-style Modal

Dependent Type Theory

In the previous chapter, I have proved the strong normalization of λ� and given a

normalization algorithm explicitly. In this chapter, I scale λ� to Martin-Löf type theory

(MLTT) (Martin-Löf, 1984), introducing Mint, a Modal INtuitionistic Type theory.

I will first introduce the judgments for Mint and then establish its strong normalization

by scaling the normalization proof in the previous chapter.

Despite the complexity induced by dependent types, many critical observations in

fact have already been made in the previous chapter. They can be carried over to Mint

with virtually no change, so I just need to focus on adapting these observations for the

Kripke style to dependent types. As a result, the proof of the overall system becomes

more manageable than working on Mint from scratch. These important observations

include:

• the syntax of the explicit K-substitutions is unchanged;

47

• the exact definitions for truncoids (i.e. truncation and truncation offset) remain

unchanged;

• the definitions for evaluation environments and UMoTs and their operations in

the untyped domain model are unchanged;

• the semantic models for dependent types also need universal quantifications over

UMoTs and respects UMoTs (i.e. monotonicity).

These observations have set a basis for dependent types. In this chapter, I incrementally

build Mint on top of λ�.

The content in this chapter has been published (Hu et al., 2023) and mechanized.12

3.1 Introducing Mint by Examples

Before introducing Mint and its normalization by evaluation proof, let us consider

some examples that exploit the � modality in dependent types. In particular, I will

use these programs to highlight different design decisions.

3.1.1 Laws in S4

Similar to λ�, Mint captures dependently typed variants of four different modal sys-

tems: K, T , K4 and S4. These systems are distinguished by the laws that they admit,

as described in Table 2.1. With dependent types, for example, it is tempting to give

the law T the following type in Mint:

T : {A : Ty} → � A → A

Here Ty denotes universes to avoid clashing with Agda’s terminology.13 Unfortunately,

this type does not type-check, because the type A is in the current world, but � requires

the type A to be meaningful in the next world. The correct implementation of T states

that A is a type that is accessible in the next world by giving it the kind � Ty. This

ensures that A remains accessible. When using A in the definition of T, I now need to

first unbox it with a proper level.

T : {A : � Ty} → � (unbox 1 A) → unbox 0 A

T x = unbox 0 x

12https://hustmphrrr.github.io/mech-type-theories/README.html
13Universe levels are an orthogonal issue, which is not discussed in this section.

48

https://hustmphrrr.github.io/mech-type-theories/README.html

It might appear counter-intuitive at first glance, why should Mint distinguish between

a type of kind � Ty and a type of kind Ty? This distinction is necessary, as Mint does

not support cross-stage persistence (Taha and Sheard, 1997), i.e. the law R : A→ �A
or more specifically Ty → �Ty. In particular, there is no way to implement a function

that would lift any type of kind Ty such that it would have kind �Ty. As a consequence,

to ensure that all the types, in particular types such as �A are well kinded, A needs to

be meaningful in all Kripke worlds. A similar design decision is also taken by Jang et al.

(2022) in their work on developing a polymorphic modal type system that supports the

generation of polymorphic code.

The other two laws are implemented similarly:

K : {A B : � Ty} → � (unbox 1 A → unbox 1 B) →
� (unbox 1 A) → � (unbox 1 B)

K f x = box ((unbox 1 f) (unbox 1 x))

A4 : {A : � Ty} → � (unbox 1 A) → � � (unbox 2 A)

A4 x = box (box (unbox 2 x))

3.1.2 Lifting of Natural Numbers

As previously discussed, Mint does not support cross-stage persistence and the law

A → �A is not admissible for all A. Nevertheless, there are types which can be

explicitly lifted from A to �A. The type for natural numbers is one such example. In

Mint, such lifting functions needs to be implemented when required to ensure cross-

stage persistence. Since Mint supports inductive types just as MLTT does, natural

numbers, Nat, are defined in the usual way, with zero and succ as the constructors.

Then the lift function shows that natural numbers do admit the law A→ �A:

lift : Nat → � Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

Note that this function is implemented by recursion on the input number. If the input

is just zero, then the solution is easy: it is just box zero. The constructor zero can be

referred inside of a box, which requires a term in the next world, because Nat is a closed

definition, so Nat and its constructors can be lifted to any world. In the succ case, box

enters a new world and the recursion lift n needs to be invoked somehow. Luckily,

49

unbox1 brings us back to the current world, where n is accessible and is precisely needed

for recursion.

Just like MLTT, Mint can be used to prove properties about a definition. For

example, the following definition proves that unbox0 is an inverse of lift:

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift zero = refl -- zero ≡ zero

unbox -lift (succ n) = cong succ (unbox -lift n)

In the base case, the left hand side evaluates to unbox0 (box zero) which is just equivalent

to zero. Therefore reflexivity (refl) suffices to prove this goal. In the step case, the

proof obligation is

unbox 0 (box (succ (unbox 1 (lift n)))) ≡ succ n

The left hand side reduces to succ (unbox0 (lift n)) based on the equivalence rules to be

described in the next section. The recursive call gives unbox-lift n : unbox0 (lift n) ≡ n.

Therefore the goal is concluded by the recursive call modulo an extra congruence of succ.

3.1.3 Generating N-ary Sum

According to Davies and Pfenning (2001), the modal logic S4 corresponds to staged

computation under Curry-Howard correspondence, where �A denotes the type of a

computation of type A, the result of which is only available in some future stages of

computation. Effectively, � segments different computational stages, so that variables

in past stages cannot be directly referred to in the current stage. The � modality

provides a logical foundation for multi-staged programming systems like MetaML (Taha

and Sheard, 1997; Taha, 2000) and MetaOCaml (Kiselyov, 2014). By integrating � into

MLTT, Mint can be viewed as a program logic to model dependently typed staged

computations and use Mint’s equational theory to prove that (meta-)programs satisfy

certain specifications. In this section, I show how the S4 variant of Mint models staged

programming and in the next, I prove that this meta-program is correctly implemented.

Proving the correctness of a staged or meta-program in MetaML or a similar system has

not been previously considered, but with Mint, this capability comes very naturally.

For more practicality, certain extraction mechanisms can be implemented and employed

here to extract the code to a mature staged programming system such as MetaML

50

(Taha and Sheard, 1997) or MetaOCaml (Kiselyov, 2014) with proper type-level magic

to erase dependent types as commonly practiced in Coq and Agda.

The task in this example is to model a meta-program nary-sum that generates code

for an n-ary sum function that sums up n numbers. If n is zero, then the result is

zero; if it is one, then the result is the identity function; if it is two, then the result is

a function that sums up two arguments, i.e. box λ x y → x + y. Writing such an n-ary

sum function in a type-safe manner can be achieved by exploiting large elimination in

MLTT.

In dependent type theory, large elimination allows recursions to compute types. It

is an elimination into a “large” type,14 hence the name. In this example, the type-level

function nary n computes the type of an n-ary function via a large elimination:

nary : Nat → Ty

nary zero = Nat

nary (succ n) = Nat → nary n

The type of nary-sum should intuitively take a natural number n : Nat and return code

of type nary n. This, however, does not quite work, as � (nary n) is ill-typed. Note

that n is defined in the current world, but it is used inside � (i.e. in the next world).

Hence, the lift function defined previously is used to first lift the n : Nat to � Nat to

be able to splice it in with unbox1. The need to lift types such as natural numbers to

have access to it in both current and future worlds is a common theme when writing

staged programs. In a dependently typed setting, this pattern of lifting also occurs on

the type level to support a form of cross-stage persistence of values. The correct type of

nary-sum is hence (n : Nat) → � (nary (unbox1 (lift n))). The implementation itself is

in fact rather intuitive:

nary -sum : (n : Nat) → � (nary (unbox 1 (lift n)))

nary -sum zero = box zero

nary -sum (succ zero) = box λ x → x

nary -sum (succ (succ n)) =

box λ x y → (unbox 1 (nary -sum (succ n))) (x + y)

Note that in the base case of zero, the return type is � Nat; in the case of succ zero,

the result is a boxed identity function because the return type is � (Nat → Nat); in the

14as opposed to ordinary recursions which compute some data, i.e. “small” types

51

case of succ (succ n), nary-sum (succ (succ n)) returns a term of type

� (nary (unbox1 (lift (succ (succ n)))))

The recursive call nary-sum (succ n) has type � (nary (unbox1 (lift (succ n)))). Fur-

ther by computation

nary (unbox 1 (lift (succ n)))

≈ Nat → nary (unbox 1 (lift n))

nary (unbox 1 (lift (succ (succ n))))

≈ nary (succ (succ (unbox 1 (lift n))))

≈ Nat → Nat → nary (unbox 1 (lift n))

To compute the final result of nary-sum (succ (succ n)), I unbox1 the code generated

by nary-sum (succ n), which has type Nat → nary (unbox1 (lift n)), and then apply

this function to the sum of the first two arguments. To illustrate, let us normalize

nary-sum 3. For convenience, numeric literals 0, 1, etc. and for natural numbers zero,

succ zero, etc. are interchangeable.

nary -sum 1 ≈ box λ x1 → x1

nary -sum 2 ≈ box λ x2 x1 → (unbox 1 (nary -sum 1)) (x2 + x1)

≈ box λ x2 x1 → (λ x1 → x1) (x2 + x1)

≈ box λ x2 x1 → x2 + x1

nary -sum 3 ≈ box λ x3 x2 → (unbox 1 (nary -sum 2)) (x3 + x2)

≈ box λ x3 x2 → (λ x2 x1 → x2 + x1) (x3 + x2)

≈ box λ x3 x2 x1 → (x3 + x2) + x1

The last equation shows in Mint that nary-sum 3 and the code of λ x y z → (x + y) + z

are definitionally equal due to the congruence of box:

nary -sum -3 : nary -sum 3 ≡ box λ x y z → (x + y) + z

nary -sum -3 = refl

Mint admits the congruence of box and as a result, reductions occur freely even inside of

a box. This behavior models the code optimization phases in meta-programming systems

as in MetaML (Taha, 2000), so Mint serves as a program logic to reason about the

behaviors of meta-programs. The congruence of box is essential to model MetaML and

particularly helpful when using Mint as a program logic, for the same reason as having

the congruence of λ. Moreover, the congruence of box allows a significantly simpler

semantic model.

52

3.1.4 Soundness of N-ary Sum

Previously, nary-sum-3 gives a specific soundness proof for the ternary sum. Mint can

take one step further: it can be used to prove a general soundness theorem for nary-sum.

Specifically, I prove that given a list xs of natural numbers which has length n, adding

up all numbers in xs returns the same result as using the code generated by nary-sum n

to add them up. To make this theorem precise, the following are the function sum, which

sums up all the numbers in a list xs of length n, and the function ap-list, which applies

a function f : nary n to all the numbers in xs:

sum : (n : Nat) (xs : List Nat) → length xs ≡ n → Nat

sum zero [] refl = zero

sum (succ zero) (x :: []) refl = x

sum (succ (succ n)) (x :: y :: xs) eq =

sum (succ n) ((x + y) :: xs) omitted -eq

ap-list : (n : Nat) (xs : List Nat) → length xs ≡ n → nary n → Nat

ap-list zero [] refl x = x

ap-list (succ n) (x :: xs) eq f = ap-list n xs omitted -eq (f x)

where omitted-eq has type length xs ≡ n when eq has type succ (length xs) ≡ succ n.

Equational reasoning is omitted in the example to avoid distraction. The slightly un-

orthodox definition of sum is defined by recursion on n just as ap-list, so that auxiliary

lemmas such as the associativity of addition are avoided in the subsequent soundness

theorem. Proving it equal to the standard definition is an easy exercise in MLTT,

which is also omitted here. Then the final soundness theorem is stated as follows:

nary -sum -sound : (n : Nat) (xs : List N)

(eq : length xs ≡ n) (eq ’ : length xs ≡ unbox 0 (lift n)) →
ap-list (unbox 0 (lift n)) xs eq ’ (unbox 0 (nary -sum n)) ≡ sum n xs eq

nary -sum -sound zero [] refl refl

= refl -- zero ≡ zero

nary -sum -sound (succ zero) (x :: []) refl refl

= refl -- x ≡ x

nary -sum -sound (succ (succ n)) (x :: y :: xs) eq eq ’

= nary -sum -sound (succ n) ((x + y) :: xs) omitted -eq omitted -eq ’

nary-sum-sound takes two equality proofs to simplify the formulation of this lemma.

When using nary-sum-sound, eq’ can be derived from eq and unbox-lift defined above.

53

The first two base cases are easy. In the last case, a recursive call suffices. The expected

return type is

ap-list (succ (succ (unbox 0 (lift n)))) (x :: y :: xs) eq’

(unbox 0 (nary -sum (succ (succ n))))

≡ sum (succ (succ n)) (x :: y :: xs) eq

Simplify the left hand side:

ap-list (succ (succ (unbox 0 (lift n)))) (x :: y :: xs) eq’

(unbox 0 (nary -sum (succ (succ n))))

≈ ap-list (unbox 0 (lift n)) xs omitted -eq ’

((λ x y → unbox 0 (nary -sum (succ n)) (x + y)) x y)

≈ ap-list (unbox 0 (lift n)) xs omitted -eq ’

((unbox 0 (nary -sum (succ n))) (x + y))

On the other hand, the recursive call gives:

ap-list (succ (unbox 0 (lift n))) ((x + y) :: xs) eq’

(unbox 0 (nary -sum (succ n)))

≡ sum (succ n) ((x + y) :: xs) eq

Again simplify the left hand side:

ap-list (succ (unbox 0 (lift n))) ((x + y) :: xs) omitted -eq ’

(unbox 0 (nary -sum (succ n)))

≈ ap-list (unbox 0 (lift n)) xs omitted -eq’

((unbox 0 (nary -sum (succ n))) (x + y))

Therefore by definitional equality, nary-sum-sound is a valid proof.

3.2 Definition of Mint

In the previous section, I have given a few example (meta-)programs to illustrate Mint

informally. Starting this section, I give a formal account for Mint and assign semantics

to it.

54

Mint has the following syntax:

i (Universe Levels, N)

s, t,M, S, T := x | Nat | �T | Π(x : S).T | Tyi | zero | succ t
| elimNat (x.M) s (x, y.s′) t | box t | unboxn t | λx.t | s t | t[−→σ]

(Terms, Trm)

w,W := u | Nat | Tyi | �W | Π(x : W).W ′ | zero | succ w | box w | λx.w
(Normal forms, Nf)

u, V := x | elimNat (x.W) w (x, y.w′) u | unboxn u | u w
(Neutral forms, Ne)

Mint combines λ� introduced in Chapter 2 and Martin-Löf type theory. The same

as λ�, Mint models the Kripke semantics and uses context stacks to keep track of

assumptions in all accessed worlds. Mint has natural numbers (Nat, zero, succ t), Π

types, cumulative universes, written as Tyi, and explicit K-substitutions. Here, the

cumulativity of universes means if a type is in the universe of level i, then it is also

in the universe of level 1 + i, not a stronger notion of cumulativity based on universe

subtyping. The elimination of natural numbers is performed by a recursive principle

(elimNat (x.M) s (x, y.s′) t). In this expression, t is the scrutinee describing a natural

number, and s and s′ are referring to the two possible cases where t is zero and the

successor respectively; M is the motive describing essentially the overall type skeleton

of the recursor. As the overall type of the recursor depends on t, the motive M depends

on an open variable x of type Nat. The handling of natural numbers is unsurprising and

is almost identical to (Abel, 2013) so I choose to omit most of its discussion. Finally, λ

abstractions are used to construct a term of Π type, which can then be used via function

applications as usual. The role of �T , its constructor box and its eliminator unbox is

the same as Chapter 2, so I do not reiterate here again. The context and context

stack structures are identical to λ� defined in Sec. 2.1. Mint is also formulated as an

explicit K-substitution calculus and the exact syntax is pleasantly unchanged (Sec. 2.3).

All other important definitions including truncoids and the truncation and truncation

offset operations of K-substitutions are carried over to Mint (see Sec. 2.4). This is very

advantageous because their properties have been thoroughly studied in Chapter 2, so I

55

will only need to focus on adapting these definitions to Mint.

Notationally, I consistently use upper cases for types and lower cases otherwise.

Some selected typing rules are given in Fig. 3.1 and 3.2. The full set of rules can be

found in Appendix B. There are six different judgments in Mint:

• `
−→
Γ denotes that the context stack

−→
Γ is well formed;

• `
−→
Γ ≈

−→
∆ denotes that

−→
Γ and

−→
∆ are equivalent context stacks;

•
−→
Γ ` t : T denotes that term t has type T in context stack

−→
Γ ;

•
−→
Γ ` t ≈ s : T denotes that terms t and s of type T are equivalent in context

stack
−→
Γ ;

•
−→
Γ ` −→σ :

−→
∆ denotes that −→σ is a K-substitution susbtituting terms in

−→
∆ into ones

in
−→
Γ ;

•
−→
Γ ` −→σ ≈

−→
δ :
−→
∆ denotes that −→σ and

−→
δ are equivalent in K-substituting terms

in
−→
∆ into ones in

−→
Γ .

Though the syntax of K-substitutions is identical, due to dependent types, the typing

rules for K-substitutions must also keep track of the well-formedness of context stacks.

A basic syntactic validity check is done by proving two syntactic properties, context

stack conversion and presupposition. Context stack conversion states that all syntactic

judgments respect context stack equivalence `
−→
Γ ≈

−→
∆ to the left of the turnstile. Note

that for judgments for K-substitutions like
−→
Γ ` −→σ :

−→
Γ ′ and

−→
Γ ` −→σ ≈ −→σ ′ :

−→
Γ ′,
−→
Γ ′

also respect context stack equivalence, but this property is built in to the rules of the

judgments. Presupposition (or syntactic validity) includes for example facts such as if
−→
Γ ` t : T then `

−→
Γ and

−→
Γ ` T : Tyi for some i.

Theorem 3.1 (Context stack conversion). Given `
−→
Γ ≈

−→
∆ ,

• if
−→
Γ ` t : T , then

−→
∆ ` t : T ;

• if
−→
Γ ` t ≈ s : T , then

−→
∆ ` t ≈ s : T ;

• if
−→
Γ ` −→σ :

−→
Γ ′, then

−→
∆ ` −→σ :

−→
Γ ′;

56

`
−→
Γ and `

−→
Γ ≈

−→
∆ well formedness of

−→
Γ and equivalence between

−→
Γ and

−→
∆

` ε; ·
`
−→
Γ

`
−→
Γ ; ·

`
−→
Γ ; Γ

−→
Γ ; Γ ` T : Tyi

`
−→
Γ ; Γ, x : T ` ε; · ≈ ε; ·

`
−→
Γ ≈

−→
∆

`
−→
Γ ; · ≈

−→
∆; ·

`
−→
Γ ; Γ ≈

−→
∆; ∆

−→
Γ ; Γ ` T ≈ T ′ : Tyi−→

∆; ∆ ` T ≈ T ′ : Tyi
−→
Γ ; Γ ` T : Tyi

−→
∆; ∆ ` T ′ : Tyi

`
−→
Γ ; Γ, x : T ≈

−→
∆; ∆, x : T ′

−→
Γ ` t : T t has type T in

−→
Γ

−→
Γ ` T : Tyi
−→
Γ ` T : Ty1+i

−→
Γ ; Γ ` S : Tyi

−→
Γ ; Γ, x : S ` T : Tyi

−→
Γ ; Γ ` Π(x : S).T : Tyi

−→
Γ ; Γ ` S : Tyi

−→
Γ ; Γ, x : S ` t : T

−→
Γ ; Γ ` λx : t : Π(x : S).T

−→
Γ ; Γ ` S : Tyi

−→
Γ ; Γ, x : S ` T : Tyi−→

Γ ; Γ ` t : Π(x : S).T
−→
Γ ; Γ ` s : S

−→
Γ ; Γ ` t s : T [

−→
I , s]

−→
Γ ; · ` T : Tyi
−→
Γ ` �T : Tyi

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Tyi−→

Γ ` t : �T `
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

−→
Γ ` t : T

−→
Γ ` T ≈ T ′ : Tyi

−→
Γ ` t : T ′

−→
Γ ` −→σ :

−→
∆ −→σ is a well formed K-substitution from

−→
∆ to

−→
Γ

`
−→
Γ

−→
Γ `
−→
I :
−→
Γ

`
−→
Γ ; Γ, x : T

−→
Γ ; Γ, x : T ` wk :

−→
Γ ; Γ

−→
Γ ` −→σ :

−→
Γ ′; Γ

−→
Γ ′; Γ ` T : Tyi

−→
Γ ` t : T [−→σ]

−→
Γ ` −→σ , t :

−→
Γ ′; Γ, x : T

−→
Γ ` −→σ :

−→
∆ `

−→
Γ ;
−→
Γ ′ |

−→
Γ ′| = n

−→
Γ ;
−→
Γ ′ ` −→σ ;⇑n:

−→
∆; ·

−→
Γ ′ ` −→σ :

−→
Γ ′′

−→
Γ `
−→
δ :
−→
Γ ′

−→
Γ ` −→σ ◦

−→
δ :
−→
Γ ′′

−→
Γ ` −→σ :

−→
∆ `

−→
∆ ≈

−→
∆ ′

−→
Γ ` −→σ :

−→
∆ ′

Figure 3.1: Selected rules for Mint

57

−→
Γ ` t ≈ t′ : T t and t′ of type T are equivalent in

−→
Γ

−→
Γ ; Γ ` S : Tyi

−→
Γ ; Γ, x : S ` T : Tyi−→

Γ ; Γ, x : S ` t : T
−→
Γ ; Γ ` s : S

−→
Γ ; Γ ` (λx.t) s ≈ t[

−→
I , s] : T [

−→
I , s]

−→
Γ ; Γ ` S : Tyi−→

Γ ; Γ, x : S ` T : Tyi
−→
Γ ; Γ ` t : Π(x : S).T

−→
Γ ; Γ ` t ≈ λx.(t[wk] x) : Π(x : S).T

−→
Γ ; · ` T : Tyi

−→
Γ ; · ` t : T

`
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn (box t) ≈ t[

−→
I ;⇑n] : T [

−→
I ;⇑n]

−→
Γ ; · ` T : Tyi

−→
Γ ` t : �T

−→
Γ ` t ≈ box (unbox1 t) : �T

Figure 3.2: Selected rules for Mint (Cont’d)

• if
−→
Γ ` −→σ ≈ −→σ ′ :

−→
Γ ′, then

−→
∆ ` −→σ ≈ −→σ ′ :

−→
Γ ′.

Theorem 3.2 (Presupposition).

• If `
−→
Γ ≈

−→
∆ , then `

−→
Γ and `

−→
∆ .

• If
−→
Γ ` t : T , then `

−→
Γ and

−→
Γ ` T : Tyi for some i.

• If
−→
Γ ` t ≈ t′ : T , then `

−→
Γ ,
−→
Γ ` t : T ,

−→
Γ ` t′ : T and

−→
Γ ` T : Tyi for some i.

• If
−→
Γ ` −→σ :

−→
∆ , then `

−→
Γ and `

−→
∆ .

• If
−→
Γ ` −→σ ≈ −→σ ′ :

−→
∆ , then `

−→
Γ ,
−→
Γ ` −→σ :

−→
∆ ,
−→
Γ ` −→σ ′ :

−→
∆ and `

−→
∆ .

3.3 Scaling Untyped Domain Model

In this section, I scale the untyped domain model described in Sec. 2.5 to Mint. The

extension to the untyped domain model is moderate. There are still three kinds of

values (D, DNe and DNf) and local and global evaluation environments. The definitions

of domain values are adapted to Mint, but the definitions of environments and UMoTs

remain the same. In fact, global environments and UMoTs possess identical truncoid

structures to those described in Sec. 2.4. This is very convenient as most definitions are

simply carried over from λ� to Mint.

What is substantially changed in Mint is the PER model (see Sec. 3.5). Due to

dependent types, the PER model must take type-level computation into account and

58

therefore can no longer be defined by recursion on the structure of types. Instead, the

semantics of types must be defined simultaneously with the semantics of terms, using

induction-recursion (Dybjer, 2000; Dybjer and Setzer, 2001, 2003). Induction-recursion

allows a mutual definition of multiple predicates, where one predicate is defined induc-

tively and others are defined by recursions on this inductive predicate. In the PER

model, the semantics of types are defined inductively and the semantics of terms are

defined recursively. Once the PER model is established, I will prove completeness of

NbE (Sec. 3.7).

Another complication due to dependent types, is the soundness proof (Sec. 3.10).

Unlike λ�, the gluing model (Sec. 3.8) in the soundness proof relies on the PER model.

The gluing model is defined by recursion on the PER model.

Now let us move on to the renewed definition of the untyped domain model:

a, b, A := N | �A | Pi(A, T,−→ρ) | Ui | ze | su(a) | Λ(t,−→ρ) | box(a) | ↑A (c)

(Domain Values, D)

c, C := z | rec(M,a, t, c,−→ρ) | c d | unbox(n, c) (Neutral Domain Values, DNe)

d,D := ↓A (a) (Normal Domain Values, DNf)

Same as before, I consistently use upper cases for semantic types and lower cases

otherwise. In D, N models natural numbers, � models � semantically and Ui models

a universe at level i. ze models zero and su(a) models successors. A neutral value

c is embedded into D when annotated with a type A. The domain type Pi(A, T,−→ρ)

models a Π type and consists of a domain type A as the input type and a syntactic

type T as the output type together with its ambient environment −→ρ which provides

instantiations for all the free variables in T except the topmost one bound by Π in

the syntax. This is another instance of defunctionalization first discussed in Sec. 2.5.

Similarly, the domain value Λ(t,−→ρ) models a λ term and describes a syntactic body

t together with an environment −→ρ which provides values for all the free variables in

t except the topmost one bound by λ in the syntax. For a neutral domain value for

the recursor of natural numbers rec(M,a, t, c,−→ρ), the neutral domain value c describes

the scrutinee, which is intended to be a natural number, while a describes the domain

value for the base case. Next, t is an open syntactic term because it describes the term

59

for the step case. Last, M describes the motive in the syntax with one free variable

expressing the dependency on the natural number c. Due to defunctionalization, −→ρ ,

the surrounding environment of M and t, is captured and stored.

The definition and the operations of evaluation environments are unchanged (see

Sec. 2.5).

The updated untyped domain model also relies on UMoTs. The definition and the

operations of UMoTs remain unchanged (see Sec. 2.6), so I do not repeat them here

again. The application of a UMoT to domain values and environments is defined as

follows:

N[κ] := N

�A[κ] := �(A[κ;⇑1])

Pi(A, T,−→ρ)[κ] := Pi(A[κ], T,−→ρ [κ])

Ui[κ] := Ui

ze[κ] := ze

su(a)[κ] := su(a[κ])

Λ(t,−→ρ)[κ] := Λ(t,−→ρ [κ])

box(a)[κ] := box(a[κ;⇑1])

↑A (c)[κ] := ↑A[κ] (c[κ])

z[κ] := z

rec(M,a, t, c,−→ρ)[κ] := rec(M,a[κ], t, c[κ],−→ρ [κ])

c d[κ] := (c[κ]) (d[κ])

unbox(n, c)[κ] := unbox(O(κ, n), c[κ | n])

↓A (a)[κ] := ↓A[κ] (a[κ])

−→ρ [κ](0) := (O(κ, n), ρ[κ]) (where (n, ρ) := −→ρ (0))
−→ρ [κ](1 + n) := −→ρ | 1[κ | O(−→ρ , 1)](n)

The � case is similar to the box case, where A is applied to κ;⇑1, meaning that A is

in a new world. Due to dependent types, κ is also applied to the domain type A in

the cases of ↑A (c) and ↓A (a). The cases for evaluation environments are the same as

those for λ�, which implies that the triple (Envs,UMoT,Envs) still forms an applicative

truncoid. Other cases are identical to λ� so I do not elaborate further here.

60

3.4 Evaluation and Readback

The change of the syntax and the domain also leads to an update to the evaluation and

readback functions. Nevertheless, the update is moderate and takes dependent types

into consideration. The same as λ�, the evaluation operation is responsible for elimi-

nating all β redexes, so two auxiliary partial functions are defined to handle function

applications and unbox’es. The new evaluation function is:

J K :: Trm ⇀ Envs→ D

JNatK(−→ρ) := N

JTyiK(
−→ρ) := Ui

J�T K(−→ρ) := �(JT K(ext(−→ρ)))

JΠ(x : S).T K(−→ρ) := Pi(JSK(−→ρ), T,−→ρ)

JxK(−→ρ) := ρ(x) (where (, ρ) := −→ρ (0))

JzeroK(−→ρ) := ze

Jsucc tK(−→ρ) := su(JtK(−→ρ))

Jbox tK(−→ρ) := box(JtK(ext(−→ρ)))

Junboxn tK(−→ρ) := unbox · (O(−→ρ , n), JtK(−→ρ | n))

Jλx.tK(−→ρ) := Λ(t,−→ρ)

Jt sK(−→ρ) := JtK(−→ρ) · JsK(−→ρ)

Jt[−→σ]K(−→ρ) := JtK(J−→σ K(−→ρ))

Only the evaluation function for terms is updated; the evaluation for K-substitutions

remains identical to the one in Sec. 2.7. This again shows how the framework for a

normalization proof has been robustly set up in λ�. The two auxiliary partial functions

are:
unbox· :: N→ D ⇀ D

unbox · (n, box(a)) := a[
−→
1 ;⇑n]

unbox · (n, ↑�A (c)) :=↑A[
−→
1 ;⇑n] (unbox(n, c))

· :: D ⇀ D ⇀ D

(Λ(t,−→ρ)) · a := JtK(lext(−→ρ , a))

(↑Pi(A,T,−→ρ) (c)) · a :=↑JT K(lext(−→ρ ,a)) (c ↓A (a))

61

To take dependent types into account, the neutral cases in these two partial functions

must also change the type annotations. For unbox·, the type A also needs to be trans-

formed into A[
−→
1 ;⇑n] to match up with the β rule in Fig. 3.2. Similarly, when applying

a neutral function, the result type is computed by JT K(lext(−→ρ , a)). There is also an

auxiliary function to handle recursions on natural numbers, which is omitted here for

concision.

The readback functions should also be updated. The purpose of the readback func-

tions is to convert the domain values to normal or neutral forms, and perform η expan-

sions during the conversion. The readback process consists of three functions: RNf reads

back a normal form; RNe reads back a neutral form; RTy reads back a normal type.

RNf ::
−→
N ⇀ DNf ⇀ Nf

RNf−→z (↓Ui (A)) := RTy
−→z (A)

RNf−→z (↓↑A(c) (↑A′ (c′))) := RNe−→z (c′)

RNf−→z (↓�A (a)) := box RNf−→z ;0(↓A (unbox · (1, a)))

RNf−→z ;z(↓Pi(A,T,
−→ρ) (a)) := λx.RNf−→z ;1+z(↓JT K(lext(−→ρ ,↑A(z))) (a· ↑A (z)))

RNf−→z (↓N (ze)) := zero

RNf−→z (↓N (su(a))) := succ (RNf−→z (↓N (a)))

RNf−→z (↓N (↑N (c))) := RNe−→z (c)

RTy ::
−→
N ⇀ D ⇀ Nf

RTy
−→z (Ui) := Tyi

RTy
−→z (�A) := �RTy

−→z ;0
(A)

RTy
−→z ;z

(Pi(A, T,−→ρ)) := Π(x : RTy
−→z ;z

(A)).RTy
−→z ;1+z

(JT K(lext(−→ρ , ↑A (z))))

RTy
−→z (↑A (c)) := RNe−→z (c)

RNe ::
−→
N ⇀ DNe ⇀ Ne

RNe−→z ;z′(z) := x (the de Bruijn index of x is max(z′ − z − 1, 0))

RNe−→z (c d) := RNe−→z (c) RNf−→z (d)

RNe−→z (unbox(n, c)) := unboxn RNe−→z |n(c)

With the updated definitions of evaluation and readback, the definition of the NbE

algorithm is also slighted updated due to dependent types. The difference is in the type

annotation; the type T must also be evaluated.

62

Definition 3.1. For
−→
Γ ` t : T , the NbE algorithm is

nbeT−→
Γ

(t) := RNf

map(Γ7→|Γ|,
−→
Γ)

(↓JT K(↑
−→
Γ) (JtK(↑

−→
Γ)))

where the initial environment ↑
−→
Γ is defined by the structure of

−→
Γ :

↑ ::
−→
Ctx ⇀ Envs

↑ε;· := empty

↑
−→
Γ ;· := ext(↑

−→
Γ)

↑
−→
Γ ;(Γ.T) := lext(−→ρ , ↑JT K(−→ρ) (l|Γ|)) (where −→ρ :=↑

−→
Γ ;Γ)

3.5 PER Model

In this section, I define the PER model for the untyped domain model. The change to

the PER model is more substantial. In fact, it is completely redefined due to dependent

types, because the semantics of terms can no longer be defined by recursion on the

structure of types. Instead, induction-recursion (Dybjer, 2000; Dybjer and Setzer, 2001,

2003) is used to give the semantics of types and terms simultaneously. Similar to other

NbE proofs for dependent types (Abel, 2013; Abel et al., 2017; Gratzer et al., 2019;

Altenkirch and Kaposi, 2017; Wieczorek and Biernacki, 2018), the soundness proof of

NbE relies on the fundamental theorem of the PER model, so the PER model is a

prerequisite for Sec. 3.8.

Following Abel (2013), I first introduce the following relations.

∀ −→z , κ . RNf−→z (d[κ]) = RNf−→z (d′[κ])

d ≈ d′ ∈ Nf

∀ −→z , κ . RTy
−→z (A[κ]) = RTy

−→z (A′[κ])

A ≈ A′ ∈ Ty

∀ −→z , κ . RNe−→z (c[κ]) = RNe−→z (c′[κ])

c ≈ c′ ∈ Ne

where Nf ⊆ DNf × DNf, Ty ⊆ D × D and Ne ⊆ DNe × DNe. Nf relates two normal

domain values iff their readbacks are equal given any context stack and UMoT. Ty and

Ne are defined similarly.

63

Now I define the actual PERs that relate domain values. The PER model resembles

Tarski-style universes (Palmgren, 1998), in which universes contain “codes” and El

converts these codes into actual types which contain values. The PER model consists

of two PERs: Ui, which denotes a relation for types and relates two domain types at

level i, and Eli(D), which given D :: A ≈ B ∈ Ui relates two domain values of domain

types A and B. Following Abel (2013); Abel et al. (2018), Ui and Eli are defined

inductive-recursively. Moreover, due to cumulative universes, they must in addition be

defined with the well-foundedness of the universe levels.

Definition 3.2. The equivalence for domain types D :: A ≈ B ∈ Ui is defined induc-

tively and the equivalence for domain values a ≈ b ∈ Eli(D) is defined by recursion on

D as follows:

• Neutral types and neutral values:

D :=
C ≈ C ′ ∈ Ne

↑A (C) ≈↑A′ (C ′) ∈ Ui

Then a ≈ b ∈ Eli(D) iff a ≈ b ∈ Neu, where Neu relates two values only when

they are actually neutral:

c ≈ c′ ∈ Ne

↑A1 (c) ≈↑A2 (c′) ∈ Neu

Note that the annotating domain types A1 and A2 do not matter as long as c and

c′ are related by Ne.

• Natural numbers:

D :=
N ≈ N ∈ Ui

Then a ≈ b ∈ Eli(D) iff a ≈ b ∈ Nat, where Nat inductively relates two domain

64

values that are natural numbers:

ze ≈ ze ∈ Nat

a ≈ b ∈ Nat

su(a) ≈ su(b) ∈ Nat

c ≈ c′ ∈ Ne

↑N (c) ≈↑N (c′) ∈ Nat

• Universes:

D :=
j < i

Uj ≈ Uj ∈ Ui

Then a ≈ b ∈ Eli(D) iff a ≈ b ∈ Uj. Note that here Eli(D) is defined in terms of

Uj. This is fine because of j < i and the well-foundedness of universe levels.

• Semantic � types:

D :=
J :: ∀ κ . A[κ] ≈ A′[κ] ∈ Ui

�A ≈ �A′ ∈ Ui

Then a ≈ b ∈ Eli(D) iff for any UMoT κ and unbox level n, the unboxing’s of

a[κ] and b[κ] remain related: unbox · (n, a[κ]) ≈ unbox · (n, b[κ]) ∈ Eli(J (κ;⇑n)).

In other words, if a and b are still related no matter how they travel in Kripke

worlds and then are unbox’ed, then they are related by Eli(D).

• Semantic Pi types:

D :=

J1 :: ∀ κ . A[κ] ≈ A′[κ] ∈ Ui
J2 :: ∀ κ, a ≈ a′ ∈ Eli(J1[κ]) . JT K(lext(−→ρ [κ], a)) ≈ JT ′K(lext(−→ρ ′[κ], a′)) ∈ Ui

Pi(A, T,−→ρ) ≈ Pi(A′, T ′,−→ρ ′) ∈ Ui

Then a ≈ b ∈ Eli(D) iff for any UMoT κ and related a′ and b′, i.e.

E :: a′ ≈ b′ ∈ Eli(J1(κ)), the results of applying a[κ] and b[κ] remain related:

a[κ] · a′ ≈ b[κ] · b′ ∈ Eli(J2(κ, E)). That is, a and b are related if all results of

applying them in other worlds to related values are still related.

65

3.6 Properties for PERs

Due to the complication of the inductive-recursive definition of the PER model, the

statements and the proofs of necessary properties are no longer as straightforward as

in λ�. In this section, I discuss a number of properties which are made precise and

adjusted to a type-theoretic flavor during mechanization. Contrasts are drawn between

this mechanized work of Mint and other on-paper, set-theoretic NbE proofs (Abel,

2013; Abel et al., 2017; Gratzer et al., 2019).

3.6.1 U Irrelevance

While it comes for free in paper proofs, in type theory, it requires a proof that Eli only

relies on A and B in A ≈ B ∈ Ui, not how exactly they are related by Ui. Effectively,

U is proof-irrelevant:

Lemma 3.3 (U irrelevance). Given D :: A ≈ B ∈ Ui and a ≈ b ∈ Eli(D),

• if E1 :: A ≈ B′ ∈ Ui, then a ≈ b ∈ Eli(E1);

• if E2 :: A′ ≈ B ∈ Ui, then a ≈ b ∈ Eli(E2).

Proof. Do an induction on D and invert E1 and E2.

This lemma matches the set-theoretic intuition, which states that a and b are related

as long as we know they are related by one “representative” domain type.

3.6.2 U and El are PERs

Though the PER model has been called a “PER”, this fact requires a proof. Dur-

ing the proof, however, the strong scrutiny from Agda’s termination checker requires

adjustments to the statements so that they are more type-theoretic. For example, the

statement of symmetry includes an extra premise D2. This extra assumption D2 exposes

a clearer termination measure and allows Agda to admit the proof just by recognizing

decreasing structures.

Lemma 3.4 (Symmetry). Given D1 :: A ≈ B ∈ Ui,

• B ≈ A ∈ Ui;

66

• if D2 :: B ≈ A ∈ Ui, and a ≈ b ∈ Eli(D1), then b ≈ a ∈ Eli(D2).

Proof. Induction on i and D1 and inversion on D2 in the second statement.

The symmetry of El requires two Ui derivations: D1 relating A and B, and D2

relating B and A. They are used in the premise and the conclusion respectively. D2 is

important to handle the contravariance of the input and the output in the function case.

D2 can be eventually discharged by combining the symmetry of Ui and irrelevance, but

it is necessary to prove the lemma in a type-theoretic flavor.

Transitivity also requires a similar treatment but more complex:

Lemma 3.5 (Transitivity). Given D1 :: A1 ≈ A2 ∈ Ui and D2 :: A2 ≈ A3 ∈ Ui,

• A1 ≈ A3 ∈ Ui;

• if D3 :: A1 ≈ A3 ∈ Ui, A1 ≈ A1 ∈ Ui, and a1 ≈ a2 ∈ Eli(D1) and a2 ≈ a3 ∈
Eli(D2), then a1 ≈ a3 ∈ Eli(D3).

In addition to D3 which is used in Eli(D3) in conclusion, reflexivity of A1, A1 ≈
A1 ∈ Ui, is also a required assumption. This is again due to the function case. Proving

reflexivity requires transitivity, so during the proof of transitivity, it is easier to make

A1 ≈ A1 ∈ Ui an extra assumption.

3.6.3 Monotonicity

The same as λ�, the PER model must respect UMoTs, i.e. is monotonic. Monotonicity

ensures that the Kripke structure is successfully internalized, so subsequent proofs are

unaware of the exact modality, making the whole NbE proof structure very general.

Lemma 3.6 (Monotonicity). Given D :: A ≈ B ∈ Ui and a UMoT κ,

• A[κ] ≈ B[κ] ∈ Ui;

• if E :: A[κ] ≈ B[κ] ∈ Ui and a ≈ b ∈ Eli(D), then a[κ] ≈ b[κ] ∈ Eli(E).

Similar to symmetry and transitivity, E is required in the second statement to ease

termination checking in Agda.

67

3.6.4 Cumulativity and Lowering

Cumulativity states that if two types or values are related at level i, then they are also

related at level 1 + i. At first glance, this property is too intuitive to be worth looking

into. However, in the function case, the conclusion assumes two related values at level

1 + i, but the premise requires them to be related at level i, so there are some missing

pieces. The lowering lemma fixes the issue and is mutually proved with cumulativity:

Lemma 3.7 (Cumulativity and lowering). If D :: A ≈ B ∈ Ui,

• then D′ :: A ≈ B ∈ Ui+1;

• if a ≈ b ∈ Eli(D), then a ≈ b ∈ Eli+1(D′);

• if a ≈ b ∈ Eli+1(D′), then a ≈ b ∈ Eli(D).

Note that according to the last statement, related values are lowered from El1+i

to Eli if A and B are related at level i. In general, lowering is necessary for type

constructors in which types can occur in contra-variant positions.

3.6.5 Realizability

Following Abel (2013) and Chapter 2, realizability is an important property and states

that related values are read back equal. Realizability of the PER model is essential to

establish the completeness and the soundness theorems. More formally,

Theorem 3.8 (Realizability). Given D :: A ≈ B ∈ Ui,

• A ≈ B ∈ Ty;

• if c ≈ c′ ∈ Ne, then ↑A (c) ≈↑B (c′) ∈ Eli(D);

• if a ≈ b ∈ Eli(D), then ↓A (a) ≈↓B (b) ∈ Nf.

Proof. Induction on i and D.

The first statement says that if A and B are related, then they are always read back

as an equal normal type in syntax. The third statement says that if a and b are related,

then they are always read back as an equal normal form in syntax.

68

3.7 Semantic Judgments And Completeness

The PER model for context stacks and environments is required to define the semantic

judgments for the fundamental theorem and completeness. It is extended from the PER

model for domain types and values.

Definition 3.3. The equivalence of context stacks D :: �
−→
Γ ≈

−→
∆ and the equivalence

of evaluation environments −→ρ ≈ −→ρ ′ ∈ JDK are defined inductive-recursively as follows:

•

D :=
� ε; · ≈ ε; ·

Then −→ρ ≈ −→ρ ′ ∈ JDK is always true.

•

D :=
J :: �

−→
Γ ≈

−→
Γ ′

�
−→
Γ ; · ≈

−→
Γ ′; ·

Then −→ρ ≈ −→ρ ′ ∈ JDK iff

– truncations of −→ρ and −→ρ ′ by one are recursively related:

−→ρ | 1 ≈ −→ρ ′ | 1 ∈ JJ K

and

– first modal offsets are equal: n = n′ where (n,) := −→ρ (0) and

(n′,) := −→ρ ′(0).

•

D :=

J1 :: �
−→
Γ ; Γ ≈

−→
Γ ′; Γ′ J2 :: ∀ −→ρ ≈ −→ρ ′ ∈ JJ1K . JT K(−→ρ) ≈ JT ′K(−→ρ ′) ∈ Ui

�
−→
Γ ; Γ.T ≈

−→
Γ ′; Γ′.T

69

Then −→ρ ≈ −→ρ ′ ∈ JDK iff

– drop(−→ρ) and drop(−→ρ ′) are recursively related:

E :: drop(−→ρ) ≈ drop(−→ρ ′) ∈ JJ1K

where drop is defined in Sec. 2.5 and drops the topmost mapping from the

topmost Env, and

– the topmost values are related by the evaluations of T :

ρ(0) ≈ ρ′(0) ∈ Eli(J2(E))

where (, ρ) := −→ρ (0) and (, ρ′) := −→ρ ′(0).

Definition 3.4. The semantic judgments for completeness are defined as follows:

�
−→
Γ ≈

−→
Γ

�
−→
Γ

−→
Γ � t ≈ t : T
−→
Γ � t : T

−→
Γ � −→σ ≈ −→σ :

−→
∆

−→
Γ � −→σ :

−→
∆

where
−→
Γ � t ≈ t′ : T iff

•
−→
Γ is semantically well formed: D :: �

−→
Γ , and

• there exists a universe level i, such that for any related −→ρ and −→ρ ′, i.e.

E :: −→ρ ≈ −→ρ ′ ∈ JDK,

– evaluations of T are related types: J :: JT K(−→ρ) ≈ JT K(−→ρ ′) ∈ Ui, and

– evaluations of t and t′ are related values: JtK(−→ρ) ≈ Jt′K(−→ρ ′) ∈ Eli(J);

and
−→
Γ � −→σ ≈ −→σ ′ :

−→
∆ iff

•
−→
Γ and

−→
∆ are semantically well formed: D :: �

−→
Γ and E :: �

−→
∆, and

• for any related −→ρ and −→ρ ′, i.e. −→ρ ≈ −→ρ ′ ∈ JDK, −→σ and −→σ ′ evaluate to related

environments: J−→σ K(−→ρ) ≈ J−→σ ′K(−→ρ ′) ∈ JEK.

70

The fundamental theorem states that the semantic judgments are sound w.r.t. the

syntactic judgments:

Theorem 3.9 (Fundamental).

• If `
−→
Γ , then �

−→
Γ .

• If
−→
Γ ` t : T , then

−→
Γ � t : T .

• If
−→
Γ ` −→σ :

−→
∆ , then

−→
Γ � −→σ :

−→
∆ .

• If `
−→
Γ ≈

−→
Γ ′, then �

−→
Γ ≈

−→
Γ ′.

• If
−→
Γ ` t ≈ t′ : T , then

−→
Γ � t ≈ t′ : T .

• If
−→
Γ ` −→σ ≈ −→σ ′ :

−→
∆ , then

−→
Γ � −→σ ≈ −→σ ′ :

−→
∆ .

Proof. Proceed by a mutual induction on premises.

The completeness theorem states that syntactic equivalent terms evaluate to equal

normal forms:

Theorem 3.10 (Completeness). If
−→
Γ ` t ≈ t′ : T , then nbeT−→

Γ
(t) = nbeT−→

Γ
(t′).

Proof. The fundamental theorem implies
−→
Γ � t ≈ t′ : T and also D :: �

−→
Γ . Moreover,

the initial environment is related: ↑
−→
Γ≈↑

−→
Γ∈ JDK. By definition of the semantic judg-

ment, JtK(↑
−→
Γ) and Jt′K(↑

−→
Γ) are related, and due to realizability, they have equal normal

forms.

The fundamental theorem of the PER model implies a few consequences which are

useful but very challenging to prove syntactically:

Lemma 3.11 (Equal universe levels). If
−→
Γ ` Tyi ≈ Tyj : Tyk, then i = j.

Proof. Completeness says that Tyi and Tyj have equal normal form, which implies

i = j.

Due to the previous lemma, the following “exact inversion” lemma is:

Lemma 3.12 (Exact inversion).

71

• If
−→
Γ ` �T : Tyi, then

−→
Γ ; · ` T : Tyi.

• If
−→
Γ ; Γ ` Π(x : S).T : Tyi, then

−→
Γ ; Γ ` S : Tyi and

−→
Γ ; Γ, x : S ` T : Tyi.

A mere induction on the syntactic derivations can only conclude larger universe

levels. The universe levels are tightened due to the fundamental theorem.

3.8 Gluing Model

After proving the completeness theorem, I then move on to the soundness theorem.

Following Chapter 2, the soundness theorem would require a Kripke gluing model to

relate domain values and syntactic terms. The gluing model is Kripke because it re-

spects restricted weakenings. It turns out that the definitions of restricted weakenings

(Sec. 2.10) and the UMoT extraction operation (Sec. 2.11) from λ� are carried over un-

changed to Mint. Due to dependent types, the situation here is more complex because

the gluing model is defined by recursion on the PER model.

Following λ� in Chapter 2, I first give three definitions which serve a purpose similar

to Ty, Ne and Nf in completeness. Recall that for a domain value a, I write a[−→σ] for

a[mt(−→σ)], where mt() converts a K-substitution to a UMoT and is defined in Sec. 2.11.

For a PER P , we write p ∈ P for p ≈ p ∈ P . Next, I define three necessary judgments

for the realizability theorem (c.f. Theorem 3.14), with similar roles to A −→
Γ

and A −→
Γ

in

Sec. 2.11:

Definition 3.5. Given D :: A ≈ B ∈ Ui,

−→
Γ ` T : Tyi

A ≈ B ∈ Ty ∀
−→
∆ `r −→σ :

−→
Γ .
−→
∆ ` T [−→σ] ≈ RTy

map(∆ 7→|∆|,
−→
∆)

(A[−→σ]) : Tyi
−→
Γ ` T ri D
−→
Γ ` t : T

−→
Γ ` T ri D c ∈ Ne ∀

−→
∆ `r −→σ :

−→
Γ .
−→
∆ ` t[−→σ] ≈ RNe

map(∆ 7→|∆|,
−→
∆)

(c[−→σ]) : T [−→σ]
−→
Γ ` t : T r

i
c ∈ Eli(D)

−→
Γ ` t : T

−→
Γ ` T ri D ↓A (a) ≈↓B (a) ∈ Nf

∀
−→
∆ `r −→σ :

−→
Γ .
−→
∆ ` t[−→σ] ≈ RNf

map(∆ 7→|∆|,
−→
∆)

(↓A (a)[−→σ]) : T [−→σ]
−→
Γ ` t : T ri a ∈ Eli(D)

72

The most important conditions of all three judgments are the last universal quan-

tifications. The first judgment
−→
Γ ` T ri D states that T is equivalent to the readback

of A (or equally the readback of B) under all valid restricted weakenings. Similarly, the

third judgment
−→
Γ ` t : T ri a ∈ Eli(D) states that t is equivalent to the readback of

a under all valid restricted weakenings. This condition is particularly important, as it

will be instantiated to obtain the soundness theorem.

Then I move on to defining the gluing model. The gluing model includes two judg-

ments and is defined by recursion on the PER model D :: A ≈ B ∈ Ui. By recursion on

D,
−→
Γ ` T ri D defines the conditions for T to be eventually syntactically equivalent to

the readbacks of A and B; and
−→
Γ ` t : T ri a ∈ Eli(D) defines the conditions for t : T

to be syntactically equivalent to the readback of a, knowing that a ∈ Eli(D). The ver-

bosity of the actual definition is to ensure a correct technical setup, so that realizability

can be established. In particular, all recursive conditions are universally quantified with

a restricted weakening
−→
∆ `r −→σ :

−→
Γ to ensure the gluing model is monotonic.

Definition 3.6. Given D :: A ≈ B ∈ Ui,

•
−→
Γ ` T ri D says that T is related to domain types A and B in

−→
Γ as a type at

level i.

•
−→
Γ ` t : T ri a ∈ Eli(D) says that in

−→
Γ , t of type T is related to domain value a

in Eli(D).

−→
Γ ` T ri D and

−→
Γ ` t : T ri a ∈ Eli(D) are defined mutually by first well-

founded recursion on i and then recursion on D:

•

D :=
C ≈ C ′ ∈ Ne

↑A (C) ≈↑A′ (C ′) ∈ Ui

−→
Γ ` T ri D iff

– T is a type at level i: Γ ` T : Tyi.

73

– For any restricted weakening −→σ , that is
−→
∆ `r −→σ :

−→
Γ , s.t.

−→
∆ ` T [−→σ] ≈ RNe−→z (C[−→σ]) : Tyi

−→
Γ ` t : T ri ↑A

′′
(c) ∈ Eli(D) iff

– c ∈ Ne.

– T is a type at level i: Γ ` T : Tyi.

– t is well typed: Γ ` t : T .

– For any restricted weakening −→σ , that is
−→
∆ `r −→σ :

−→
Γ , s.t.

−→
∆ ` T [−→σ] ≈ RNe−→z (C[−→σ]) : Tyi

and
−→
∆ ` t[−→σ] ≈ RNe−→z (c[−→σ]) : T [−→σ]

•

D :=
N ≈ N ∈ Ui

−→
Γ ` T ri D iff

−→
Γ ` T ≈ Nat : Tyi.

−→
Γ ` t : T ri a ∈ Eli(D) iff

−→
Γ ` t : Nat r a ∈ Nat and

−→
Γ ` T ≈ Nat : Tyi,

where
−→
Γ ` t : Natr a ∈ Nat is an auxiliary inductive relation to relate syntactic

terms of type Nat and domain values of PER Nat:

−→
Γ ` t ≈ zero : Nat

−→
Γ ` t : Natr ze ∈ Nat

−→
Γ ` t ≈ succ t′ : Nat

−→
Γ ` t′ : Natr b ∈ Nat

−→
Γ ` t : Natr su(b) ∈ Nat

c ∈ Ne ∀
−→
∆ `r −→σ :

−→
Γ .
−→
∆ ` t[−→σ] ≈ RNe−→z (c[−→σ]) : Nat

−→
Γ ` t : Natr ↑N (c) ∈ Nat

74

•

D :=
j < i

Uj ≈ Uj ∈ Ui

−→
Γ ` T ri D iff

−→
Γ ` T ≈ Tyj : Tyi.

−→
Γ ` t : T ri a ∈ Eli(D) iff

– t is well typed: Γ ` t : T .

– T is equivalent to Tyj:
−→
Γ ` T ≈ Tyj : Tyi.

– a is in PER Uj: E :: a ∈ Uj.

– t and a are recursively related as types by well-foundedness:
−→
Γ ` trj E .

Note that
−→
Γ ` t : T ri a ∈ Eli(D) refers to

−→
Γ ` t rj E , so the definition

requires a well-founded recursion on i.

•

D :=
E :: ∀ κ . A′[κ] ≈ A′′[κ] ∈ Ui

�A′ ≈ �A′′ ∈ Ui

−→
Γ ` T ri D iff there exists some T ′, such that

– T is equivalent to �T ′:
−→
Γ ` T ≈ �T ′ : Tyi.

– For any
−→
∆ ′ such that `

−→
∆;
−→
∆ ′ and any restricted weakening

−→
∆ `r −→σ :

−→
Γ ,

T ′[−→σ ;⇑|
−→
∆ ′|] and E(−→σ ;⇑|

−→
∆ ′|) are recursively related as types:

−→
∆;
−→
∆ ′ ` T ′[−→σ ;⇑|

−→
∆ ′|]ri E(−→σ ;⇑|

−→
∆ ′|)

−→
Γ ` t : T ri a ∈ Eli(D) iff there exists some T ′, such that

– t is well typed:
−→
Γ ` t : T .

– a is in Eli(D): a ∈ Eli(D).

75

– T is equivalent to �T ′:
−→
Γ ` T ≈ �T ′ : Tyi.

– For any
−→
∆ ′ such that `

−→
∆;
−→
∆ ′ and any restricted weakening

−→
∆ `r −→σ :

−→
Γ ,

the results of eliminating t[−→σ] and a[−→σ] are recursively related as terms:

−→
∆;
−→
∆ ′ ` unbox|−→∆ ′| (t[−→σ]) : T ′[−→σ ;⇑|

−→
∆ ′|]ri unbox · (|

−→
∆ ′|, a[−→σ]) ∈

Eli(E [mt(−→σ);⇑|
−→
∆ ′|])

•

D :=

E1 :: ∀ κ. A′[κ] ≈ A′′[κ] ∈ Ui
E2 :: ∀ κ, a ≈ a′ ∈ Eli(E1[κ]) . JT ′K(lext(−→ρ ′[κ], a)) ≈ JT ′′K(lext(−→ρ ′′[κ], a′) ∈ Ui

Pi(A′, T ′,−→ρ ′) ≈ Pi(A′′, T ′′,−→ρ ′′) ∈ Ui

−→
Γ ; Γ ` T ri D iff there exist T1 and T2, such that

– T and Π(x : T1).T2 are equivalent:
−→
Γ ; Γ ` T ≈ Π(x : T1).T2 : Tyi.

– T2 is well typed:
−→
Γ ; Γ, x : T1 ` T2 : Tyi.

– For any restricted weakening
−→
∆ `r −→σ :

−→
Γ ; Γ,

∗ T1[−→σ] and E1(−→σ) are recursively related:
−→
∆ ` T1[−→σ]ri E1(−→σ), and

∗ For any related s and b, i.e.
−→
∆ ` s : T1[−→σ] ri b ∈ Eli(E1(−→σ)), and

E3 :: b ∈ Eli(E1(−→σ)), T2[−→σ , s] and E2(−→σ , E3) are recursively related as

types:
−→
∆ ` T2[−→σ , s]ri E2(−→σ , E3)

Note that this condition requires E3 :: b ∈ Eli(E1(−→σ)) as an assumption,

which technically can be derived from
−→
∆ ` s : T1[−→σ]ri b ∈ Eli(E1(−→σ)).

However, this fact requires a proof and thus cannot be used at the time

of definition. Adding this assumption simplifies our definition.

−→
Γ ; Γ ` t : T ri a ∈ Eli(D) iff there exist T1 and T2, such that

– t is well typed:
−→
Γ ; Γ ` t : T .

– a is in the PER Eli(D): a ∈ Eli(D).

76

– T and Π(x : T1).T2 are equivalent:
−→
Γ ; Γ ` T ≈ Π(x : T1).T2 : Tyi.

– T2 is well typed:
−→
Γ ; Γ, x : T1 ` T2 : Tyi.

– For any restricted weakening
−→
∆ `r −→σ :

−→
Γ ; Γ,

∗ T1[−→σ] and E1(−→σ) are recursively related:
−→
∆ ` T1[−→σ]ri E1(−→σ), and

∗ For any related s and b, i.e.
−→
∆ ` s : T1[−→σ] ri b ∈ Eli(E1(−→σ)), and

E3 :: b ∈ Eli(E1(−→σ)), the results of eliminating t[−→σ] and a[−→σ] are recur-

sively related as terms :

−→
∆ ` t[−→σ] s : T2[−→σ , s]ri a[−→σ] · b ∈ Eli(E2(−→σ , E3))

3.9 Properties of Gluing Model

Similar to the PER model, properties of the gluing model also require adjustments for

their statements and their proofs to be more type-theoretic.

3.9.1 Monotonicity

Monotonicity ensures that the gluing model is stable under restricted weakenings. Re-

stricted weakenings apply to both syntax and semantics because they contain modal

extensions to instruct both sides to travel among Kripke worlds. Following a similar

strategy as in the PER model, the additional typing derivations D and E characterize

A ≈ B and A[−→σ] ≈ B[−→σ] resp. to expose more clearly the proof structure and simplify

the termination argument.

Lemma 3.13 (Monotonicity). Given a restricted weakening
−→
Γ `r −→σ :

−→
∆ ,

D :: A ≈ B ∈ Ui and E :: A[−→σ] ≈ B[−→σ] ∈ Ui,

• if
−→
∆ ` T ri D, then

−→
Γ ` T [−→σ]ri E;

• if
−→
∆ ` t : T ri a ∈ Eli(D), then

−→
Γ ` t[−→σ] : T [−→σ]ri a[−→σ] ∈ Eli(E).

3.9.2 Realizability

In completeness, realizability morally states that El is subsumed by Nf. In soundness,

realizability has a similar structure. The realizability theorem states that the gluing

77

models of types and terms are subsumed by
−→
Γ ` T ri D and

−→
Γ ` t : T ri a ∈ Eli(D)

respectively, which constitutes the second step to the soundness proof.

Theorem 3.14 (Realizability). Given D :: A ≈ B ∈ Ui,

• if
−→
Γ ` T ri D, then

−→
Γ ` T ri D.

• if
−→
Γ ` t : T r

i
c ∈ Eli(D), then

−→
Γ ` t : T ri ↑A (c) ∈ Eli(D);

• if
−→
Γ ` t : T ri a ∈ Eli(D), then

−→
Γ ` t : T ri a ∈ Eli(D);

3.9.3 Cumulativity and Lowering

Similar to the PER model, cumulativity of the gluing model also requires a lowering

statement to handle the function cases and contravariant occurrences in type construc-

tors in general:

Lemma 3.15 (Cumulativity and lowering). Given D :: A ≈ B ∈ Ui and

E :: A ≈ B ∈ U1+i which we obtain by applying Lemma 3.7 to D,

• if
−→
Γ ` T ri D, then

−→
Γ ` T r1+i E;

• if
−→
Γ ` t : T ri a ∈ Eli(D), then

−→
Γ ` t : T r1+i a ∈ El1+i(E);

• if
−→
Γ ` t : T r1+i a ∈ El1+i(E) and

−→
Γ ` T ri D, then

−→
Γ ` t : T ri a ∈ Eli(D).

The first two statements are just cumulativity. However, there is one more com-

plication here in lowering:
−→
Γ ` t : T ri a ∈ Eli(D) does not directly imply

−→
Γ ` t : T r1+i a ∈ El1+i(E)! This is because the gluing model contains syntactic

information about types so the lowering statement must in addition have an assump-

tion about T and D’s relation at a lower level, which is introduced by
−→
Γ ` T ri D.

3.10 Fundamental Theorems and Soundness

In this section, I generalize the gluing model to K-substitutions and evaluation environ-

ments. This gluing model is in fact more complex than existing proofs on paper (Abel,

2013; Gratzer et al., 2019; Abel et al., 2017), in that this gluing model is again defined

through induction-recursion, while existing proofs directly proceed by recursion on the

78

structure of the domain contexts (or context stacks in the case of Mint). This ex-

isting proof technique will not work in mechanization, because this technique heavily

relies on cumulativity to bring the gluing model for terms and values to a limit, so the

generalization to K-substitutions and environments does not care about universe levels.

Evidently, Agda does not support taking limits, so the only solution is to always keep

track of universe levels. In this gluing model, an inductive definition

−→
Γ defines the

semantic well-formedness of context stacks, in which universe levels are maintained.

Definition 3.7. The semantic well formedness of context stacks D ::

−→
Γ and the glu-

ing model for K-substitutions and environments
−→
Γ ` −→σ : D r −→ρ are defined inductive-

recursively:

•
D :=

 ε; ·
−→
∆ ` −→σ : D r −→ρ iff

−→
∆ ` −→σ : ε; ·.

•

D :=
E ::

−→
Γ

−→
Γ ; ·

−→
∆ ` −→σ : D r −→ρ iff

– −→σ is well typed:
−→
∆ ` −→σ :

−→
Γ ; ·.

– There exists a K-substitution −→σ ′ and an modal offset n, such that

∗ −→σ ′ is −→σ ’s truncation:
−→
∆ | n ` −→σ | 1 ≈ −→σ ′ :

−→
Γ ,

∗ modal offsets are equal: O(−→σ , 1) = O(−→ρ , 1) = n, and

∗ −→σ ′ and −→ρ | 1 are recursively related:
−→
∆ | n ` −→σ ′ : E r −→ρ | 1.

•

D :=

∃i E ::

−→
Γ ; Γ

∀
−→
∆ `

−→
δ : D r −→ρ . Σ(J :: JT K(−→ρ) ∈ Ui).

−→
∆ ` T [

−→
δ]ri J

−→
Γ ; Γ.T

−→
∆ ` −→σ : D r −→ρ iff

79

– −→σ is well typed:
−→
∆ ` −→σ :

−→
Γ ; Γ.T .

– There exists a K-substitution −→σ ′ and t, such that

∗ −→σ ′ is −→σ with the topmost term dropped:
−→
∆ ` wk ◦ −→σ ≈ −→σ ′ :

−→
Γ ; Γ,

∗ t is that topmost term:
−→
∆ ` v0[−→σ] ≈ t : T [−→σ ′].

∗ T evaluates in drop(−→ρ) and the result is in Ui: J ′ :: JT K(drop(−→ρ)) ∈ Ui.

∗ t and −→ρ (0) are related at level i:
−→
∆ ` t : T [−→σ ′] ri ρ(0) ∈ Eli(J ′),

where (, ρ) := −→ρ (0),

∗ −→σ ′ and drop(−→ρ) are recursively related:
−→
∆ ` −→σ ′ : E r drop(−→ρ).

The semantic judgments for soundness is given in terms of two gluing models.

Definition 3.8. The semantic judgments for soundness are defined as follows:

∃i D ::

−→
Γ ∀

−→
∆ ` −→σ : D r −→ρ .

−→
∆ ` t[−→σ] : T [−→σ]ri JtK(−→ρ) ∈ Eli(JT K(−→ρ))

−→
Γ
 t : T

D1 ::

−→
Γ D2 ::

−→
Γ ′ ∀

−→
∆ ` −→σ : D1 r

−→ρ .
−→
∆ `

−→
δ ◦ −→σ : D2 r J

−→
δ K(−→ρ)

−→
Γ

−→
δ :
−→
Γ ′

Finally,

Theorem 3.16 (Fundamental).

• If `
−→
Γ , then

−→
Γ .

• If
−→
Γ ` t : T , then

−→
Γ
 t : T .

• If
−→
Γ ` −→σ :

−→
∆ , then

−→
Γ
 −→σ :

−→
∆ .

Theorem 3.17 (Soundness). If
−→
Γ ` t : T , then

−→
Γ ` t ≈ nbeT−→

Γ
(t) : T .

Proof. First apply the fundamental theorems and obtain
−→
Γ
 t : T . Moreover, given

−→
Γ `
−→
I :
−→
Γ r ↑

−→
Γ , t and JtK(↑

−→
Γ) are related. The goal is concluded by further applying

realizability.

80

The fundamental theorem for the gluing model leads to a few more consequences

which are difficult to prove syntactically. First, standard injectivity and canonicity hold

in Mint.

Lemma 3.18 (Injectivity of Type Constructors).

• If
−→
Γ ` �T1 ≈ �T2 : Tyi, then

−→
Γ ; · ` T1 ≈ T2 : Tyi.

• If
−→
Γ ; Γ ` Π(x : S1).T1 ≈ Π(x : S2).T2 : Tyi, then

−→
Γ ; Γ ` S1 ≈ S2 : Tyi and

−→
Γ ; Γ, x : S1 ` T1 ≈ T2 : Tyi.

Lemma 3.19 (Canonicity of Nat). If ε; · ` t : Nat, then ε; · ` t ≈ succn zero : Nat for

some number n.

The following lemma about universe levels is also interesting. It says that if two

types are equivalent and they are well typed at a different level, then they are equivalent

also at that level. This lemma is intuitive but very challenging to prove syntactically.

Lemma 3.20 (Type equivalence). If
−→
Γ ` T1 ≈ T2 : Tyi,

−→
Γ ` T1 : Tyj and

−→
Γ ` T2 : Tyj,

then
−→
Γ ` T1 ≈ T2 : Tyj.

Proof. By
−→
Γ ` T1 ≈ T2 : Tyi and completeness, T1 and T2 have equal normal form.

The goal is concluded by soundness and transitivity.

As the final and conclusive theorem, I show the consistency of Mint.

Theorem 3.21 (Consistency). There is no closed term of type Π(x : Tyi).x. That is,

there is no t such that the following judgment holds:

ε; · ` t : Π(x : Tyi).x

The theorem effectively states that there is no generic way to construct a term for

an arbitrary type. If Mint has a bottom type, then the consistency proof can be simply

reduced to the consistency of our meta-language (i.e. Agda). The current definition of

Mint does not have a bottom type, so the proof of this theorem is set up as follows:

81

Proof. Note that consistency is equivalent to proving that there is no t′ such that

ε;x : Tyi ` t′ : x

Note that, by soundness, t′ must be equivalent to some neutral term u by NbE, because

its type (x) is neutral. So our goal is to show that this u also does not exist:

ε;x : Tyi ` u : x

Now we do induction on u. We show that in ε;x : Tyi, there does not exist a neutral

term of any type other than Tyj (i and j are not necessarily equal due to cumulativity),

and thus it is impossible for u to have type x. Otherwise, that would require Tyi and x

to be equivalent, which can be rejected by completeness as they do not evaluate to the

same normal form.

3.11 Summary

My investigation of the Kripke-style type theories has reached the end here. Previously,

I have looked in the normalization problem of λ� and scale the whole setup quite

naturally to Mint. This chapter combines the technique developed in Chapter 2 and

Abel (2013)’s method and eventually proves Mint’s normalization property and other

important properties.

The example shows that Mint already finds an application as a program logic for

MetaML, MetaOCaml, etc.. Mint in general can also be used as a syntactic theory

generally for a mathematical setup where a necessity modality is involved (see e.g.

(Licata et al., 2018)). However, Mint is not very satisfactory as a meta-programming

system in a proof assistant. More specifically, as it is right now, it does not support

any intensional analysis operations. Meanwhile, in proof assistants, users often need

to analyze the syntactic structures of terms when developing decision procedures and

proof heuristics. Therefore, in the next Part, I switch to another style, which opens the

path to supporting intensional analysis coherently in type theory.

82

Part II

Layered Modal Type Theories

83

4
A Layered Modal Type Theory for

Intensional Analysis

In Part I, I introduced two Kripke-style type theories. The Kripke-style S4 faithfully

models the quasi-quoting style under Curry-Howard correspondence as discussed in

Chapter 1 and its laws correspond to code composition and code running in meta-

programming. However, it is not clear how Kripke-style systems should support inten-

sional analysis. In fact, the Kripke-style systems are more suitable for being program

logics for some practical meta-programming systems like MetaML and MetaOCaml,

than being a meta-programming system itself, due to the extensionality of � intro-

duced by the η rule. Then how exactly can a type theory support meta-programming

with intensional analysis without jeopardizing its normalization property?

Let us take a step back and reconsider what other work has accomplished. On

the practical side, in Chapter 1, I have discussed a number of tools readily available

in various proof assistants. Meta-programming in Agda (van der Walt and Swierstra,

2012), in Idris (Christiansen and Brady, 2016), in Lean (Ebner et al., 2017) and in Coq

84

language that

meta-programs itself

(a) homogeneous style

...ext. lang.

(layer 1)

core lang.

(layer 0)

(b) layered style

· · ·
program generator

macro language

base language

(c) heterogeneous style

Figure 4.1: Comparison between heterogenous, homogenous, and layered meta-
programming systems

using MetaCoq (Sozeau et al., 2020; Anand et al., 2018) are implemented by reflection.

Through reflection, users obtain the syntax of programs as untyped abstract syntax

trees (ASTs). Meta-programs in this sense are just regular programs that manipulate

these ASTs. A major drawback of reflection is that the these ASTs are untyped, so there

is no guarantee that code generated by meta-programs can be successfully evaluated

to valid programs. In other words, reflection effectively makes no use of powerful de-

pendent types implemented in these proof assistants. Mtac (Ziliani et al., 2013; Kaiser

et al., 2018) slightly improves the situation. It is implemented by instrumenting Coq’s

typechecking kernel and function as an extension of Coq’s proof language, so it provides

a frontend which helps to write meta-programs that return well-typed code. Neverthe-

less, it still does not provide a formal guarantee for well-scopedness of generated code,

nor do they have critical type-theoretic properties like confluence and normalization.

On the theoretical end, foundations that combine meta-programming with type-

theory typically fall into two styles: the homogeneous style and the heterogeneous style.

Homogeneous meta-programming uses a single language capable of meta-programming

itself (depicted in Fig. 4.1a). In Part I, λ� by Davies and Pfenning (2001) and Mint

fall into this style. Other than the Kripke style, Davies and Pfenning also formulate λ�

in the dual-context style, where � separate meta-programming and programming into

two different zones. The dual-context style is the basis for the type theories in this part.

Nanevski et al. (2008) subsequently extend λ� in the dual-context style with contex-

tual types, allowing meta-programming on open code. As previously discussed, these

systems do not suggest how intensional analysis can be supported. In fact, supporting

intensional analysis in the homogeneous style while retaining properties like confluence

85

System Quotation
Intensional
analysis

Code running Normalization

Reflection,
instrumentation

X X X

Moebius X X X
(Contextual) λ� X X X
Cocon X X X
2LTT X X
Layered modal
type theory

X X X X

Table 4.1: A comparison of features among different systems

and normalization has been fraught with difficulties (c.f. (Schürmann et al., 2001)). A

significant step towards supporting pattern matching on open code in a homogeneous

style is taken in Moebius (Jang et al., 2022). Moebius is based on System F-style poly-

morphism. However, its pattern matching does not guarantee coverage and Moebius

lacks normalization.

A heterogeneous system distinguishes between the meta-language and the object

language (illustrated by Fig. 4.1c). Recently, Kovács (2022) adapts 2-level type theory

(2LTT), originally conceived for homotopy type theory, to dependently typed meta-

programming. Here, a dependently typed meta-language sits on top of a less expressive

object language. However, this type theory does not support intensional analysis and

does not support running code. It is used to generate code running in a different

environments (e.g. generate Haskell code in a dependent type theory). In contrast,

Cocon (Pientka et al., 2019), another 2-level type theory following in the footsteps of

previous work (Davies and Pfenning, 2001; Nanevski et al., 2008), supports modeling

open code and intensional code analysis. In Cocon, MLTT sits on top of the logical

framework LF, which encodes formal systems. In particular, this allows us to encode

sub-languages of MLTT (for example simply-typed or polymorphic lambda-calculus)

in LF and then write meta-programs about them by pattern matching on code. In

principle, an explicit interpretation function can be defined to interpret terms in the

sub-language into MLTT itself and execute them as MLTT programs. Although this

provides a powerful framework for meta-programming and these heterogeneous systems

86

are modular, this comes at a price: a definition in one level is not directly accessible

or reused in the other level. Further, Cocon requires explicit interpretation functions

to be able to execute code. More importantly, this separation into two languages leads

to two separate investigations of meta-theoretic properties for two languages and ulti-

mately two separate normalization arguments. How to elegantly scale these languages

to multiple levels is not obvious.

Table 4.1 summarizes some previous work. In the table, I list four features that I

am concerned about in this part:

• quotation, which obtains the syntactic representation of programs;

• pattern matching on code, which is the most general form of intensional analysis;

• code running, which extracts a term of type T given code of type T for all T ;

• normalization, which implies the logical consistency of the system.

Among the four, quotation exists in all listed work. The practical tools that use re-

flection or instrumentation also support intensional analysis and code running, but

as discussed previously, they do not have a type-theoretic foundation and hence nor-

malization. For the foundational systems that have normalization, it is easy for the

homogeneous systems to support code running but not intensional analysis, while the

heterogeneous systems are the other way around. Therefore, the research question is, is

there another style for meta-programming such that all these features are supported?

The question is positively answered by the layered style developed in this part.

Illustrated in Fig. 4.1b, the layered style is in the middle of the homogeneous and

heterogeneous styles. Syntactically, a layered modal type theory employs a uniform

syntax just like the homogeneous style. However, its typing judgments are indexed by a

layering index. Effectively, a layered system has a fixed number of layers of languages.

The relation among these languages is characterized by the matryoshka principle: the

language at layer i is contained in its meta-language at layer i + 1. What is added to

layer i at layer i+1 is the ability to inspect and analyze code from the language at layer i.

More importantly, the equivalence judgments are also parameterized by a layering index.

This allows us to distinguish and control computational behaviors at different layers.

87

As a principle, β and η equivalence is only allowed at the highest layer, so all lower

layers are treated as static code, which is only identified by its syntax. Controlling the

computational behaviour through layers is necessary for sound intensional analysis and

ultimately leads to establish normalization. This informal intuition of the matryoshka

principle is formally characterized by two guiding lemmas: the lifting lemma, which

enables code running, and the static code lemma, which enables pattern matching on

code.

On the other hand, a layered modal type theory has similarities to the heterogeneous

style in the semantics. Semantically, the layering index clearly distinguishes different

languages, each of which requires its own model. In the semantics, the model for each

lower layer must describe how the code runs at the highest layer and how its syntax

is analyzed, much like a heterogeneous system. The main difference between a layered

system and a heterogeneous one in the semantics is that in the former, models among

different layers are related by the layering restriction lemma (c.f. Lemma 4.21), a

semantic counterpart of the matryoshka principle, whereas in a heterogeneous system,

different languages might be completely unrelated.

In this chapter, I introduce a simply typed layered modal type theory with context

variables (Pientka, 2008), which is capable of code running and pattern matching on

code, a general form of intensional analysis. I follow Abel et al. (2018) and give a weak

normalization proof by weak-head reductions and a conversion checking algorithm. The

advantage of this conversion checking algorithm compared to the previous one based on

strong normalization is that this algorithm fails faster if two terms are actually not con-

vertible. However, the downside is that the semantic construction is more verbose and

there are more technical details. This complication remains carried over to dependent

types, which is based on the development in this chapter. A strong normalization based

on NbE in Part I would be nice; it at least will lead to a simpler normalization proof

and a trivial conversion checking algorithm, though I expect a major complication in

the PER model and I have little idea about how to handle this problem at this moment.

I will discuss this difficulty towards the end of this thesis (c.f. Sec. 6.5.2).

A simpler layered modal type theory has been published (Hu and Pientka, 2024b),

where a strong normalization proof is given by a presheaf model. This chapter extends

this simpler system with context variables and context meta-functions. The technical

88

development in this chapter is completely new.

In this chapter, just similar to the Kripke-style systems, I will set up a framework

for investigations that will scale up to dependent types.

4.1 Example Programs in 2-layered Modal Type The-

ory

In this section, let us reconsider the meta-mult2 example in Chapter 1, which computes

the code of an iterated sum to compute multiplication, in 2-layered modal type theory.

Then I will show how to optimize the generated code by meta-mult2 using pattern

matching on code.

4.1.1 A Layered Multiplication Function

The meta-mult2 example in Chapter 1 can be directly translated to 2-layered modal type

theory as follows:

meta -mult2 : Nat → � (Nat → Nat)

meta -mult2 zero = box (λ x. 0)

meta -mult2 (succ n) = letbox u ← meta -mult2 n in box (λ x. (u x) + x)

The meta-mult2 function takes a natural number as a multiplier and returns code (de-

noted by �) of a function type Nat → Nat. The meta-mult2 function is defined by a

recursion on the input number. If it is zero, then the generated code is the constant

function of 0 since any number multiplied by 0 is 0. In the successor case, the recursive

call meta-mult2 n computes the code for multiplying some number with n. Since the

return type of the recursive call is � (Nat → Nat), letbox eliminates the � type and

binds the resulting code of type Nat → Nat to u. The new variable u is a meta-variable

and can be introduced by letbox. A meta-variable is a placeholder for code. It remains

accessible under a box constructor. Program variables like n, on the other hand, are

not accessible inside of box for code constructions, leading to a clear phase separation

between program variables and meta-variables. The final code inside box first uses u x

to construct the iterated sum of n x’s and then adds x to the result.

The following are examples for running the meta-mult2 function:

89

meta -mult2 1 ≈ box (λ x. (λ x. 0) x + x)

6≈ box (λ x. 0 + x) 6≈ box (λ x. x)

meta -mult2 2 ≈ box (λ x. (λ x. (λ x. 0) x + x) x + x)

Note that the right-hand sides contain multiple redundant redexes such as (λ x. 0) x.

However, since they represent code, they are not reduced inside of box. In the remainder

of this section, I will show how to generate more efficient code and optimize generated

code using intensional code analysis.

Although there is room to optimize the generated code, we can already run it, which

is critical for a meta-programming system. The following program

letbox u ← meta -mult2 2 in u : Nat → Nat ≈ λ x. x + x

uses the meta-mult2 meta-function to generate a regular function adding the same num-

ber twice. Since u has a function type, it can be invoked with an argument as expected:

letbox u ← meta -mult2 2 in u 5 ≈ 10

gives 10.

4.1.2 Contextual Types for Open Code

One immediate opportunity for the optimization of the meta-mult2 function are the re-

dundant redices. The result code should simply be an iterated sum of x’s. Following

Nanevski et al. (2008, Sec. 6), 2-layered modal type theory is extended with contextual

types, enabling meta-programming with open code. Rather than constructing interme-

diate λ abstractions, the following meta-function uses contextual types to recursively

compute an iterated sum of x’s:

meta -mult3 : Nat → � (x : Nat ` Nat)

meta -mult3 zero = box (x. 0)

meta -mult3 (succ n) = letbox u ← meta -mult3 n in box (x. u[x/x] + x)

The meta-mult3 function is nearly identical to meta-mult2. However, its return type has

become a contextual type � (x : Nat ` Nat). This type denotes a code of type Nat (to

the right of the turnstile) with a regular context with an open variable x of type Nat

(to the left of the turnstile). In general, the number of open variables is arbitrary. A

contextual type with no open variable degenerates to a closed � type.

With contextual types, code inside box, can directly refer to open variables like

x. The base case does not use x. The succ case similarly invokes the recursive call

90

meta-mult3 n and uses letbox to bind a new meta-variable u to a type of open code

(x : Nat ` Nat). This binding is read that u has type Nat with an open variable x of

type Nat. When using a meta-variable, its regular variables must be instantiated. In

this case, an identity (or more generally a simple renaming) substitution [x/x] suffices.

This substitution eagerly replaces x for x when u is replaced by a concrete piece of code.

The meta-mult3 function then results in cleaner and more compact code compared

to the previously generated code by meta-mult2:

meta -mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

meta -mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

Thanks to the substitutions, redundant redexes have been completely eliminated. How-

ever, some redundant 0’s are left behind, which I will handle in the next example. Con-

textual types still allow code running as long as regular variables are instantiated. This

program

letbox u ← meta -mult3 2 in λ y. u[y/x]

≈ λ y. (0 + y) + y ≈ λ y. y + y

generates a regular function computing twice the input by substituting the open variable

x of u with the y introduced by a λ. The generated function behaves identically to the

one generated by meta-mult2 above. In the generated function, since computation does

propagate under λ, the redundant 0 does go away by computation. The open variable

x of u can also be substituted by a concrete number:

letbox u ← meta -mult3 2 in u[5/x] ≈ 10

In the next section, I will use pattern matching on code to optimize away the re-

dundant 0’s as 0 is the unit element of addition. However, this optimization cannot be

performed automatically as 0 + x and x are simply two different syntax trees inside of

box and thus their codes are not convertible.

4.1.3 Pattern Matching for Intensional Analysis

An easy way to improve the previous implementation is to pattern match on the resulting

code and remove all occurrences of 0. However, supporting pattern matching on code

in a type-theoretic setting has been notoriously difficult. Previous attempts in the

homogeneous style fail to retain the normalization property. To illustrate, consider the

91

intensional isapp function (Kavvos, 2021; Gabbay and Nanevski, 2013). This function

simply looks at the structure of the input code and returns true if this piece of code is a

function application, or false otherwise. Note that isapp’s behavior purely depends on

the syntactic structure of its argument. In 2-layered modal type theory, this function

can be implemented by pattern matching on code:

isapp : (g : Ctx) ⇒ � (g ` Nat) → Bool

isapp g x = match x with | ?u ?u’ ⇒ true | _ ⇒ false

This function is polymorphic in the regular context g due to the meta-function type

(g : Ctx) ⇒ ..., following Pientka (2008). A meta-function type introduces a regular

context variable g, which can be used later in contextual types, e.g. � (g ` Nat) in

the example. It means that the isapp function works for any regular context. In the

implementation, ispp pattern-matches on the input code x. In the first branch, the

result is true if x is some function application. Here, ?u and ?u’ are both pattern

variables. Question marks are used to distinguish pattern variables and constants, e.g.

zero and succ which are the constructors of Nat. This distinction is only necessary in the

patterns, and these question marks do not appear in the body of a branch. The pattern

variables u and u’ capture the code of the function and the argument respectively if x is

a function application. The other branches are captured by the wildcard and all return

false. Let us see how this function behaves:

isapp . (box ((λ x. x) 10)) ≈ true

isapp . (box 10) ≈ false

where . denotes the empty context.

A problem which previous attempts encounter is what should intensional analysis

do to box’ed meta-variables as scrutinees. Consider the following two execution of the

same program, for some well-typed closed code t and s,

letbox u ← box (t s) in isapp . (box u)

≈ isapp . (box (t s)) ≈ true

letbox u ← box (t s) in isapp . (box u)

≈ letbox u ← box (t s) in false ≈ false

In the second execution, isapp (box u) is evaluated first, and then the overall result is

false. In layered modal type theory, however, this issue does not exist because pattern

matching on box u is neutral. Hence, the program only evaluates to true. This is a

92

subtle but critical design decision which ultimately enables sound intensional analysis

and normalization.

With sound pattern matching on code, a simple arithmetic simplifier is implemented

to remove the redundant 0’s in the code generated previously by meta-mult3:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp y = match y with

| 0 + ?u ⇒ box (x. u[x/x])

| ?u + ?u’ ⇒ letbox u1 = simp (box (x. u[x/x]))

in box (x. u1[x/x] + u’[x/x])

| _ ⇒ y

In the first case, 0 is removed from the addition. In the second case, only the first addend

is recursively simplified because redundant 0’s appear only in the leftmost addend. In

the last case, no optimization is needed. Since pattern matching is covering, this default

case is necessary. At last, a wrapper function mult-simp invokes simp to simplify the code

generated by meta-mult3:

mult -simp : Nat → � (x : Nat ` Nat)

mult -simp n = simp (meta -mult3 n)

The mult-simp function generates the most concise code:

mult -simp 1 = box (x. x)

mult -simp 2 = box (x. x + x)

With pattern matching on code, users have full control over generated code.

4.2 Syntax And Well-formedness

In this section, I introduce the syntax and the judgments for 2-layered modal type

theory. This type theory extends simply typed λ-calculus (STLC) with the power

of meta-programming: code running, pattern matching on code, as well as context

polymorphism. All these features coexist coherently: a weak normalization proof and

the decidability of convertibility will be proved towards the end of this chapter. In

this section, the somewhat vague and informal matryoshka principle and the diagram

in Fig. 4.1b are captured by two guiding lemmas: the lifting lemma, which enables

code running, and the static code lemma, which enables pattern matching on code.

The diagram in Fig. 4.1b intuitively depicts the layered typing judgment Ψ; Γ `i t : T

93

` Ψ Meta-context Ψ is well-formed. Ψ ` B Meta-binding B is well-formed.

` ·
` Ψ Ψ ` B
` Ψ, B

` Ψ

Ψ ` g : Ctx

Ψ `0 Γ Ψ `0 T

Ψ ` u : (Γ ` T)

Ψ `i Γ Regular context Γ is well-formed in Ψ at layer i.

` Ψ

Ψ `i ·
` Ψ g : Ctx ∈ Ψ

Ψ `i g
Ψ `i Γ Ψ `i T

Ψ `i Γ, x : T

Ψ `i T Type T is well-formed in Ψ at layer i.

` Ψ

Ψ `i Nat
Ψ `i S Ψ `i T

Ψ `i S −→ T

Ψ `0 ∆ Ψ `0 T

Ψ `1 �(∆ ` T)

Ψ, g : Ctx `1 T

Ψ `1 (g : Ctx)⇒ T

Figure 4.2: Well-formedness of meta- and regular contexts and types

indexed by i ∈ [0, 1]. When i = 0, t is a term in STLC. When i = 1, t could also be

meta-programs. In other words, layer 0 is subsumed by layer 1. This relation is critical

to obtain a better understanding of layered systems.

The syntax is introduced in two parts. I will discuss its types first, and then its

terms.

i (Layer, i ∈ [0, 1])

x, y (Regular Variables)

u (Meta-variables)

g (Contextual Variables)

S, T := Nat | �(Γ ` T) | S −→ T | (g : Ctx)⇒ T (Types)

B := u : (Γ ` T) | g : Ctx (Meta-Bindings)

Φ,Ψ := · | Φ, B (Meta-contexts)

Γ,∆ := · | g | Γ, x : T (Regular Contexts)

Layered modal type theory supports natural numbers (Nat), contextual types

(�(Γ ` T)), function types (S −→ T), and meta-functions ((g : Ctx) ⇒ T), all of

which have been introduced in Sec. 4.1. What distinguishes layered modal type theory

94

from the Kripke-style systems is the various kinds of variables. In this case, there are

three kinds of variables:

• regular variables ranged over by x and y;

• meta-variables that represent holes of code, ranged over by u;

• context variables that stand for regular contexts, ranged over by g.

Regular variables are stored in regular regular contexts and are bound to types. Meta-

variables are stored in meta-contexts. A binding u : (Γ ` T) says that u stands for a

piece of code of type T , with open variables in Γ. The length of Γ is arbitrary and may

contain a context variable. Context variables are also stored in the meta-context and

can be referred to in Γ in �(Γ ` T). They are meant to be substituted by a concrete

regular context. The context variables provide abstraction over all contexts, so that a

function can be agnostic to regular contexts. Both kinds of contexts are part of the

typing judgment Ψ; Γ `i t : T to be discussed shortly as a context pair Ψ; Γ.

The matryoshka principle is reflected in the layering index i. Since this particular

system which I am introducing is 2-layered, i is either 0 or 1. The index i is responsible

for indexing almost all judgments in the system. The well-formedness of contexts and

types is described in Fig. 4.2. These three judgments are mutually defined.

• ` Ψ states the well-formedness of a meta-context Ψ.

• Ψ `i Γ states the well-formedness of a regular context Γ at layer i. The base case

of a regular context can either be an empty regular context, or be a well-scoped

contextual variable g. In the latter case, g can be substituted by another regular

context.

• Ψ `i T states that T is well-formed in Ψ at layer i. Note that the well-formedness

of T does not depend on any regular context, so this system is not completely

dependently typed.

In Ψ `i T , for Nat and functions, which come from STLC, their well-formedness is

parameterized by i. This makes them available at both layers. Whereas, for con-

textual types (�(Γ ` T)) and meta-functions ((g : Ctx) ⇒ T), since they are for

95

meta-programming, they are only available at layer 1. The distinction in layers is an

important characteristic of layered systems.

When a (meta-)programmer writes meta-programs, they conceptually distinguish

between programs that are dynamic and compute, and code that is static and syntactic.

In a homogeneous system, this distinction is captured by types, i.e. program t has type

T while code has type �(Γ ` T). However, a term t itself does not provide information

about whether it is inside of a box (hence treated as code), or outside of a box (hence

a program). For example, only knowing that succ zero has type Nat does not reveal

whether it is a piece of code or a program. The typing judgment for homogeneous

systems like Ψ; Γ ` t : T Pfenning and Davies (2001); Davies and Pfenning (2001)

only provides typing information, and does not a priori determine whether t should be

considered as code or as a program. Even though one major advantage of a homogeneous

system is to use the same language for code and programs, this lack of information is the

key reason for the challenges that we face when combining type theory and intensional

analysis.

Layered modal type theory makes the distinction between code and programs ex-

plicit. When i = 0, terms are code and do not compute, and when i = 1, terms

are programs and therefore have rich reduction behaviors. More specifically, layering

controls

1. what types are valid at each layer,

2. what terms are well-typed at each layer, and

3. what terms are equivalent at each layer.

The well-formedness of types Ψ `i T addresses the control of valid types at each

layer. The matryoshka principle is characterized by the following lifting lemma, which

states that regular contexts and types at layer 0 are subsumed by layer 1. In other

words, the language at layer 1 may refer to all types in STLC.

Lemma 4.1 (Lifting for types and regular contexts).

• If Ψ `0 T , then Ψ `1 T .

• If Ψ `0 Γ, then Ψ `1 Γ.

96

Ψ; Γ `i t : T Term t has type A in contexts Ψ and Γ at layer i.

Ψ `i Γ x : T ∈ Γ

Ψ; Γ `i x : T

Ψ; Γ `i δ : ∆ u : (∆ ` T) ∈ Ψ

Ψ; Γ `i uδ : T

Ψ `i Γ

Ψ; Γ `i zero : Nat

Ψ; Γ `i t : Nat

Ψ; Γ `i succ t : Nat

Ψ; Γ, x : S `i t : T

Ψ; Γ `i λx.t : S −→ T

Ψ; Γ `i t : S −→ T Ψ; Γ `i s : S

Ψ; Γ `i t s : T

Ψ `1 Γ Ψ; ∆ `0 t : T

Ψ; Γ `1 box t : �(∆ ` T)

Ψ; Γ `1 s : �(∆ ` T) Ψ `0 ∆ Ψ `0 T
Ψ `1 T

′ Ψ, u : (∆ ` T); Γ `1 t : T ′

Ψ; Γ `1 letbox u � s in t : T ′

Ψ `1 Γ Ψ, g : Ctx; Γ `1 t : T

Ψ; Γ `1 Λg.t : (g : Ctx)⇒ T

Ψ; Γ `1 t : (g : Ctx)⇒ T Ψ `0 ∆

Ψ; Γ `1 t $ ∆ : T [∆/g]

Ψ; Γ `i δ : ∆ Regular substitution δ substitutes ∆ for Γ in meta-context Ψ at layer
i.

Ψ `i Γ

Ψ; Γ `i · : ·
Ψ `i g,Γ

Ψ; g,Γ `i wk : g

Ψ; Γ `i δ : ∆ Ψ; Γ `i t : T

Ψ; Γ `i δ, t/x : ∆, x : T

Figure 4.3: Typing rules for layered modal type theory

Proof. Induction on the derivations at layer 0.

The following is the syntax of terms:

δ := · | wk | δ, t/x (Regular Substitutions)

s, t := x | uδ (Terms)

| zero | succ t (Natural Numbers)

| λx.t | s t (Functions)

| box t | letbox u � s in t | match t with
−→
b (Box)

| Λg.t | t $ Γ (Meta-functions)

b := varx ⇒ t | genvarg,T ⇒ t | zero⇒ t | succ ?u⇒ t (Branches)

| λx.?u⇒ t | ?u ?u′ ⇒ t

Natural numbers are constructed by zero and succ t. A recursor for Nat is possible, but

it is deferred to Appendix D for conciseness. Function abstractions and applications are

97

Ψ; Γ `i t ≈ t′ : T Term t and t′ are equivalent in contexts Ψ and Γ at layer i

Ψ; Γ, x : S `1 t : T Ψ; Γ `1 s : S

Ψ; Γ `1 (λx.t) s ≈ t[s/x] : T

Ψ; · `0 s : T Ψ, u : T ; Γ `1 t : T ′

Ψ; Γ `1 letbox u � box s in t ≈ t[s/u] : T ′

Ψ; Γ `1 t : S −→ T

Ψ; Γ `1 t ≈ λx.(t x) : S −→ T

Ψ `1 Γ Ψ, g : Ctx; Γ `1 t : T Ψ `0 ∆

Ψ; Γ `1 (Λg.t) $ ∆ ≈ t[∆/g] : T [idΨ,∆/g]

Ψ; Γ `1 t : (g : Ctx)⇒ T

Ψ; Γ `1 t ≈ Λg.(t $ g) : (g : Ctx)⇒ T

Figure 4.4: Equivalence judgment

standard. The term box t constructs a contextual type. There are two possible ways

to eliminate a piece of code. Code composition and running are achieved by letbox,

which binds code to a meta-variable. Pattern matching on code analyzes the form of

the syntax of a given piece of code, and chooses the right branch to continue. Since I

am building a type theory, pattern matching must be covering. The coverage of pattern

matching can be checked depending on the type of the scrutinee. The discussion on

pattern matching and its coverage is deferred to Sec. 4.3. Finally, meta-functions are

similar to functions, with the only difference in the context arguments. Unlike a regular

variable, each use of a meta-variable u requires a local substitution δ to replace the

open variables with concrete terms.

Following the well-formedness of types, all the terms related to meta-programming

can only be well-typed at layer 1. For example, for the introduction rule for contextual

types,

Ψ `1 Γ Ψ; ∆ `0 t : T

Ψ; Γ `1 box t : �(∆ ` T)

box t is well-typed at layer 1, only if the code t is well-typed at layer 0. Now a clear

line is drawn between code and programs: code lives at layer 0 while programs live at

layer 1. There are two elimination principles for contextual types: letbox and pattern

matching on code. The discussion on pattern matching is postponed to the next section

98

(Sec. 4.3).

The typing judgments are defined in Fig. 4.3 and demonstrate how layering controls

well-typed terms at each layer. The rules for terms coming from STLC, i.e. zero, succ,

λ and function applications, are standard and are stated generically using the layer i.

In particular this means that the syntax of terms from STLC is identical for both code

and programs. However, the layer i in the typing judgment determines whether a given

term of type Nat or a function is code or a program. The well-formedness of contexts

are added to the premises of the regular variable rule and the zero rule to enforce the

coherence between terms and types at layer i. Note that terms from STLC can extend

the regular context via λ regardless of layers and they can only refer to but not introduce

meta-variables. When referring to a meta-variable u, a regular substitution δ is needed

to replace all variables in the regular context ∆, as specified by the superscript. The

coherence between terms and types requires terms at layer i to have types at the same

layer (Lemma 4.5).

The typing judgment for regular substitutions Ψ; Γ `i δ : ∆ is also layered similar

to the typing of terms. The case for wk requires the regular context to be (g,Γ), so

that the base case of the regular context must be a context variable. Due to the typing

judgments, it is not possible to compose wk with ·, i.e.

wk ◦ (·, t1/x1, · · · , tn/xn)

is not a valid substitution, though · ◦ wk is valid and computes to ·. The substitution

operation in layered modal type theory is intuitive and is defined in Appendix C for

completeness.

Due to layering in the typing rules, the equivalence rules are also layered. One

distinguished feature of layered modal type theory is that its computational behaviors

are controlled by the layering index. There are three groups of equivalence rules: the

PER rules which include symmetry and transitivity, congruence rules which are natu-

rally derived from the typing rules, and the computation rules which describe β and η

equivalence. The PER and congruence rules apply to all layers, but the computation

rules only apply to layer 1. The β and η rules are in Fig. 4.4. [s/x] and [s/u] are regular

and meta-substitutions, respectively. They substitute s for x and for u everywhere as

99

expected (see Appendix C). The lack of computation at layer 0 ensures that terms at

layer 0 are identified only by their syntactic structures and indeed behave as code:

Lemma 4.2 (Static code). If Ψ; Γ `0 t ≈ s : T , then t = s.

Proof. Induction on the derivation.

The static code lemma is another guiding lemma which characterizes the matryoshka

principle. It implies that the congruence for box naturally derived from its typing rule

simply meets the expectation:

Ψ `1 Γ Ψ; ∆ `0 t ≈ t′ : T

Ψ; Γ `1 box t ≈ box t′ : �(∆ ` T)

Due to the static code lemma, t = t′, so there is no interesting behavior under box.

The static status of code safely enables pattern matching on code, which I will discuss

in the next section.

Similar to types, the lifting lemma for terms also gives a formal account for the

matryoshka principle, which states that terms and regular substitutions at layer 0 are

subsumed by layer 1:

Lemma 4.3 (Lifting for terms and regular substitutions).

• If Ψ; Γ `0 t : T , then Ψ; Γ `1 t : T .

• If Ψ; Γ `0 δ : ∆, then Ψ; Γ `1 δ : ∆.

Proof. Induction on the derivations at layer 0.

Though a term at layer 0 is code and static, its computational behaviors are recov-

ered by lifting it to layer 1. The lifting lemma is what enables code running, which is

crucial for a meta-programming system. The term lifting behavior can be triggered by

the β rule for �. For some well-typed terms t and s at layer 0 and a regular substitution

δ that does not refer to u:

letbox u � box ((λx.t) s) in uδ ≈ ((λx.t) s)[δ] = (λx.t[δ, x/x]) (s[δ]) ≈ t[δ, s[δ]/x]

100

Due to the β rule, u is replaced by (λx.t) s. The layer-0 term (λx.t) s is then lifted

to layer 1 on the right hand side and computes. Thus its computational behavior is

revived and it is further reduced after δ is applied.

4.3 Pattern Matching on Code

The static code lemma has confirmed the static status of code. Therefore, it is possible

to intensionally analyze the structure of code. Pattern matching on code (match t with
−→
b)

is another elimination form of �(Γ ` T), where
−→
b is a list of all possible branches of

t. The branches only need to match terms in STLC (from layer 0) because pattern

matching is only available at layer 1 and the scrutinee is code from layer 0. Nested

patterns like (λy.?u) ?u′ are not directly supported to keep the system simple, but they

can be encoded in multiple nested pattern matching expressions. Supporting a general

recursion principle for code (e.g. (Pientka et al., 2019; Hu et al., 2022)) would require

type polymorphism in addition to context variables. Type polymorphism is needed to

handle the case for λ, where the type of the function body and the type of the function

itself cannot be the same. However, this limitation comes from the syntactic theory for

simple types. Later in Chapter 5, type polymorphism is introduced due to dependent

types, so that a general recursion principle is possible. This chapter focuses on setting

up a basis for syntax and semantics to be extended in Chapter 5.

In addition to the expected branches, e.g. varx ⇒ t for code of the variable x

and zero ⇒ t for the code of zero, I introduce a special branch for generated variables

genvarg,T ⇒ t, which is required if the regular context of the code contains the con-

text variable g. This special branch is expanded to multiple regular variable branches

varx ⇒ t if the context variable g is instantiated to a concrete local context after a

meta-function application t $ ∆′. Concretely, if g is instantiated to some context ∆′,

then genvarg,T ⇒ t is expanded to multiple instances of varx ⇒ t for all x : T ∈ ∆′.

In this way, I ensure that the coverage of pattern matching on code is stable under

meta-substitutions even with the presence of context variables. If the regular context

of the code contains no context variable at all, then no branch for generated variables

is allowed. This action is concretely defined at the end of Appendix C.

There are two additional judgments for typing pattern matching on code.

101

Ψ; Γ `i t : T Term t has type T in contexts Ψ and Γ at layer i where i ∈ [0, 1]

Ψ `1 T
′ Ψ; Γ `1 s : �(∆ ` T) Ψ; Γ `1

−→
b : ∆ ` T ⇒ T ′

Ψ; Γ `1 match s with
−→
b : T ′

Ψ; Γ `1 b : ∆ ` T ⇒ T ′ b is a branch of type T ′ w.r.t. a code of type T open in ∆.

Ψ `0 g,∆ Ψ; Γ `1 t : T ′

Ψ; Γ `1 genvarg,T ⇒ t : g,∆ ` T ⇒ T ′
Ψ `0 ∆ x : T ∈ ∆ Ψ; Γ `1 t : T ′

Ψ; Γ `1 varx ⇒ t : ∆ ` T ⇒ T ′

Ψ `0 ∆ Ψ; Γ `1 t : T ′

Ψ; Γ `1 zero⇒ t : ∆ ` Nat⇒ T ′
Ψ, u : (∆ ` Nat); Γ `1 t : T ′

Ψ; Γ `1 succ ?u⇒ t : ∆ ` Nat⇒ T ′

Ψ, u : (∆, x : S ` T); Γ `1 t : T ′

Ψ; Γ `1 λx.?u⇒ t : ∆ ` S −→ T ⇒ T ′

∀ Ψ `0 S . Ψ, u : (∆ ` S −→ T), u′ : (∆ ` S); Γ `1 t : T ′

Ψ; Γ `1?u ?u′ ⇒ t : ∆ ` T ⇒ T ′

Ψ; Γ `i t ≈ t′ : T Terms t and t′ are equivalent (β rules for match)

x : T ∈ ∆ Ψ; Γ `1

−→
b : ∆ ` T ⇒ T ′

−→
b (x) = varx ⇒ t

Ψ; Γ `1 match box x with
−→
b ≈ t : T ′

Ψ; Γ `1

−→
b : ∆ ` Nat⇒ T ′

−→
b (zero) = zero⇒ t

Ψ; Γ `1 match box zero with
−→
b ≈ t : T ′

Ψ; ∆ `0 s : Nat Ψ; Γ `1

−→
b : ∆ ` Nat⇒ T ′

−→
b (succ s) = succ ?u⇒ t

Ψ; Γ `1 match box (succ s) with
−→
b ≈ t[s/u] : T ′

Ψ; ∆, x : S `0 s : T Ψ; Γ `1

−→
b : ∆ ` S −→ T ⇒ T ′

−→
b (λx.s) = λx.?u⇒ t

Ψ; Γ `1 match box (λx.s) with
−→
b ≈ t[s/u] : T ′

Ψ; ∆ `0 t : S −→ T

Ψ; ∆ `0 s : S Ψ; Γ `1

−→
b : ∆ ` T ⇒ T ′

−→
b (t s) =?u ?u′ ⇒ t

Ψ; Γ `1 match box (t s) with
−→
b ≈ t[t/u, s/u′] : T ′

Figure 4.5: judgments for pattern matching and branches

102

• Ψ; Γ `1 b : ∆ ` T ⇒ T ′ is used for pattern matching and checks a branch b in

Ψ; Γ given �(∆ ` T) as the type of the scrutinee and T ′ as the return type.

• The typing rule for match uses the judgment Ψ; Γ `1

−→
b : ∆ ` T ⇒ T ′. This

judgment is a covering generalization of the previous judgment for a single branch

and checks all branches in
−→
b .

In the second judgment, coverage means that
−→
b contains all possible branches to handle

a scrutinee of type �(∆ ` T). There are many possible ways to ensure coverage

e.g. (Pientka and Abel, 2015). Fig. 4.6 gives one possible solution, which only uses

syntax of types to check coverage. Due to layering, code must be in STLC and therefore

coverage is guaranteed by the typing information. If T is Nat, then there must be

branches for zero and succ, but not λ due to type mismatch. A function application

could return a Nat so a branch for application is necessary. Moreover, there is one

branch for each variable bound to Nat in ∆. Contrarily, if T is a function, then all

constructor branches for Nat can be safely excluded. In addition, if the regular context

of the code being analyzed contains a context variable, then
−→
b must in addition include

a branch for generated variables bgenvar to handle the instantiation of context variables.

This condition is checked by the auxiliary judgment Ψ; Γ `1

−→
b var : ∆ ` T ⇒ T ′, where

−→
b var are all possible branches for variables for code of type �(∆ ` T).

The two new judgments only live at layer 1, the only layer where pattern matching

on code occurs.

The rules related to pattern matching on code are listed in Fig. 4.5. All typing rules

for individual branches are similar. For example, if the pattern is λx.?u, then u captures

the body of some λ. The branch body t is checked with u bound to (∆, x : S ` T),

which has a larger regular context than ∆. If the branch matches a function application,

the premise requires t is well-typed for all Ψ `0 S. This universal quantification should

be read as a higher-order derivation that applies for all Ψ `0 S (see also (Zeilberger,

2008)) and S is abstracted as a parameter.

The bottom of Fig. 4.5 are the β rules for pattern matching. Based on the structure

of the scrutinee, the pattern matcher dispatches to the right branch and propagates

instantiations for pattern variables via meta-substitutions to the bodies. Notations like
−→
b (succ s) denote the lookup of

−→
b based on a given shape. For example,

−→
b (succ s) =

103

Ψ; Γ `1

−→
b : ∆ ` T ⇒ T ′ Branches of

−→
b for a scrutinee of type �(∆ ` T) all have

type T ′ and are convering.

∀ b ∈
−→
b . Ψ; Γ `1 b : ∆ ` Nat⇒ T ′ bzero = zero⇒ t for some t

bsucc = succ ?u⇒ t for some t brec = recT ′ ?u (x y.?u′) ?u′′ ⇒ t for some t

bapp =?u ?u′ ⇒ t for some t Ψ; Γ `1

−→
b var : ∆ ` Nat⇒ T ′

−→
b is a permutation of {bzero, bsucc, brec, bapp, b for all b ∈

−→
b var}

Ψ; Γ `1

−→
b : ∆ ` Nat⇒ T ′

∀ b ∈
−→
b . Ψ; Γ `1 b : ∆ ` S −→ T ⇒ T ′

bλ = λx.?u⇒ t for some t brec = recT ′ ?u (x y.?u′) ?u′′ ⇒ t for some t

bapp =?u ?u′ ⇒ t for some t Ψ; Γ `1

−→
b var : ∆ ` S −→ T ⇒ T ′

−→
b is a permutation of {bλ, brec, bapp, b for all b ∈

−→
b var}

Ψ; Γ `1

−→
b : ∆ ` S −→ T ⇒ T ′

Ψ; Γ `1

−→
b var : ∆ ` T ⇒ T ′ All variable branches

−→
b var for a scrutinee of type

�(∆ ` T) have type T ′.

∀ b ∈
−→
b var . Ψ; Γ `1 b : ∆ ` T ⇒ T ′ ∀ x : T ∈ ∆ . bx = varx ⇒ t for some t

−→
b is a permutation of {bx for all x : T ∈ ∆} ∆ contains no context variable

Ψ; Γ `1

−→
b var : ∆ ` T ⇒ T ′

∀ b ∈
−→
b var . Ψ; Γ `1 b : g,∆ ` T ⇒ T ′

∀ x : T ∈ g,∆ . bx = varx ⇒ t for some t bgenvar = genvarg,T ⇒ t for some t
−→
b is a permutation of {bgenvar, bx for all x : T ∈ g,∆}

Ψ; Γ `1

−→
b var : g,∆ ` T ⇒ T ′

Figure 4.6: Covering judgment for all branches

succ ?u⇒ t means that the lookup of succ s in
−→
b finds the branch succ ?u⇒ t. Then

s is meant to substitute u in t. This lookup is guaranteed to succeed because Ψ; Γ `1−→
b : ∆ ` T ⇒ T ′ is covering. Note that there does not exist a β rule for the branch

genvarg,T ⇒ t, because there does not exist a representation for a variable in a context

variable. Code of the form box x necessarily refers to a variable x concretely bound in

the regular context. The body t of genvarg,T ⇒ t is only invoked when g is instantiated

104

to some Γ by a meta-substitution (likely due to a meta-function application), and

subsequently code box y for y : T ∈ Γ is matched. At this point, the meta-substitution

action has already created a branch for y, vary ⇒ t. Thus, a β rule for genvarg,T ⇒ t is

not present at all.

Finally, the congruence of pattern matching on code relies on the congruence of all

branches, which is formulated by

Ψ; Γ `1 b ≈ b′ : ∆ ` T ⇒ T ′

and

Ψ; Γ `1

−→
b ≈

−→
b ′ : ∆ ` T ⇒ T ′

They only include congruence rules so I omit their definitions here.

4.4 Syntactic Properties

In this section, I list a few important syntactic properties of layered modal type theory.

The first two properties are presupposition. They verify the syntactic validity of the

well-formedness and typing judgments.

Lemma 4.4 (Presupposition of regular contexts and types).

• If Ψ `i Γ, then ` Ψ.

• If Ψ `i T , then ` Ψ.

Lemma 4.5 (Presupposition of typing).

• If Ψ; Γ `i t : T , then Ψ `i Γ and Ψ `i T .

• If Ψ; Γ `i δ : ∆, then Ψ `i Γ and Ψ `i ∆.

The regular substitution lemma proves the stability of terms under regular substi-

tutions and that of regular substitutions under composition.

Lemma 4.6 (Regular substitutions).

• If Ψ; Γ `i t : T and Ψ; ∆ `i δ : Γ, then Ψ; ∆ `i t[δ] : T .

105

• If Ψ; Γ `i δ : ∆ and Ψ; Γ′ `i δ′ : Γ, then Ψ; Γ′ `i δ ◦ δ′ : ∆.

Due to dual contexts in typing judgments, meta-substitutions are introduced to

substitute meta-and context variables with code and regular contexts, respectively. The

syntax of meta-substitutions is defined as follows:

σ := · | σ, t/u | σ,Γ/g (Meta-substitutions)

The most important cases for applying a meta-substitution are the case for local con-

texts, where a context variable g is replaced by a concrete context, and the case for

meta-variables, where a meta-variable u is replaced by a concrete term:

g[σ] := σ(g) (lookup g in σ)

Γ, x : T [σ] := (Γ[σ]), x : (T [σ])

uδ[σ] := σ(u)[δ[σ]] (lookup of u in σ)

letbox u � s in t[σ] := letbox u � s[σ] in (t[σ, uid/u])

In particular, in the case for meta-variables, a meta-substitution triggers a local sub-

stitution as well, so the action of regular substitutions must be defined prior to that of

meta-substitutions. The properties of regular substitutions must also be proved first.

The meta-substitution lemma confirms that terms and regular substitutions are sta-

ble under meta-substitutions. Since meta-substitutions also replace context variables,

they propagate under local contexts and types.

Lemma 4.7 (Meta-substitutions).

• If Ψ `i Γ and Ψ′ ` σ : Ψ, then Ψ′ `i Γ[σ].

• If Ψ `i T and Ψ′ ` σ : Ψ, then Ψ′ `i T [σ].

• If Ψ; Γ `i t : T and Ψ′ ` σ : Ψ, then Ψ′; Γ[σ] `i t[σ] : T [σ].

• If Ψ; Γ `i δ : ∆ and Ψ′ ` σ : Ψ, then Ψ′; Γ[σ] `i δ[σ] : ∆[σ].

Meta-and regular substitutions interact with each other. The following lemma states

that meta-substitutions distribute under terms and local substitutions.

106

Lemma 4.8 (Distributivity of meta-substitutions).

• If Ψ; Γ `i t : T , Ψ; ∆ `i δ : Γ and Φ ` σ : Ψ, then t[δ][σ] = (t[σ][δ[σ]]).

• If Ψ; Γ `i δ : ∆, Ψ; Γ′ `i δ′ : Γ and Φ ` σ : Ψ, then (δ ◦ δ′)[σ] = (δ[σ]) ◦ (δ′[σ]).

Similar lemmas are also proved for equivalence judgments. First, presupposition

confirms the syntactic validity of equivalence judgments.

Lemma 4.9 (Presupposition of equivalence).

• If Ψ; Γ `1 t ≈ t′ : T , then Ψ; Γ `1 t : T and Ψ; Γ `1 t
′ : T .

• If Ψ; Γ `1 δ ≈ δ′ : ∆, then Ψ; Γ `1 δ : ∆ and Ψ; Γ `1 δ
′ : ∆.

Then, equivalence judgments are stable under both regular and meta-substitutions.

Note that meta-substitutions still propagate under regular contexts and types.

Lemma 4.10 (Regular substitutions).

• If Ψ; Γ `1 t ≈ t′ : T and Ψ; ∆ `1 δ ≈ δ′ : Γ, then Ψ; ∆ `1 t[δ] ≈ t′[δ′] : T .

• If Ψ; Γ `1 δ
′′ ≈ δ′′′ : ∆′ and Ψ; ∆ `1 δ ≈ δ′ : Γ, then Ψ; ∆ `1 δ

′′ ◦ δ ≈ δ′′′ ◦ δ′ : ∆′.

Lemma 4.11 (Meta-substitutions).

• If Ψ; Γ `1 t ≈ t′ : T and Φ ` σ : Ψ, then Φ; Γ[σ] `1 t[σ] ≈ t′[σ] : T [σ].

• If Ψ; Γ `1 δ ≈ δ′ : ∆ and Φ ` σ : Ψ, then Φ; Γ[σ] `1 δ[σ] ≈ δ′[σ] : ∆[σ].

4.5 Weak-head Reduction

In the previous sections, I have finished the discussion about the syntax and judgments

of 2-layered modal type theory. From this section, I begin the discussion about weak

normalization and the decidability of convertibility. In this chapter, instead of untyped

domain models used in Part I, I follow Abel et al. (2018) and use Kripke reducibility

predicates to prove weak normalization. The weak normalization algorithm is imple-

mented by a series of weak-head reductions, which are defined in this section. The

Kripke reducibility predicates model terms at each layer (Sec. 4.7 and 4.8), where the

107

t t′ t reduces to t′.

t t′

t s t′ s

s s′

letbox u � s in t letbox u � s′ in t

t t′

t $ ∆ t′ $ ∆

t t′

match t with
−→
b match t′ with

−→
b (λx.t) s t[s/x] (Λg.t) $ ∆ t[∆/g]

letbox u � box s in t t[s/u]

−→
b (x) = varx ⇒ t

match box x with
−→
b t

−→
b (zero) = zero⇒ t

match box zero with
−→
b t

−→
b (succ t) = succ ?u⇒ t′

match box (succ t) with
−→
b t′[t/u]

−→
b (λx.t) = λx.?u⇒ t′

match box (λx.t) with
−→
b t′[t/u]

−→
b (t s) =?u ?u′ ⇒ t′

match box (t s) with
−→
b t′[t/u, s/u′]

Ψ; Γ `1 t t′ : T t of type T reduces to t′.

Ψ; Γ `1 t : T t ∗ t′

Ψ; Γ `1 t t′ : T

Figure 4.7: One-step reduction

logical relations at layer 1 capture structure of syntax semantically. In the Kripke

reducibility predicates, the semantics of terms are given by what weak-head normal

forms they reduce to. The predicates relate two terms, if they reduce to weak-head

normal forms, the sub-terms of which are recursively related. This setup allows us to

prove theorems like syntactically equivalent terms must reduce to related weak-head

normal forms. The matryoshka principle in the semantics is characterized by the layer-

ing restriction lemma (Lemma 4.21), which relates the logical relations at both layers.

The layering restriction lemma is what distinguishes the layered style from the hetero-

geneous style, where models of different languages may not necessarily find definitive

relations. Finally the fundamental theorem (Sec. 4.9) confirms that well-typed terms

always reduce to weak-head normal forms. Applying the fundamental theorem to the

convertibility algorithm (Sec. 4.10) proves the decidability of convertibility. This pro-

108

cess not only concludes the investigation on 2-layered modal type theory, but also is

steps to follow in the next chapter, where dependent types are handled.

The following define the syntax of weak-head normal and neutral forms:

w := v | zero | succ t | box t | λx.t | Λg.t (Weak-head normal form)

v := x | uδ | v t | letbox u � v in t | v $ Γ (Neutral form)

| match v with
−→
b | match box uδ with

−→
b

The definition of weak-head reductions is given in Fig. 4.7. Weak-head reduction

only considers terms at layer 1 as this is the only layer for computation. One-step

reductions generalize to multi-step naturally by taking reflexive-transitive closures. The

multi-step variants are denoted as

t ∗ t′

and

Ψ; Γ `1 t
∗ t′ : T

The syntactic properties for reductions are simple to prove as reductions are just a

sub-relation of the equivalence judgment for terms.

Theorem 4.12 (Preservation). If Ψ; Γ `1 t t′ : T , then Ψ; Γ `1 t
′ : T .

Lemma 4.13 (Regular substitutions). If Ψ; Γ `1 t t′ : T and Ψ; ∆ `1 δ : Γ, then

Ψ; ∆ `1 t[δ] t′[δ] : T .

Lemma 4.14 (Meta-substitutions). If Ψ; Γ `1 t t′ : T and Φ ` σ : Ψ, then Φ; Γ[σ] `1

t[σ] t′[σ] : T [σ].

The uniqueness lemma proves that the one-step reduction relation is functional and

thus deterministic, i.e. the same input must lead to the same output.

Lemma 4.15 (Uniqueness). If t t′ and t t′′, then t′ = t′′.

4.6 Generic Equivalence

In this section, I follow Abel et al. (2018) to define a modular generic equivalence,

which will be instantiated by the convertibility checking derivation later (Sec. 4.10). In

109

γ : Ψ =⇒g Φ γ is a meta-weakening.

` Ψ

id : Ψ =⇒g Ψ

γ : Ψ =⇒g Φ Ψ ` B
p(γ) : Ψ, B =⇒g Φ

γ : Ψ =⇒g Φ Φ ` B
q(γ) : Ψ, B =⇒g Φ, B

τ : Ψ; Γ =⇒i ∆ τ is a regular weakening from Γ to ∆.

Ψ `i Γ

id : Ψ; Γ =⇒i Γ

τ : Ψ; Γ =⇒i ∆ Ψ `i T
p(τ) : Ψ; Γ, x : T =⇒i ∆

τ : Ψ; Γ =⇒i ∆ Ψ `i T
q(τ) : Ψ; Γ, x : T =⇒i ∆, x : T

Figure 4.8: Judgments for meta-and regular weakenings

principle, this generic equivalence is not exactly needed here: multiple instantiations

are only needed for dependent types. I still choose to do it here to set up a framework

for dependent types. There are two kinds of generic equivalence over terms:

• Ψ; Γ `1 t ' t′ : T describes a generic equivalence between two terms, and

• Ψ; Γ `1 v ∼ v′ : T describes a generic equivalence between two neutral terms.

The subscript is fixed to be 1 because this is the only layer where computation occurs.

Furthermore, Ψ; Γ `1 t ' t′ : T is generalized to Ψ; Γ `1 δ ' δ′ : ∆, which denotes

a generic equivalence between regular substitutions. The definition is effectively just

congruence:

Ψ `1 Γ

Ψ; Γ `1 · ' · : ·

Ψ `1 g,Γ

Ψ; g,Γ `1 wk ' wk : g

Ψ; Γ `1 δ ' δ′ : ∆ Ψ; Γ `1 t ' t′ : T

Ψ; Γ `1 δ, t/x ' δ′, t′/x : ∆, x : T

The generic equivalences and hence the Kripke reducibility predicates depend on

weakenings of meta-and regular contexts. They are defined as follows:

γ := id | q(γ) | p(γ) (Meta-weakenings)

τ := id | q(τ) | p(τ) (Regular weakenings)

Their definitions are virtually identical and are routine. There are three cases, identity

(id), dropping (p) and keeping (q). Technically, I should define how they react on types,

110

terms, etc, but I do not focus too much on the actions of weakenings in this thesis as

handling them are not interesting. Types, terms, etc. are automatically and implicitly

weakened if their contexts are changed to weakened contexts. It should be obvious from

the textual context. The typing judgments for weakenings are defined in Fig. 4.8. I

also write meta-and regular weakenings as pairs when I weaken both meta-and local

contexts at the same time:

γ; τ :: Ψ; Γ =⇒ Φ; ∆

The effect of a weakening pair is to apply γ first and then τ .

These two generic equivalences for terms must satisfy the following laws.

Law 4.1 (Subsumption).

• If Ψ; Γ `1 v ∼ v′ : T , then Ψ; Γ `1 v ' v′ : T .

• If Ψ; Γ `1 t ' t′ : T , then Ψ; Γ `1 t ≈ t′ : T .

The subsumption law of generic equivalence of terms implies the subsumption prop-

erty of generic equivalence of regular substitutions:

Lemma 4.16 (Subsumption). If Ψ; Γ `1 δ ' δ′ : ∆, then Ψ; Γ `1 δ ≈ δ′ : ∆.

Law 4.2 (PER). Both generic equivalences for terms are PERs.

Law 4.3 (Monotonicity). Given γ; τ :: Ψ; Γ =⇒ Φ; ∆, if Φ; ∆ `1 t ' t′ : T , or

Φ; ∆ `1 v ∼ v′ : T , then Ψ; Γ `1 t ' t′ : T , or Ψ; Γ `1 v ∼ v′ : T , respectively.

Again monotonicity generalizes to regular substitutions:

Lemma 4.17 (Monotonicity). Given γ; τ :: Ψ; Γ =⇒ Φ; ∆, if Φ; ∆ `1 δ ' δ′ : ∆′, then

Ψ; Γ `1 δ ' δ′ : ∆′.

Law 4.4 (Weak-head closure). If Ψ; Γ `1 t ∗ w : T , Ψ; Γ `1 t′ ∗ w′ : T and

Ψ; Γ `1 w ' w′ : T , then Ψ; Γ `1 t ' t′ : T .

Law 4.5 (Congruence).

• If Ψ `1 Γ, then Ψ; Γ `1 zero ' zero : Nat.

111

• If Ψ; Γ `1 t ' t′ : Nat, then Ψ; Γ `1 succ t ' succ t′ : Nat.

• If Ψ; Γ `1 t : S −→ T , Ψ; Γ `1 t
′ : S −→ T and Ψ; Γ, x : S `1 t x ' t′ x : T , then

Ψ; Γ `1 t ' t′ : S −→ T .

• If Ψ `1 Γ and Ψ; ∆ `0 t : T , then Ψ; Γ `1 box t ' box t : T .

• If Ψ; Γ `1 t : (g : Ctx)⇒ T , Ψ; Γ `1 t
′ : (g : Ctx)⇒ T and

Ψ, g : Ctx; Γ `1 t $ g ' t′ $ g : T , then Ψ; Γ `1 t ' t′ : (g : Ctx)⇒ T .

Law 4.6 (Congruence of neutrals).

• If Ψ; Γ `1 x : T , then Ψ; Γ `1 x ∼ x : T .

• If u : (∆ ` T) ∈ Ψ and Ψ; Γ `1 δ ' δ′ : ∆, then Ψ; Γ `1 u
δ ∼ uδ

′
: T .

• If Ψ; Γ `1 v ∼ v′ : S −→ T and Ψ; Γ `1 t ' t′ : S, then Ψ; Γ `1 v t ∼ v t′ : T .

• If Ψ `1 T
′, Ψ; Γ `1 v ∼ v′ : �(∆ ` T) and Ψ, u : (∆ ` T); Γ `1 t ' t′ : T ′, then

Ψ; Γ `1 letbox u � v in t ∼ letbox u � v′ in t′ : T ′.

• If Ψ; Γ `1 v ∼ v′ : (g : Ctx)⇒ T and Ψ `0 ∆, then

Ψ; Γ `1 v $ ∆ ∼ v′ $ ∆ : T [∆/g]

Law 4.7 (Congruence of neutral pattern matching on code).

• If Ψ `1 T
′, Ψ; Γ `1 v ∼ v′ : �(∆ ` T) and Ψ; Γ `1

−→
b '

−→
b ′ : ∆ ` T ⇒ T ′, then

Ψ; Γ `1 match v with
−→
b ∼ match v′ with

−→
b ′ : T ′.

• If Ψ `1 T
′, u ∈ (∆ ` T) ∈ Ψ, Ψ; Γ `0 δ : ∆ and Ψ; Γ `1

−→
b '

−→
b ′ : ∆ ` T ⇒ T ′,

then Ψ; Γ `1 match box uδ with
−→
b ∼ match box uδ with

−→
b ′ : T ′.

Here, Ψ; Γ `1

−→
b '

−→
b ′ : ∆ ` T ⇒ T ′ propagates generic equivalence between terms to

matching branches. This judgment also requires coverage of branches.

The congruence law of regular variables implies that regular weakening substitutions,

specifically, regular identity substitutions, are reflexive in the generic equivalence:

Lemma 4.18 (Reflexivity of regular weakening substitutions). If Ψ `1 ∆,Γ, then

Ψ; ∆,Γ `1 wk∆ ' wk∆ : ∆.

112

Lemma 4.19 (Reflexivity of regular identity substitutions). If Ψ `1 Γ, then

Ψ; Γ `1 idΓ ' idΓ : Γ.

This further implies

Lemma 4.20 (Congruence of meta-variables). If ` Ψ and u : (Γ ` T) ∈ Ψ, then

Ψ; Γ `1 u
idΓ ∼ uidΓ : T .

4.7 Reducibility Predicates at Layer 0

In this section, I define multiple reducibility predicates for i ∈ [0, 1]:

• Ψ �i T denotes reducible type T at layer i.

• Ψ; Γ �i1 t ≈ t′ : T relates two reducible terms t and t′ at layer i.

• Ψ �i Γ extends reducible types to reducible contexts at layer i.

• Ψ; Γ �i1 δ ≈ δ′ : ∆ relates two reducible regular substitutions t and t′ at layer i.

The reducibility predicates are defined in two passes. In the first pass, I define the

reducibility predicates of types, terms, local contexts and regular substitutions at layer 0

(this section). Note that the reducibility predicate of types does not really characterize

reduction on the type level, as there are none. Its only purpose is to handle meta-

substitutions of context variables. In the second pass, I define the predicates at layer 1

(Sec. 4.8), which extend those at layer 0 with meta-functions and contextual types, so

the predicates in this section are states parametrically.

Reducibility of terms is defined by recursion on reducible types and is parameterized

by layers. However, unlike syntactic judgments, where terms at layer 0 are from STLC,

a reducible term at layer 0 may include meta-programs as sub-terms, though it must

have types from layer 0 (i.e. STLC). In other words, reducible terms at layer 0 do

not have to live at layer 0. This distinction is crucial especially when handling lifting

semantically. For this reason, I put layering indices for the reducibility predicate of

terms as superscripts to avoid confusions with subscripts, which specify where types

and terms live in.

113

To understand this somewhat strange setup, consider the following code of the

identity function for natural numbers:

box (λx.x) : �(· ` Nat −→ Nat)

Since the identity function is constructed at layer 0, it is code of STLC. Nevertheless,

the result of running it should yield the identity function at layer 1 due to the lifting

lemma.

letbox u � box (λx.x) in u ≈ λy.y : Nat −→ Nat

Variables are renamed for the convenience of discussion. Something in this program is

off: x comes from STLC so it is meant to be substituted by an STLC term, but due

to lifting, it becomes y and now must also handle meta-programs, which clearly is not

included in STLC. To illustrate,

letbox u � box (λx.x) in u (letbox u′ � box 0 in u′)

≈ (λy.y) (letbox u′ � box 0 in u′)

≈ letbox u′ � box 0 in u′

≈ 0

Thinking about semantics naively, the reducibility semantics of λx.x should be “the

function takes a normalizing STLC term and computes to a normalizing STLC term”,

but normalizing or not, letbox u′ � box 0 in u′ is clearly not an STLC term! The

whole program, however, still computes as expected. To explain this mismatch in the

semantics, the setup of the reducibility predicates described above becomes necessary.

Though letbox u′ � box 0 in u′ is a term from layer 1, its type Nat can live at

layer 0. Therefore, I use the layering restriction lemma (Lemma 4.21) to confirm that

arguments from layer 1 can be safely applied as long as they have types from STLC,

which is definitely the case due to well-typedness. In other words, the layering restriction

lemma is the semantic counterpart of the lifting lemma and is how layering provides

code running for all code.

How the semantics applies functions from layer 0 is illustrated in Fig. 4.9. Assume

λx.t is a function lifted from layer 0 and s is some term from layer 1. Then the

114

s

s
la

ye
ri

n
g

re
st

ri
ct

io
n

(λx.t)

(λx.t)

t[s/x]

t[s/x]
substitution

la
ye

ri
n
g

re
st

ri
ct

io
n

(i
n
ve

rs
ed

)

substitution

Layer 1

Layer 0

Figure 4.9: Illustration of semantic action on function applications

application at layer 1 (the dotted arrow) is semantically decomposed into three steps:

1. In the first step, layering restriction brings the semantics of s from layer 1 back

to layer 0. This is possible only because s must have some type from STLC.

2. In the second step, the function application occurs. s replaces x in t everywhere.

This step is the typical action for function applications.

3. In the third step, the inverse of layering restriction brings the result of the appli-

cation from layer 0 to layer 1.

These three steps are exactly how the meta-variable case proceeds in the proof of the

fundamental theorems (c.f. Theorem 4.28). Clearly, layering restriction is crucial to

interpret the behaviors of lifted functions semantically and distinguishes the layered

style from the heterogeneous style, where formal relations between sub-languages are

intentionally avoided.

Having a conceptual grasp of how the semantics is organized, I move on to the first

pass of defining the reducibility predicates. In this pass, I define the predicates for layer

0. Since the same predicates are also included at layer 1, they are defined parametrically

in i. I first define reducibility of types as follows:

` Ψ

Ψ �i Nat

∀ γ : Φ =⇒g Ψ . Φ �i S ∀ γ : Φ =⇒g Ψ . Φ �i T

Ψ �i S −→ T

Reducible types are almost the same as well-formed types, except that reducibility

respects meta-weakenings, hence forming a Kripke model. In the function case, S −→ T

115

is semantically well-formed, if both S and T are required to be semantically well-formed

under all meta-weakenings. Reducible meta-functions and contextual types at layer 1

use the reducible predicates at layer 0, so their definitions are postponed to Sec. 4.8.

Keeping the predicates parameterized is convenient to see that layering restriction does

hold. In particular, the predicates of natural numbers and functions do not depend on

i.

Now I define the reducibility predicate for terms Ψ; Γ �i1 t ≈ t′ : T . The predicate

is defined by recursion on reducible type Ψ �i T . I first define the semantic natural

numbers:

Ψ; Γ `1 t
∗ w : Nat

Ψ; Γ `1 t
′ ∗ w′ : Nat Ψ; Γ `1 w ' w′ : Nat Ψ; Γ �Nf w ≈ w′ : Nat

Ψ; Γ � t ≈ t′ : Nat

Ψ; Γ �Nf zero ≈ zero : Nat

Ψ; Γ � t ≈ t′ : Nat

Ψ; Γ �Nf succ t ≈ succ t′ : Nat

Ψ; Γ `1 v ∼ v′ : Nat

Ψ; Γ �Nf v ≈ v′ : Nat

Then Ψ; Γ �i1 t ≈ t′ : Nat := Ψ; Γ � t ≈ t′ : Nat. One can see clearly that the semantics

of natural numbers does not rely on i at all.

Next, I define the case for function. Ψ; Γ �i1 t ≈ t′ : S −→ T holds iff

• Ψ; Γ `1 t ∗ w : S −→ T , and

• Ψ; Γ `1 t
′ ∗ w′ : S −→ T , and

• Ψ; Γ `1 w ' w′ : S −→ T , and

• for any γ; τ : Φ; ∆ =⇒ Ψ; Γ and Φ; ∆ �i1 s ≈ s′ : S, Φ; ∆ �i1 w s ≈ w′ s′ : T

holds.

It means that t and t′ reduce to some weak-head normal forms, and the results of

applying the weak-head normal forms to reducible terms remain reducible.

There are more cases for i = 1, which will be defined in Sec. 4.8. That said, the fact

that the cases for natural numbers and functions can be given altogether, suggests that

the semantics of these two types is irrelevant to whether i = 0 or i = 1. Indeed, this is

the intuition for the layering restriction lemma.

116

Next, I generalize the reducibility predicates of types and terms to regular contexts

and regular substitutions. Reducibility of regular contexts is defined inductively:

` Ψ

Ψ �i ·

` Ψ g : Ctx ∈ Ψ

Ψ �i g

Ψ �i ∆ Ψ �i T

Ψ �i ∆, x : T

It simply requires all types within a regular context are semantically well-formed.

Then Reducibility of regular substitutions are defined by recursion on reducibility

of regular contexts and simply applies the reducibility predicates of terms pointwise.

• Ψ; Γ �i1 δ ≈ δ′ : · holds iff Ψ `i Γ and δ = δ′ = ·.

• Ψ; Γ �i1 δ ≈ δ′ : g holds iff Ψ `i Γ and Γ = g,Γ′ for some Γ′ and δ = δ′ = wk.

• Ψ; Γ �i1 δ ≈ δ′ : ∆, x : T holds iff

– Ψ; Γ �i1 δ ≈ δ′ : ∆,

– Ψ; Γ �i1 t ≈ t′ : T .

Technically, this definition should be considered as two separate predicates, one for

i = 0 and one for i = 1, because Ψ; Γ �1
1 t ≈ t′ : T will need to refer to Ψ; Γ �0

1 δ ≈ δ′ :

∆, so the whole definition cannot be defined parametrically. However, keeping them

parameterized on paper helps to state the layering restriction lemma.

Lemma 4.21 (Layering Restriction).

• If Ψ �0 T , then If Ψ �1 T .

• If Ψ �0 T , then Ψ; Γ �1
1 t ≈ t′ : T is equivalent to Ψ; Γ �0

1 t ≈ t′ : T .

• If Ψ �0 ∆, then Ψ �1 ∆.

• If Ψ �0 ∆, then Ψ; Γ �1
1 δ ≈ δ′ : ∆ is equivalent to Ψ; Γ �0

1 δ ≈ δ′ : ∆.

The more interesting direction is the one going from layer 1 to layer 0, which brings

the semantics of terms and regular substitutions from layer 1 to layer 0. This lemma is

crucial in the meta-variable case in the proof of the fundamental theorems (c.f. The-

orem 4.28). Interestingly, in the syntax, the lifting lemma monotonically brings terms

117

from layer 0 to layer 1, while in the semantics, layering restriction is an equivalence

relation.

Another important lemma is monotonicity, which holds by design:

Lemma 4.22 (Monotonicity).

• If Ψ �0 T and γ : Φ =⇒g Ψ, then Φ �0 T .

• If Ψ �0 T and Ψ; Γ �0
1 t ≈ t′ : T , given γ; τ : Φ; ∆ =⇒ Ψ; Γ, then

Φ; ∆ �0
1 t ≈ t′ : T .

• If Ψ �0 Γ and γ : Φ =⇒g Ψ, then Φ �0 Γ.

• If Ψ �0 ∆′ and Ψ; Γ �0
1 δ ≈ δ′ : ∆′, given γ; τ : Φ; ∆ =⇒ Ψ; Γ, then

Φ; ∆ �0
1 δ ≈ δ′ : ∆′.

The lemma says that all reducibility predicates are stable under weakenings.

4.8 Semantic Pattern Matching And Reducibility

Predicates at Layer 1

In the previous section, I fully define reducibility predicates at layer 0 and partly for

layer 1. The defined cases are for STLC, which are also included at layer 1. In this

section, I complete the missing cases of reducibility predicates at layer 1. First, the

remaining cases for reducible types at layer 1 are:

Ψ �0 ∆ Φ �0 T

Ψ �1 �(∆ ` T)

∀ γ : Φ =⇒g Ψ and Φ �0 Γ . Φ �1 T [Γ/g]

Ψ �1 (g : Ctx)⇒ T

Reducible contextual types refer to reducible regular contexts and reducible types at

layer 0. This is why reducibility must be defined by recursion on layers. Reducible

meta-functions require codomain types to be stable under all meta-weakenings and

meta-substitutions of context variables.

Now let us consider how to define reducible terms of contextual types. The guiding

lemmas, lifting and static code, suggest that there are two different uses of a term of

contextual type. It can be run, or be analyzed, or both. Therefore, the definition of

118

Ψ; Γ �0
0 t : T Code t of type T and all its sub-terms are reducible.

Ψ �0 Γ
x : T ∈ Γ Ψ; Γ �0

1 x : T

Ψ; Γ �0
0 x : T

Ψ; Γ �0
0 δ : ∆

u : (∆ ` T) ∈ Ψ

Ψ; Γ �0
0 u

δ : T

Ψ �0 Γ
Ψ; Γ �0

1 zero : Nat

Ψ; Γ �0
0 zero : Nat

Ψ; Γ �0
0 t : Nat

Ψ; Γ �0
1 succ t : Nat

Ψ; Γ �0
0 succ t : Nat

Ψ; Γ, x : S �0
0 t : T

Ψ; Γ �0
1 λx.t : S −→ T

Ψ; Γ �0
0 λx.t : S −→ T

Ψ; Γ �0
0 t : S −→ T

Ψ; Γ �0
0 s : S Ψ; Γ �0

1 t s : T

Ψ; Γ �0
0 t s : T

Ψ; Γ �0
0 t ≈ t′ : T := Ψ; Γ �0

0 t : T and t = t′

Ψ; Γ �0
0 δ : ∆ Regular substitution δ and all its sub-terms are reducible.

Ψ `i Γ

Ψ; Γ �0
0 · : ·

Ψ `i g,Γ
Ψ; g,Γ `i wk : g

Ψ; Γ �0
0 δ : ∆ Ψ; Γ �0

0 t : T

Ψ; Γ �0
0 δ, t/x : ∆, x : T

Ψ; Γ �0
0 δ ≈ δ′ : ∆ := Ψ; Γ �0

0 δ : ∆ and δ = δ′

Figure 4.10: Semantic judgment for code

reducible terms of contextual types must carry both semantic and syntactic information

for both uses. The semantic information handles code running and is characterized by

the following definition: Ψ; Γ �0
1 t : T holds iff

• Ψ �0 Γ,

• Ψ �0 T , and

• if γ : Φ =⇒g Ψ and Φ; ∆ �0
1 δ ≈ δ′ : Γ, then Φ; ∆ �0

1 t[δ] ≈ t[δ′] : T .

Ψ; Γ �0
1 t : T is the standard semantic judgment for STLC, which characterizes the

stability of reducibility under regular substitutions. Note that the superscripts in the

last condition are 0’s. They mean that given related regular substitutions (which might

contain terms from layer 1) replacing variables of types from STLC (layer 0), the results

are still reducible.

Following Hu and Pientka (2024b), the syntactic information handles pattern match-

ing on code and is given by an inductive predicate, which is basically just the typing

119

rules, with additional Ψ; Γ �0
1 t : T to also keep tracking of the semantic information.

This predicate is given in Fig. 4.10. For mnemonic purposes and the convenience to

state semantic judgments, the predicate is Ψ; Γ �0
0 t : T , with a subscript 0, denot-

ing that it is a semantic judgment for code, i.e. terms from layer 0. This judgment

remembers reducibility of all sub-terms, so all sub-terms can be run and be analyzed

at any time. There is also a symmetrized version Ψ; Γ �0
0 t ≈ t′ : T by asking t = t′.

The following semantic lifting and escape lemmas state that Ψ; Γ �0
0 t : T maintains

semantic and syntactic information, respectively.

Lemma 4.23 (Semantic lifting).

• If Ψ; Γ �0
0 t : T , then Ψ; Γ �0

1 t : T .

• If Ψ; Γ �0
0 δ : ∆, then Ψ; Γ �0

1 δ : ∆.

The semantic lifting lemma says that the semantic judgments for code maintain the

semantic information that can be used for code running.

Lemma 4.24 (Escape).

• If Ψ; Γ �0
0 t : T , then Ψ; Γ `0 t : T .

• If Ψ; Γ �0
0 δ : ∆, then Ψ; Γ `0 δ : ∆.

The escape lemma says that the semantic judgments for code can recover the syn-

tactic judgments. In other words, the semantic judgments for code also maintain the

syntactic information. Both lemmas combined imply that the semantic judgments for

code maintain both necessary information for code running and pattern matching for

all sub-structures.

Since Ψ; Γ �0
1 t : T is stable under regular substitutions by definition, Ψ; Γ �0

0 t : T

should also be stable under regular substitutions as it only adds syntactic information,

which is clearly stable under regular substitutions.

Lemma 4.25 (Regular substitutions).

• If Ψ; Γ �0
0 t : T and Ψ; ∆ �0

0 δ : Γ, then Ψ; ∆ �0
0 t[δ] : T .

• If Ψ; Γ �0
0 δ
′ : ∆′ and Ψ; ∆ �0

0 δ : Γ, then Ψ; ∆ �0
0 δ
′ ◦ δ : ∆′.

120

The semantic lifting and escape lemmas also confirm that now the setup is sufficient

to give the definition of reducible terms at layer 1. First, I define the reducibility

predicate of �(∆ ` T):

Ψ; Γ `1 t
∗ w : �(∆ ` T) Ψ; Γ `1 t

′ ∗ w′ : �(∆ ` T)

Ψ; Γ `1 w ' w′ : �(∆ ` T) Ψ; Γ �Nf w ≈ w′ : �(∆ ` T)

Ψ; Γ �1
1 t ≈ t′ : �(∆ ` T)

Ψ; ∆ �0
0 t : T

Ψ; Γ �Nf box t ≈ box t : �(∆ ` T)

Ψ; Γ `1 v ∼ v′ : �(∆ ` T)

Ψ; Γ �Nf v ≈ v′ : �(∆ ` T)

When t and t′ reduce to some box t′′, the reducibility predicate maintains the semantics

of t′′ as code, so that it can subsequently be run and analyzed.

The last case is for meta-functions. Ψ; Γ �1
1 t ≈ t′ : (g : Ctx)⇒ T holds iff

• Ψ; Γ `1 t ∗ w : (g : Ctx)⇒ T , and

• Ψ; Γ `1 t
′ ∗ w′ : (g : Ctx)⇒ T , and

• Ψ; Γ `1 w ' w′ : (g : Ctx)⇒ T , and

• for any γ; τ : Φ; ∆ =⇒ Ψ; Γ, and given Φ �0 ∆′, then we have

Φ; ∆ �1
1 w $ ∆′ ≈ w′ $ ∆′ : T [∆′/g].

This case is basically the same as regular functions.

The reducibility predicates at layer 1 are Kripke in the sense that they are monotonic.

The monotonicity lemma is just like the monotonicity lemma for layer 0 except the

change of layer from 0 to 1.

4.9 Semantic Judgments And Fundamental Theo-

rems

Due to meta-functions, the following semantic soundness lemma is not immediately

provable by induction:

If Ψ `i T , then Ψ �1 T .

121

where reducibility of meta-functions is given by the following rule:

∀ γ : Φ =⇒g Ψ and Φ �0 Γ . Φ �1 T ′[Γ/g]

Ψ �1 (g : Ctx)⇒ T ′

The induction hypothesis only gives

Ψ, g : Ctx �1 T ′

which further implies the following by monotonicity:

Φ, g : Ctx �1 T ′

But then the proof is stuck because all assumptions do not say anything about meta-

substitutions of g in T ′.

The solution to this problem is to define the reducibility predicates for meta-contexts

and meta-substitutions, following Abel et al. (2018). They are defined by induction-

recursion on meta-contexts:

 ·

Then Φ � σ : · holds iff ` Φ and σ = ·.

 Ψ

 Ψ, g : Ctx

Then Φ � σ : Ψ, g : Ctx holds iff

• σ = σ1,Γ/g,

• Φ �0 Γ, and+

• Φ � σ1 : Ψ.

 Ψ Ψ
0 Γ Ψ
0 T

 Ψ, u : (Γ ` T)

122

Φ � σ : Ψ, u : (Γ ` T) holds iff

• σ = σ1, t/u,

• Φ � σ1 : Ψ, and

• Ψ; Γ[σ1] �0
0 t : T [σ1].

where

• Ψ
i Γ is defined as given Φ � σ : Ψ, Φ �i Γ[σ] holds.

• Ψ
i T is defined as given Φ � σ : Ψ, Φ �i T [σ] holds.

In a meta-substitution, there are only two kinds of components: regular contexts and

code of STLC. The latter is given above by the semantic judgment of code.

Semantic meta-substitutions are also monotonic.

Lemma 4.26 (Monotonicity). If Φ � σ : Ψ and γ : Φ′ =⇒g Φ, then Φ′ � σ : Ψ.

Then the semantic judgments for terms and regular substitutions are stated as

follows:

• Ψ; Γ
i t ≈ t′ : T iff Ψ
i Γ and Ψ
i T and for any Φ � σ : Ψ, j ∈ [i, 1], and

Φ; ∆ �ij δ ≈ δ′ : Γ[σ], then Φ; ∆ �ij t[σ][δ] ≈ t′[σ][δ′] : T [σ] holds.

• Ψ; Γ
i δ ≈ δ′ : ∆ iff Ψ
i Γ and Ψ
i ∆ for any Φ � σ : Ψ, j ∈ [i, 1], and

Φ; ∆′ �ij δ
′′ ≈ δ′′′ : Γ[σ], then Φ; ∆′ �ij δ[σ] ◦ δ′′ ≈ δ′[σ] ◦ δ′′′ : ∆[σ] holds.

• Ψ; Γ
i t : T iff Ψ; Γ
i t ≈ t : T .

• Ψ; Γ
i δ : ∆ iff Ψ; Γ
i δ ≈ δ : ∆.

Note how the semantic judgments introduce another index parameter j. When i = 1,

then necessarily j = 1. To prove Ψ; Γ
1 t ≈ t′ : T , the goal is to prove

Φ; ∆ �1
1 t[σ][δ] ≈ t′[σ][δ′] : T [σ] given Φ; ∆ �1

1 δ ≈ δ′ : Γ[σ]. However, when i = 0, then

j ∈ [0, 1], so the goal is in fact to prove two statements:

• Φ; ∆ �0
1 t[σ][δ] ≈ t′[σ][δ′] : T [σ] given Φ; ∆ �0

1 δ ≈ δ′ : Γ[σ] and

123

• Φ; ∆ �0
0 t[σ][δ] ≈ t′[σ][δ′] : T [σ] given Φ; ∆ �0

0 δ ≈ δ′ : Γ[σ]. This is the same as

proving Φ; ∆ �0
0 t[σ][δ] : T [σ] given Φ; ∆ �0

0 δ : Γ[σ].

These two statements are not independent. Combining with Lemma 4.25, the second

statement is effectively to prove Φ; Γ[σ] �0
0 t[σ] : T [σ], without the effect of regular

substitutions. Further, as (main) part of the proof obligations, Φ; Γ[σ] �0
0 t[σ] : T [σ]

requires a proof that Φ; Γ[σ] �0
1 t[σ] ≈ t[σ] : T [σ] is stable under regular substitutions,

which is already given by the first statement. Therefore, even though there are two

statements to prove, the second statement is just an encapsulation of the first statement.

The purpose of the second statement is to repackage semantic and syntactic information

as the semantic judgment for code. This pattern is common in layered systems; the

lower the layer is, the more information its semantics accumulates. In other words, a

term from a lower layer carries information from all higher layers. The same pattern

reoccurs in dependent types as well (c.f. Theorem 5.31).

The fundamental theorems are proved in two parts. The first part establishes the

semantic soundness for meta-and regular contexts, and types. Most cases are straight-

forward. Since the semantic judgment of types respects meta-substitutions, the case for

meta-functions goes through.

Theorem 4.27 (Fundamental).

• If ` Ψ, then
 Ψ.

• If Ψ `i T , then Ψ
i T .

• If Ψ `i Γ, then Ψ
i Γ.

The second part establishes the semantic soundness for terms and local substitutions.

It says that given a syntactic judgment, its corresponding semantic judgment also holds

at the same layer. Though in this thesis, I usually do not show detailed proof steps, but

I do think that showing a few cases here is very important for readers to understand

the pattern in simple types, as the same pattern is directly carried over to dependent

types.

Theorem 4.28 (Fundamental).

124

• If Ψ; Γ `i t ≈ t′ : T , then Ψ; Γ
i t ≈ t′ : T .

• If Ψ; Γ `i δ ≈ δ′ : ∆, then Ψ; Γ
i δ ≈ δ′ : ∆.

• If Ψ; Γ `i t : T , then Ψ; Γ
i t : T .

• If Ψ; Γ `i δ : ∆, then Ψ; Γ
i δ : ∆.

Proof. By a mutual induction on Ψ; Γ `i t ≈ t′ : T and Ψ; Γ `i δ ≈ δ′ : ∆. The third

and fourth statements are results of the first two statements.

•

Ψ; Γ `i δ ≈ δ′ : ∆ u : (∆ ` T) ∈ Ψ

Ψ; Γ `i uδ ≈ uδ
′
: T

By a case analysis on i.

When i = 1 This is the case for code running.

H0 :Ψ; Γ
1 δ ≈ δ′ : ∆ (by IH)

H1 :Φ � σ : Ψ (by assumption)

Φ; ∆′ �1
1 δ
′′ ≈ δ′′′ : Γ[σ] (by assumption)

H2 :Φ; ∆′ �1
1 δ[σ] ◦ δ′′ ≈ δ′[σ] ◦ δ′′′ : ∆[σ] (by H0 and H1)

H3 :Φ; ∆′ �0
1 δ[σ] ◦ δ′′ ≈ δ′[σ] ◦ δ′′′ : ∆[σ]

(by layering restriction and Ψ
0 ∆)

Φ; ∆[σ] �0
0 σ(u) : T [σ] (by lookup)

H4 :Φ; ∆[σ] �0
1 σ(u) : T [σ] (by escape)

Φ; ∆′ �0
1 σ(u)[δ[σ] ◦ δ′′] ≈ σ(u)[δ′[σ] ◦ δ′′′] : T [σ] (by H3 and H4)

Φ; ∆′ �1
1 σ(u)[δ[σ] ◦ δ′′] ≈ σ(u)[δ′[σ] ◦ δ′′′] : T [σ]

(by inversed layering restriction)

These steps are exactly those depicted in Fig. 4.9 and its ambient discussion.

When i = 0 Then in this case, there are two statements to prove depending on j. When

j = 1, then the proof is almost the same as the proof of i = 1, but simpler,

125

because there is no need to apply layering restriction as this is the case for

code composition. When j = 0, the proof is to re-package the case for j = 1

into the semantic judgment for code.

H0 :Ψ; Γ
0 δ ≈ δ′ : ∆ (by IH)

H1 :Φ � σ : Ψ (by assumption)

Φ; ∆[σ] �0
0 σ(u) : T [σ] (by lookup)

The goal is to prove Φ; Γ[σ] �0
0 σ(u)[δ[σ]] : T [σ]. This is immediate as the

semantic judgment of code is stable under local substitutions, together with

δ[σ] = δ′[σ] by H0.

•

Ψ `1 Γ Ψ; ∆ `0 t ≈ t′ : T

Ψ; Γ `1 box t ≈ box t′ : �(∆ ` T)

H0 :Ψ; ∆
0 t ≈ t′ : T (by IH)

H1 :Φ � σ : Ψ (by assumption)

H2 :Φ; ∆′ �1
1 δ ≈ δ′ : Γ[σ] (by assumption)

Φ; ∆[σ] �0
0 t[σ] : T [σ] and t[σ] = t′[σ] (by H0 and H1)

Φ; ∆[σ] �Nf box t[σ] ≈ box t′[σ] : �(∆[σ] ` T [σ]) (by definition)

Φ; ∆′ �1
1 box t[σ][δ] ≈ box t′[σ][δ′] : �(∆ ` T)[σ]

In the last step, regular substitutions do not propagate under box.

•

Ψ `1 T
′ Ψ; Γ `1 s ≈ s′ : �(∆ ` T) Ψ; Γ `1

−→
b ≈

−→
b ′ : ∆ ` T ⇒ T ′

Ψ; Γ `1 match s with
−→
b ≈ match s′ with

−→
b ′ : T ′

In this case, I show how exactly the semantic judgment for code enables pattern

126

matching on code.

H0 :Ψ; Γ
1 s ≈ s′ : �(∆ ` T) (by IH)

H1 :Φ � σ : Ψ (by assumption)

H2 :Φ; ∆′ �1
1 δ ≈ δ′ : Γ[σ] (by assumption)

H3 :Φ; ∆′ �1
1 s[σ][δ] ≈ s′[σ][δ′] : �(∆ ` T)[σ] (by H0, H1 and H2)

Analyzing H3 yields that for some w and w′,

Φ; ∆′ `1 s[σ][δ] ∗ w : �(∆[σ] ` (T [σ]))

Φ; ∆′ `1 s
′[σ][δ] ∗ w′ : �(∆[σ] ` (T [σ]))

H4 :Φ; ∆′ �Nf w ≈ w′ : �(∆[σ] ` (T [σ]))

In a further case analysis on H4, I only consider the following case as an ex-

ample. Other cases proceed in a similar principle. For some S and S ′, so that

T = S −→ S ′, then

Φ; ∆[σ], x : S[σ] �0
0 t
′′ : S ′[σ] Φ; ∆[σ] �0

1 λx.t
′′ : (S −→ S ′)[σ]

Φ; ∆[σ] �0
0 λx.t

′′ : (S −→ S ′)[σ]

Φ; ∆′ �Nf box λx.t′′ ≈ box λx.t′′ : �(∆ ` S −→ S ′)[σ]

and
−→
b (λx.t′′) = λx.?u⇒ t and

−→
b ′(λx.t′′) = λx.?u⇒ t′.

H5 :Φ � σ, t′′/u : Ψ, u : (∆, x : S ` S ′) (by definition)

Φ; ∆′ �1
1 t[σ, t

′′/u][δ] ≈ t′[σ, t′′/u][δ′] : T ′[σ, t′′/u] (by IH and H5)

T ′[σ, t′′/u] = T ′[σ] (by computation)

match s with
−→
b [σ][δ]

= match s[σ][δ] with (
−→
b [σ][δ])

 ∗ match box λx.t′′ with (
−→
b [σ][δ])

 t[q(σ)][δ][t′′/u]

127

= t[q(σ) ◦ (t′′/u)][δ[t′′/u]]

= t[σ, t′′/u][δ] (by computation)

match s with′
−→
b ′[σ][δ′] ∗ t′[σ, t′′/u][δ′] (similarly)

Φ; ∆′ �1
1 match s with

−→
b [σ][δ] ≈ match s′ with

−→
b ′[σ][δ′] : T ′[σ]

Note that H5 extends the meta-substitutions with t′′ because

Φ; ∆[σ] �0
0 λx.t

′′ : (S −→ S ′)[σ] contains necessary syntactic information, so pat-

tern matching can extract the syntactic information of the sub-term, i.e. t′′ for

arbitrary use in t and t′. Here q(σ) := σ, uid/u and is also given in Appendix C.

4.10 Convertibility Checking

In this section, I give the conversion checking rules and instantiate the generic equiva-

lence with it, proving that syntactic equivalence between terms is the same as convert-

ibility. The conversion checking algorithms consist of four judgments:

• Ψ; Γ `1 t ⇐̂⇒ t′ : T checks the convertibility of two terms t and t′.

• Ψ; Γ `1 δ ⇐̂⇒ δ′ : ∆ is a pointwise generalization of Ψ; Γ `1 t ⇐̂⇒ t′ : T .

• Ψ; Γ `1 w ⇐⇒ w′ : T checks the convertibility of two normal forms w and w′.

This operation is directed by types.

• Ψ; Γ `1 v ←→ v′ : T checks the convertibility of two neutral forms v and v′ and

returns T . This operation is structural on the neutral forms.

The rules are given in Fig. 4.11. The conversion checking for neutral pattern matching

on code follows the same principle as letbox, so I put the rules in Appendix E.

Finally, I instantiate the generic equivalence Ψ; Γ `1 t ' t′ : T with Ψ; Γ `1 t ⇐̂⇒ t′ :

T and Ψ; Γ `1 v ∼ v′ : T with Ψ; Γ `1 v ←→ v′ : T . Note that Ψ; Γ `1 δ ⇐̂⇒ δ′ : ∆ is

equivalent to Ψ; Γ `1 δ ' δ′ : ∆.

The completeness theorem is proved from the fundamental theorems after the in-

stantiation.

128

Ψ; Γ `1 t
∗ w : T Ψ; Γ `1 t

′ ∗ w′ : T Ψ; Γ `1 w ⇐⇒ w′ : T

Ψ; Γ `1 t ⇐̂⇒ t′ : T

Ψ `1 Γ

Ψ; Γ `1 zero⇐⇒ zero : Nat

Ψ; Γ `1 t ⇐̂⇒ t′ : Nat

Ψ; Γ `1 succ t⇐⇒ succ t′ : Nat

Ψ; Γ `1 v ←→ v′ : Nat

Ψ; Γ `1 v ⇐⇒ v′ : Nat

Ψ; Γ, x : S `1 w x ⇐̂⇒ w′ x : T

Ψ; Γ `1 w ⇐⇒ w′ : S −→ T

Ψ `1 Γ Ψ; ∆ `0 t : T

Ψ; Γ `1 box t⇐⇒ box t : �(∆ ` T)

Ψ; Γ `1 v ←→ v′ : �(∆ ` T)

Ψ; Γ `1 v ⇐⇒ v′ : �(∆ ` T)

Ψ, g : Ctx; Γ `1 w $ g ⇐̂⇒ w′ $ g : T

Ψ; Γ `1 w ⇐⇒ w′ : (g : Ctx)⇒ T

Ψ `1 Γ x : T ∈ Γ

Ψ; Γ `1 x←→ x : T

Ψ; Γ `1 δ ⇐̂⇒ δ′ : ∆ x : (∆ ` T) ∈ Ψ

Ψ; Γ `1 u
δ ←→ uδ

′
: T

Ψ; Γ `1 v ←→ v′ : S −→ T
Ψ; Γ `1 t ⇐̂⇒ t′ : S

Ψ; Γ `1 v t←→ v′ t′ : T

Ψ; Γ `1 v ←→ v′ : (g : Ctx)⇒ T Ψ `0 ∆

Ψ; Γ `1 v $ ∆←→ v′ $ ∆ : T [∆/g]

Ψ; Γ `1 v ←→ v′ : �(∆ ` T) Ψ `1 T
′ Ψ, u : (∆ ` T); Γ `1 t ⇐̂⇒ t′ : T ′

Ψ; Γ `1 letbox u � v in t←→ letbox u � v′ in t′ : T ′

Figure 4.11: Conversion checking algorithm

Theorem 4.29 (Completeness).

• If Ψ; Γ `1 t ≈ t′ : T , then Ψ; Γ `1 t ⇐̂⇒ t′ : T .

• If Ψ; Γ `1 δ ≈ δ′ : ∆, then Ψ; Γ `1 δ ⇐̂⇒ δ′ : ∆.

The completeness theorem says that if two terms (substitutions, resp.) are equiva-

lent, then they are also checked convertible by the algorithm.

Combined with the soundness theorem, which says that two convertible terms (sub-

stitutions, resp.) admitted by the algorithm are syntactic equivalent, I prove that

convertibility is equivalent to syntactic equivalence.

Theorem 4.30 (Soundness).

• If Ψ; Γ `1 t ⇐̂⇒ t′ : T , then Ψ; Γ `1 t ≈ t′ : T .

129

• If Ψ; Γ `1 w ⇐⇒ w′ : T , then Ψ; Γ `1 w ≈ w′ : T .

• If Ψ; Γ `1 v ←→ v′ : T , then Ψ; Γ `1 v ≈ v′ : T .

• If Ψ; Γ `1 δ ⇐̂⇒ δ′ : ∆, then Ψ; Γ `1 δ ≈ δ′ : ∆.

Proof. Mutual induction on the premises.

Next, I prove the decidability of convertibility.

Lemma 4.31 (Decidability of conversion checking).

• If Ψ; Γ `1 t ⇐̂⇒ t : T and Ψ; Γ `1 t
′ ⇐̂⇒ t′ : T , then Ψ; Γ `1 t ⇐̂⇒ t′ : T is

decidable.

• If Ψ; Γ `1 δ ⇐̂⇒ δ : ∆ and Ψ; Γ `1 δ
′ ⇐̂⇒ δ′ : ∆, then Ψ; Γ `1 δ ⇐̂⇒ δ′ : ∆ is

decidable.

• If Ψ; Γ `1 w ⇐⇒ w : T and Ψ; Γ `1 w
′ ⇐⇒ w′ : T , then Ψ; Γ `1 w ⇐⇒ w′ : T is

decidable.

• If Ψ; Γ `1 v ←→ v : T and Ψ; Γ `1 v
′ ←→ v′ : T , then Ψ; Γ `1 v ←→ v′ : T is

decidable.

Combining completeness, convertibility is decidable.

Theorem 4.32 (Decidability of convertibility).

• If Ψ; Γ `1 t : T and Ψ; Γ `1 t
′ : T , then Ψ; Γ `1 t ≈ t′ : T is decidable.

• If Ψ; Γ `1 δ : ∆ and Ψ; Γ `1 δ
′ : ∆, then Ψ; Γ `1 δ ≈ δ′ : ∆ is decidable.

4.11 Comparison with Homogeneous and Heteroge-

neous Styles

In Sec. 4.7, I discussed the setup of the reducibility predicates and why I put i as a

superscript in Ψ; Γ �i1 t ≈ t′ : T . To briefly recapitulate, in order to handle lifting

of functions from STLC semantically, the layer i marks which layer T comes from. If

130

Ψ �0 T , then the layering restriction applies to bring arguments at layer 1 to layer 0,

so that they can be applied to functions from STLC. The layering restriction lemma

models lifting in the semantics. This is how layering is distinguished from regular

heterogeneous systems, where relations among different sub-languages are intentionally

avoided in the latter kind.

Layered modal type theory is also somewhat similar to the dual-context-style system

of contextual λ� by Nanevski et al. (2008). In contextual λ�, every �(Γ ` T) is valid,

and box and letbox can be arbitrarily nested. More precisely, the typing judgment of

λ� is Ψ; Γ ` t : T , without the layering index at all. The introduction and elimination

rules for � are:

Ψ; ∆ ` t : T

Ψ; Γ ` box t : �(∆ ` T)

Ψ; Γ ` s : �(∆ ` T) Ψ, u : (∆ ` T); Γ ` t : T ′

Ψ; Γ ` letbox u � s in t : T ′

For convenience, in the example below I set ∆ = ·, so �(· ` T) degenerates to �T . The

following program is valid in λ� but is not in layered modal type theory:

letbox u � box (box zero) in u : �Nat

This program has type �Nat and computes to box zero. However, due to the two nested

box’s, this program is not well-typed in layered modal type theory.

Following this thought, I give a program that is valid in λ�, but would never be

valid even if layered modal type theory is generalized to arbitrary n layers:

lift : Nat→ �Nat
lift(zero) := box zero

lift(succ x) := letbox u � lift(x) in box (succ u)

nest : Nat→ �Nat
nest(zero) := box zero

nest(succ x) := letbox u � lift(x) in box (letbox u′ � nest u in u′)

The lift function lifts a natural number into a box. That is, a number succ (· · · (succ zero))

becomes box (succ (· · · (succ zero))). This function is valid in both λ� and layered modal

131

type theory. The nest function is a bit trickier and is only valid in λ�. The step case of

nest makes a recursive call on the result u of lift(x) inside box. Given a concrete natural

number m, nest(m) produces

box (letbox um � box (· · · (letbox u1 � box zero in u1) · · ·) in um)

Thus, nest(m) produces m nested layers of box’s and letbox’s. The computational

behavior of this function is rather uninteresting. By giving nest(m) to a letbox, all the

letbox’s inside of the outermost box will eventually collapse and therefore the following

computation always holds

letbox u � nest(m) in u ≈ zero

This nest function can be encoded in λ� because λ� is simply not concerned about the

nesting at all. However, since m can be arbitrary, any fixed n-layered generalized modal

type theory cannot encode this function. This observation suggests that a layered sys-

tem is always strictly weaker than λ� in certain aspects. This loss of expressive power

is the cost to open up a completely orthogonal direction, where covering pattern match-

ing on code can be soundly added to the type theory. Supporting pattern matching

on code compensates the expressive power in a different dimension, making the overall

expressive power of layered modal type theory incomparable with that of λ�.

4.12 Summary

In this section, I develop an almost simply typed layered modal type theory and show

that layering is the right path to supporting intensional analysis. In particular, layered

modal type theory retains confluence and normalization, and checking convertibility

between well-typed terms is decidable. Supporting intensional analysis is important: it

is a frequently used feature when writing tactics in proof assistants. Due to limitations

from simple types, the core type theory cannot support a general recursion principle on

code (special ones are possible, e.g. one in the examples), but this problem naturally

goes away with dependent types. In the next chapter, I will show that layering and

the matryoshka principle also scale naturally to dependent types, and demonstrate how

132

intensional analysis can be supported coherently with dependent types.

133

5
DeLaM: Dependent Layered Modal

Type Theory

In Chapter 4, I presented a simply typed layered modal type theory, which is based

on the matryoshka principle: sub-languages at higher layers subsume those at lower

layers. In layered modal type theory, users can not only compose and execute code

as in the homogeneous λ� by Davies and Pfenning (2001); Pfenning and Davies (2001)

investigated in Part I, but also pattern match on the syntactic structure of code. Layered

model type theory is coherent, in the sense that it satisfies weak normalization and its

syntactic convertibility is decidable.

Though layered modal type theory has provided a type-theoretic foundation for

meta-programming with intensional analysis for simple types, whether the layered style

and the matryoshka principle can be carried over to dependent types remains an in-

teresting question to answer. In this chapter, this question is answered positively and

I develop DeLaM, a Dependent Layered Modal type theory, which enables meta-

programming in Martin-Löf type theory (MLTT) with recursion principles on open

134

+meta-programming

layer m in DeLaM

+computation

full MLTT
(d)

syntax of
MLTT
(c)

variables
(v)

Figure 5.1: Layer hierarchy of DeLaM

code. The investigation in Chapter 4 scales surprisingly well both in syntax and in

semantics. On the syntactic side, the matryoshka principle is formally captured by two

guiding lemmas : even though the static code lemma proves that code objects do not

compute, via the lifting lemma, code objects may compute after being lifted to higher

layers. Both lemmas are very simple to check and are very helpful when designing the

syntactic judgments. On the semantic side, I also construct the Kripke logical rela-

tions for all layers, and prove the layering restriction lemma to model code running

in the semantics. Many aspects in DeLaM are natural extensions of layered modal

type theory, with more technicalities to handle dependent types. Readers might find

Chapter 4 simpler to digest for high-level ideas. This chapter is dedicated for more

specific discussions on dependent types.

In contrast to layered modal type theory, where I name the layers by numbers,

layers in DeLaM are named by letters for a better mnemonic: code objects for vari-

ables (v), code objects for MLTT (c), the dependent type theory of MLTT (d), and

meta-programs (m), such that v < c < d < m. Syntactically, the layers v and c

describe static code objects of MLTT with no computation; contrarily, the layer d cor-

responds to the dependent type theory of pure MLTT and allows computation. The

meta-programming layer m extends MLTT with contextual types, code objects and

recursion principles over them. Hence the expressive and the computational power of

sub-languages strictly increases along the layers. The relation of the layers is depicted

in Fig. 5.1. An outer layer is always an extension of its inner layer.

As proved by the static code lemma, code objects at layers v and c are static and do

135

not compute, but their types do and live at the higher layer d. To illustrate, consider

the constructor for an empty list nil : (A : Ty) → List A, where Ty is the type for

the universe. Then box (nil ((λ x. x) Nat)) and box (nil Nat) represent two distinct

code objects at layer c, so they are not equivalent. In particular, the β redex in

the first code object does not compute at layer c. However, both contextual types

� (` List ((λ x. x) Nat)) and � (` List Nat) are equivalent and are equally valid

types for the code objects. The β redex in the first contextual type now appears on

the type level due to dependent types and computes. This action of bringing code

(c) to the type level (d) is a special instance of the lifting lemma, which I call code

promotion. Note that the types of code living at a separate layer and code promotion do

not exist in layered modal type theory and are unique in DeLaM. They are introduced

as one possible (probably the most natural) way to combine the matryoshka principle

and dependent types. Finally, the meta-programming layer m extends MLTT with

constructs to support an explicit way to execute code. Just like Chapter 4, a code

object, e.g. box ((λ x. x) 0), can be eliminated by letbox and run at layer m. The

lifting lemma applies here to lift a term from layer c to layer m, so that a code object

may compute.

In this chapter, I will first give two examples for meta-programming in DeLaM

(Sec. 5.1). Due to recursion on code, meta-programs in DeLaM are able to analyze

the structures of proof obligations and apply algorithms to solve them. In other words,

DeLaM provides a type-safe way to write tactics and complements many existing tactic

systems in proof assistants. Then, I will give the definition of DeLaM (Sec. 5.2 and 5.3).

Formally, DeLaM is a dependent type theory with a non-cumulative, Tarski-style uni-

verse hierarchy. It notably has one uniform syntax for all layers, so users only need to

be familiar with one language for programming, proving, and meta-programming. One

major advantage of this syntactic design is that DeLaM allows users to access all def-

initions from MLTT freely at the meta-programming layer m without having to forgo

critical meta-theoretic properties like normalization. This design allows users to use the

same set of libraries for both programming and meta-programming, and hence improves

users’ time efficiency. Layers only have impact on the judgmental level, where layers

distinguish valid objects and valid computational behaviors following the matryoshka

principle. Next, I follow Abel et al. (2018) and extend the Kripke logical relations in

136

Chapter 4 to DeLaM (Sec. 5.4). Despite the increasing complexity, the logical relations

for DeLaM follow the same skeleton as in Chapter 4. Roughly speaking, I first define

the logical relations for types and terms for MLTT over a set of parametric generic

equivalences. These logical relations capture how terms compute at both layers d and

m. Then, the semantics of MLTT is encapsulated in a set of inductive semantic judg-

ments to model code. These semantic judgments record the syntactic shape of code, so

they are virtually just typing rules, but also carry extra semantics of MLTT to describe

how code objects compute. Finally, I give the logical relations for types and terms for

layer m, where the semantics of contextual types are given in terms of the semantic

judgments of code. The fundamental theorems are instantiated accordingly to obtain

the two conclusive theorems: weak normalization and the decidability of convertibility

of DeLaM (Sec. 5.5).

The investigation presented in this chapter is very complex, so I only focus on the

high-level ideas. This chapter is incremental on Chapter 4. Many lemmas and theorems

in this chapter find simplified counterparts in Chapter 4. This chapter is published

work (Hu and Pientka, 2025). Readers interested in full technical details might refer to

the technical report (Hu and Pientka, 2024a).

5.1 DeLaM by Examples

DeLaM supports quotation of static MLTT code objects in box and composition of

code objects. These code objects can be further analyzed by recursion and eventually

be executed to obtain MLTT programs. These features allow us to write widely used

tactics, and the generated proofs are guaranteed to be well-scoped and well-formed as

ascribed by their types.

5.1.1 Recursion on Code Objects Describing MLTT Terms

As a first example, I implement a tactic, which checks whether two expressions are equal

up to associativity and commutativity (AC). This functionality is frequently desired in

a proof assistant. For example, both Isabelle/HOL (Wenzel et al., 2024, Sec. 9.3.3) and

Lean provide such AC solvers.

To make the implementation concise, I concentrate on an AC checker for summa-

tions of expressions of natural numbers. In addition, I assume that the addition +, its

137

ac -check : (g : Ctx) ⇒ (a b : � (g ` Nat)) →
letbox a’ ← a; b’ ← b in Option (� (g ` Eq Nat a’ b’))

ac-check g (box (a1 + a2)) b =

letbox b’ ← b in search g (box a1) (box b’) >>= λ (c, pf1).

letbox c’ ← c in ac -check g (box a2) (box c’) >>= λ pf2 .

letbox pf1 ’ ← pf1 ; pf2 ’ ← pf2 in

Some (box (trans (cong (a1 +_) pf2 ’) (sym pf1 ’)))

ac-check g (box a’) b =

letbox b’ ← b in

if eq? (box a’) (box b’) then Some (box refl) else None

search : (g : Ctx) ⇒ (a b : � (g ` Nat)) →
letbox a’ ← a; b’ ← b in

Option (Σ (c : � (g ` Nat)).

letbox c’ ← c in � (g ` Eq Nat b’ (a’ + c’)))

search g a (box (b1 + b2)) =

letbox a’ ← a in

if eq? (box b1) (box a’)

then Some (box b2 , box refl)

else if eq? (box b2) (box a’)

then Some (box b1 , box (comm b1 b2))

else search g (box a’) (box b2) >>= λ (c, pf).

letbox c’ ← c; pf ’ ← pf in

Some (box (b1 + c’), box (trans (cong (b1 ’ +_) pf ’) (pull b1 ’ a ’c’)))

search g a (box b’) = letbox a’ ← a in None

Figure 5.2: An implementation of an equality checker modulo AC

associativity and commutativity, and transitivity and Leibniz substitution of equality

have been defined at layer c, so I have access to these definitions in a code object.

Finally, I assume that a summation is written in the right-associated form, i.e. of the

form a1 + (a2 + ... + (an + an+1)) and ai is an object of type Nat. In practice, this

assumption can be ensured by a preprocessing phase, where associativity is repetitively

applied.

The main idea of this tactic is simple: to compare a1 + ... + (an + an+1) with b,

I match all ai ’s with addends in b until an+1, and then I just compare an+1 with the

rest of b for syntactic equality. The tactic is implemented as the ac-check function in

Fig. 5.2 in an Agda-like surface syntax. In the type of ac-check, a fat arrow ⇒ denotes

a meta-function. The ac-check function is polymorphic in the context g, so it applies

for any regular context. Next, it takes two pieces of code a and b as inputs, with their

138

open variables in g. The return type should express the equality between a and b.

To do that, I first use letbox to unpack a and b to obtain meta-variables a’ and

b’, so that I can subsequently use them in the contextual type (� (g ` Eq Nat a’ b’)).
15 This contextual type describes the proof that a’ and b’ are equal where Eq refers

to propositional equality. The actual return type of ac-check is an Option, as ac-check

might not be able to prove the equality.

The ac-check function is defined by recursion on the input a.

1. If a is box (a1 + a2), then a1 and a2 are pattern variables representing open code

of addends of a in the parametric context g. Then, I use the search function to look for

a1 in b. It optionally returns code c with an equality proof pf1 of b = a1 + c. Hence c

describes the remainder of b excluding a1 and I recursively compare a2 with c. Since

the tactics return Options, I use the monadic bind operation (>>=) to short-circuit the

uninteresting None case. If the recursion is successful, then I obtain two proofs at the end:

pf1 for b = a1 + c and pf2 for a2 = c. The proof obligation of ac-check requires a code

object of a proof of a1 + a2 = b, which can be proved by following a1 + a2 = a1 + c = b.

The proof term is written in an Agda convention. Inside of box, I use the transitivity

of Eq, trans, which requires two further sub-goals a1 + a2 = a1 + c and a1 + c = b. The

first sub-goal is established by the congruence of +, i.e. cong (a1 +_), to replace a2 with

c using pf2’. The second sub-goal is immediate by pf1’ after symmetry.

Agda users might find the last step familiar. Indeed, providing the proof obligations

in DeLaM resembles filling in holes in Agda in many aspects. The critical difference

however, is that in DeLaM, proof obligations are fulfilled using (meta-)programs.

2. If a is not an addition at all, then the only possibility for it to be equal to b is

that both syntactically describe the same code. This is tested by eq?.

The search function is the main driver of the algorithm. It recurses on b to look for

an addend identical to a. If b has no addition, then search fails and returns None. If b is

box (b1 + b2), the first two ifs compare a with b1 and b2. If either comparison succeeds,

then this addend have been found. Otherwise, in the last else, a recursive search

continues to look for a in b2. If successful, the recursion returns some c and a proof pf

15A practical front-end would insert letbox’s smartly, but for the purpose of this thesis, I would like
to make the mechanism explicit.

139

of b2 = a + c. The return value is b1 + c together with a proof of b1 + b2 = a + (b1 + c).

The proof obligation is established again by a transitivity. First, a congruence proves

the first sub-goal of b1 + b2 = b1 + (a + c). Then, the second sub-goal requires to prove

b1 + (a + c) = a + (b1 + c), which is established by a call to pull: pull b1’ a’ c’, which

swaps b1 and a. This property is called left commutativity, and is often required in an

AC solver, e.g. in Isabelle/HOL and in Lean. Left commutativity can be proved by a

sequence of associativity, commutativity and again associativity.

The tactic ac-check can be used to algorithmically derive proofs for many tedious

equations about natural numbers. The following lemma is one example:

lem : (x y z : Nat) → Eq Nat (x + (y + z)) (y + (z + x))

lem x y z =

let Some pf ← ac -check (a : Nat , b : Nat , c : Nat) -- context

(box (a + (b + c))) (box (b + (c + a)))

in letbox u ← pf in u[x/a,y/b,z/c]

The first argument to ac-check is the ambient context a : Nat, b : Nat, c : Nat and

unrelated to the function arguments x, y and z. The next two arguments are code

objects describing both sides of the equation in the ambient context above. Since

the invocation of ac-check is closed, it will return Some pf by following a sequence of

computations, where pf is a code object denoting the equality proof of the code type

�(a:Nat,b:Nat,c:Nat `Eq Nat (a + (b + c)) (b + (c + a))). Note that pf is a well-formed

equality proof of the given contextual type. To use the equality proof pf at the layer m,

I use letbox to bind it to the meta-code variable u. Subsequently, in the body of letbox,

I use u with a regular substitution to substitute x, y and z for a, b and c, respectively.

This pattern of extracting a proof from code is an instance of code running, which is

justified by the lifting lemma.

Finally, definitions like Option, Eq and >>= are defined in MLTT, but the meta-

programming layer m also has access to them, due to the uniform syntax of DeLaM

for all layers and the lifting lemma. Layers are only used in type-checking to control

valid types, terms and computation. Hence, users of DeLaM only need to learn one

language for programming, proving and meta-programming.

140

5.1.2 Recursion on Code Objects Describing MLTT Types

In DeLaM, code objects describe not only MLTT terms, but also MLTT types. A

code object representing a MLTT type has a contextual type � (g ` @l) where @l

denotes the universe level l of the type. Hence, DeLaM supports recursion on the

shape of a code object of types. Being able to write meta-programs that recursively

analyze the code describing MLTT types is key to implementing tactics.

To illustrate, consider a goal of the following form: it is either a universally quanti-

fied formula (x : Nat) → F’, a conjunction F1 ∧ F2, or an equality between arithmetic

expressions. A quotation of a goal in this form yields a contextual code object of type

F : � (g ` @0). Below, I implement the crush tactic, which takes in F as an input and

constructs a code object describing the proof for F, if crush finds it. The tactic is im-

plemented as a meta-program in DeLaM by pattern matching on the shape of F and

leverages the previous AC checker to crush equalities between arithmetic expressions.

crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F’ ← F in Option (� (g ` F’))

crush g (box (Eq Nat a b)) = ac-check g (box a) (box b)

crush g (box (F1 ∧ F2)) = crush g (box F1) >>= λ (r1 : � (g ` F1)).

crush g (box F2) >>= λ (r2 : � (g ` F2)).

letbox pf1 ← r1 ; pf2 ← r2 in Some (box (pf1 , pf2))

crush g (box ((x : Nat) → F)) = crush (g, x : Nat) (box F) >>=

λ (r : � (g,x : Nat ` F)). letbox pf ← r in Some (box (λ x. pf))

crush g (box _) = None

In the first case, if the goal formula is simply the equality between arithmetic ex-

pressions a and b, the solving is delegated to ac-check. Otherwise, if the goal is a

conjunction, then both components are crushed and their proofs are composed together

if both crushings are successful. I again use the bind operation (>>=) for convenience.

If the goal is a universal quantification, then the regular context is extended with the

parameter x:Nat and the recursion is invoked on box F. In general, abstracting over con-

texts is crucial for recursion on binders that extend regular contexts (see also (Pientka

et al., 2019) for similar situations). If the recursive call on F is successful and returns

a proof r, the proof obligation requires a proof for (x : Nat) → F, which is achieved by

embedding pf in a λ. The last case captures all other shapes of formulas and returns

141

None. Now, crush can be used to solve more complex goals such as the following:

lem2 : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (y + (z + x)))

lem2 =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (y + (z + x)))))

in letbox u ← pf in u

This tactic follows the same pattern as in the last example. The crush tactic au-

tomatically introduces the arguments to regular contexts and handles the conjunction.

Eventually two invocations to ac-check will be successful as well as the overall call to

crush, producing a proof of this lemma.

5.2 Syntax of DeLaM

Starting this section, I define DeLaM formally. DeLaM includes multiple layers:

the layer c accommodates static code objects, whereas the layer d corresponds to the

dependent type theory of MLTT. The topmost layer m extends MLTT with contextual

types and other constructs for composition, execution, and recursion on code. While

the syntax of DeLaM (see Fig. 5.3) is uniform and thus users only need to learn one

language, layers are distinguished in the judgments, which define well-formed objects

and valid computational bahaviors. I will dissect the syntax gradually and discuss my

design decisions. Readers might find hyperlinks in the text convenient.

5.2.1 Explicit Universe Polymorphism

DeLaM supports universe polymorphism following Bezem et al. (2022). Universes (l)

form an idempotent commutative monoid, where l t l′ takes the maximum of l and l′.

The ω level is added to support universe-polymorphic functions. A universe level l is

well-formed w.r.t. a universe context L, if all universe variables (`) in l appear in L

and l contains no ω. Similar to Agda, universes respect a number of equalities: identity

(0t l = l), distributivity (1 + (lt l′) = (1 + l)t (1 + l′)), absorption (lt (1 + l) = 1 + l),

commutativity (lt l′ = l′t l), associativity ((l1t l2)t l3 = l1t(l2t l3)) and idempotence

(l t l = l). Given two well-formed universes l and l′, whether l = l′ is decidable

as implemented in Agda. One possible algorithm is to compare the universe level

142

i, j, k ∈ {v,c,d,m} (Layers, where v < c < d < m)

x, ` (Regular, universe variables, resp.)

l := ` | 0 | 1 + l | l t l′ | ω (Universe levels)
g, U, u (Meta-variables for regular contexts, types, terms, resp.)

L := · | L, ` (Universe contexts)
B := g : Ctx | U : (Γ `i @ l) | u : (Γ `i T @ l) (Meta-bindings)

Φ,Ψ := · | Φ, B (Meta-contexts)
Γ,∆ := · | g | Γ, x : T @ l (Regular contexts)

δ := · | wk | δ, t/x (Regular substitutions)

M,S, T := Tyl | Nat | Πl,l′(x : S).T | U δ |
−→
` ⇒l T | Ell t (Types)

| (g : Ctx)⇒l T | (U : (Γ `d @ l))⇒l′ T | �(Γ `c @ l) | �(Γ `c T @ l)
s, t := Tyl | Nat | Πl,l′(x : s).t | x | uδ | zero | succ t (Terms)

| λl,l′(x : S).t | (t : Πl,l′(x : S).T) s | Λl −→` .t | t $
−→
l

| Λl g.t | t $ Γ | Λl,l′

d U.t | t $d T | box T | box t
| letboxl′x.M U ← (t : �(Γ `c @ l)) in t′

| letboxl′x.M u← (t : �(Γ `c T @ l)) in t′

| eliml1,l2
−→
M
−→
b (t : �(Γ `c @ l)) | eliml1,l2

−→
M
−→
b (t : �(Γ `c T @ l))

−→
M := (`, g, xT .MTyp) (`, g, UT , xt.MTrm) (Two motives for recursion on code)
−→
b :=

−→
b Typ

−→
b Trm (Branches for recursion on code)

bTyp := (`, g.tTy) | (g.tNat) | (`, `′, g, US, UT , xS, xT .tΠ) | (`, g, ut, xt.tEl)
(Branches for code of MLTT types)

bTrm := (`, g.t′Ty) | (g.t′Nat) | (`, `′, g, us, ut, xs, xt.t′Π) | (`, g, UT , ux.tx)
| (g.tzero) | (g, ut, xt.tsucc) | (`, `′, g, US, UT , ut, xS, xt.tλ)
| (`, `′, g, US, UT , ut, us, xS, xT , xt, xs.tapp)

(Branches for code of MLTT terms)

Figure 5.3: Syntax of DeLaM

associated with each universe variable in l and l′. Moreover, universes form a partial

order (l ≤ l′ := l′ = l t l′) and a strict order (l < l′ := 1 + l ≤ l′). The strict order

is well-founded. This fact will be used to define the logical relations to prove weak

normalization and decidability of convertibility.

DeLaM supports a universe polymorphic functions space (
−→
` ⇒l T); this type is

introduced by abstractions (Λl −→` .t) and used by applications (t $
−→
l).

143

5.2.2 Variables, Contexts and Substitutions

Following Chapter 4, DeLaM distinguishes regular variables (x) and meta-variable,

which represent holes in code. There are three different kinds of meta-variables: g

denotes a hole for an MLTT context, U denotes a hole for an MLTT type, and u

denotes a hole for an MLTT term. The meta-variables for MLTT types and terms

U and u are associated with regular substitutions as superscripts. I may omit writing

the regular substitution if it is the identity id. To support universe polymorphism, I

use ` to range over all universe variables. Three kinds of variables are stored in three

kinds of contexts: regular contexts (Γ), meta-contexts (Ψ), and universe contexts (L).

Universe contexts are just collections of universe variables. Meta-contexts are lists of

meta-bindings B, which bind meta-variables to matching objects in MLTT. For regular

contexts, due to context polymorphism, there are two base cases for a regular context:

empty (·) or a context variable (g) bound in meta-contexts. Correspondingly, there

are also two base cases for a regular substitution. The empty substitution · maps to

an empty context, while the weakening wk is the base case for context variables (c.f.

Sec. 5.3.1).

Under the hood, I consider all variables are encoded in de Bruijn indices, so I can

avoid dealing with issues about α-renaming.

5.2.3 Non-cumulative Tarski-Style Universes and Types

Instead of a more common Russell-style universe hierarchy, DeLaM employs a Tarski-

style hierarchy (Palmgren, 1998). The Tarski style brings the syntax closer to the seman-

tics than the Russell style and simplifies the semantic development. In the Tarski-style

formulation, types and terms belong to two different but mutually defined grammars.

Terms can refer to types in type annotations, while types can only refer to terms in

the decoder El. Dependent types are achieved by computing an encoding of a type

as a term and using El for decoding. For example, El0 Nat decodes to the type Nat

and El0 (Π(x : Nat).Nat) decodes to the type Π(x : Nat).Nat. As a consequence,

Ty, Nat, and Π types are overloaded both as types and as terms. In addition, types

also include meta-variable for types (U δ), universe-polymorphic functions (
−→
` ⇒l T),

meta-functions for regular contexts ((g : Ctx) ⇒l T), meta-functions for MLTT types

144

((U : (Γ `d @ l))⇒l′ T) and contextual types (�(Γ `c @ l) and �(Γ `c T @ l)) describ-

ing well-typed open code. Note that meta-functions for MLTT types only abstract over

types from layer d, which do have non-trivial computational behaviors. As shown in

Sec. 5.1, meta-functions are typically used to set up preliminaries in the typing context

in order to describe contextual types, which denotes the actual code to manipulate.

In addition, the universe hierarchy in DeLaM is non-cumulative. Non-cumulativity

ensures that all terms have unique types up to syntactic equivalence. The uniqueness is

particularly convenient for the recursion principles for code, where subtyping induced

by cumulativity causes unwanted complications. Due to the non-cumulative universe

hierarchy, following Pujet and Tabareau (2023), I use @ l to mark the universe levels in

contextual kinds and other places explicitly.

5.2.4 Dissecting Types and Terms of DeLaM

Disregarding universe levels for a moment, terms in DeLaM include MLTT objects

like the encodings of types (e.g. natural numbers (Nat) and function types (Π(x : s).t)),

function abstractions (λ(x : S).t), and function applications ((t : Π(x : S).T) s).

Note that a function application includes the type annotation of t. This is necessary

for quotation of terms and obtaining sufficient typing information of t. Without this

annotation, one cannot generally derive what T is given only the overall type of the

application. A recursor for natural numbers can be added in the usual way (see (Hu and

Pientka, 2024a) and also the addition of a recursor for natural numbers in Chapter 4

and appendix D), but I omit it here for a more compact presentation.

Inspired by Cocon (Pientka et al., 2019), I include abstractions over regular contexts

(Λ g.t) and over MLTT types (Λd U.T) to introduce meta-functions and applications

of meta-functions (t $ Γ and t $d T). In addition, following Chapter 4 and Hu and

Pientka (2024b), I add the capability to quote code (box T and box t), to compose and

execute code using letbox, and to recurse over code objects using elim.

Both letbox and the recursor are defined to account for possible type dependencies.

As a consequence, both constructs are annotated with the overall types of the expres-

sions (a.k.a. the motive M). In particular, letbox carries a motive annotation x.M . In

the case of elim, there are two motive annotations
−→
M , as elim defines a mutual recursion

principle over code objects of MLTT types and terms at the same time. The mutual

145

recursion also leads to two sets of branches
−→
b Typ and

−→
b Trm. It may be surprising to

see that one recursor includes two mutually defined recursion principles: one for types

and one for terms. This comes from the fact that types and terms in DeLaM are also

mutually defined due to the Tarski-style universe hierarchy. Hence, when analyzing a

function application (t : Π(x : S).T) s, we may recursively analyze not only the terms t

and s, but also the types T and S. Similarly, when analyzing a type of the form Ell t,

we may recursively analyze the term t. This mutual dependency is the source of the

complication in the recursor.

Intuitively, the branches in
−→
b Typ cover all possible MLTT types and those in

−→
b Trm

cover all possible MLTT terms.
−→
b then collects both kinds of branches. The branches

in
−→
b Typ cover the following cases: when elim encounters the code of a universe, it

chooses branch tTy; when elim encounters the type Nat, it chooses branch tNat; when elim

encounters a Π type, it chooses the branch tΠ; and when elim encounters a decoder El, it

chooses the branch tEl. In
−→
b Trm, there are cases for variables (tx), natural numbers (tzero

and tsucc), function abstractions (tλ), function applications (tapp), and the encodings of

types (t′Ty, t
′
Nat and t′Π). In each branch, there are three groups of variables. The

first group is the pattern variables of the pattern being considered. For example, in

the branch tsucc, the pattern variable ut describes the pattern variable in the pattern

succ ut. Similarly, in the branch tapp, the pattern would be (ut : Π(x : uS).uT) us, so

there are pattern variables for the function ut and the argument us, as well as for the

type annotations uS and uT . Since the regular context might grow in the Π case and in

the λ case, each branch maintains a pattern variable g for the regular context. As the

second group of variables, each branch includes recursion variables x for recursive calls.

In the succ case, xt refers to the recursive call over ut when elim encounters the pattern

succ ut. In the application case, there are four recursive calls: xt corresponds to the

recursive call on the function ut; xs corresponds to the recursive call on the argument

us; and xT and xS correspond to the recursive calls on the types uS and uT respectively.

At last, each branch might introduce universe variables as the third group of variables

to quantify the universe levels of pattern variables. The variables in the branches
−→
b Typ

are organized in a similar principle.

146

Layer i variables (v) code object (c) MLTT (d) meta-program
(m)

Syntax Variables only MLTT MLTT MLTT + meta-
programming

Computation No No Yes Yes
Meta-
programming
capabilities

No No No Yes

⇑ (i) d d d m

Table 5.1: Characteristics of each layer

5.3 Syntactic Judgments in DeLaM

One advantage of DeLaM is its uniform syntax. The distinction of valid types and

terms is only made in the judgments by layers. Most syntactic judgments in DeLaM

are parameterized by a layer i. Through the layer i, I define rules that generically

hold at multiple layers and rules that only exist at a specific layer. Layers control

not only the validity of objects, but also the computational behaviors. In this way, I

cleanly distinguish the layers v and c for code objects, the layer d for the dependent

type theory of MLTT, and the layer m of meta-programming. Following Pientka et al.

(2019); Cave and Pientka (2012), the layer v is introduced to only describe static code

objects for MLTT variables. This layer only appears in the pattern variable when the

recursor on code of terms hits the case for variables (tx) (c.f. Appendix F.2.1). Based

on the matryoshka principle, these layers form a strict order: v < c < d < m. As

explained at the beginning of this chapter, the computational power strictly increases

as the layer increases. In particular, code objects at layer c do not compute, so that

the recursion principles are applied to the syntactic shapes of code. On the other hand,

code promotion may bring a code object to layer d, where computation may occur.

The topmost layer m further extends the layer d with computational constructs that

composes, executes and does recursion on code.

Most syntactic judgments are defined parametrically in layer i. Here the layer i

refers to the layer which the principal object lives at. For example, L | Ψ; Γ `i t : T @ l

defines that t is well-typed at layer i. In this case, the regular context Γ and the type

147

T live at a higher layer than i. For example, if i = c, then t is a code object, and

therefore its type T lives at layer d. I define the function ⇑ (i) to compute the layer of

the surrounding typing environment when the principle object lives at layer i:

⇑ (m) := m ⇑ (i) := d if i 6= m

Presupposition formally captures the purpose of ⇑ (i) (c.f. Lemma 5.3). The relation

between layers is summarized in Table 5.1. In this section, I discuss below a few selected

rules for each judgment in DeLaM. I highlight the principal object in the informal

explanation for each judgment in shades . For conciseness, I assume all parameterized

universes l to be well-formed.

5.3.1 Well-Formed Regular and Meta-Context

Let us begin with the discussion on the well-formedness of meta-and regular contexts

w.r.t. a universe context L. A meta-context Ψ is well-formed, if every meta-binding

is well-formed. In particular, U : (Γ `i @ l) is well-formed, if the regular context Γ is

well-formed at the higher layer ⇑ (i) and i ∈ {c,d}; u : (Γ `i @ T)l is well-formed, if the

type T is well-formed at layer ⇑ (i) and i ∈ {v,c}. Note that the value of i has a fixed

range in both cases. I could have written d instead of ⇑ (i), but the current formulation

is very convenient for understanding the presupposition lemma (Lemma 5.3). A regular

context Γ is well-formed, if every type declaration x : T @ l in Γ is well formed.

L ` Ψ Meta-Context Ψ is wf

L ` ·

L ` Ψ

L ` Ψ, g : Ctx

L | Ψ `⇑(i) Γ

i ∈ {c,d}

L ` Ψ, U : (Γ `i @ l)

L | Ψ; Γ `⇑(i) T @ l

i ∈ {v,c}

L ` Ψ, u : (Γ `i T @ l)

L | Ψ `i Γ At layer i the regular context Γ is wf

L ` Ψ

L | Ψ `i ·

L ` Ψ g : Ctx ∈ Ψ

L | Ψ `i g

L | Ψ `i Γ L | Ψ; Γ `i T @ l

L | Ψ `i Γ, x : T @ l

148

A regular substitution δ is well-formed, if all terms within are well-formed.

L | Ψ; Γ `i δ : ∆
At layer i regular substitution δ substitutes variables in ∆

with terms in Γ

L | Ψ `⇑(i) Γ

L | Ψ; Γ `i · : ·

L | Ψ `⇑(i) (g,Γ)

L | Ψ; g,Γ `i wk : g

L | Ψ; Γ `i δ : ∆

L | Ψ; ∆ `⇑(i) T @ l L | Ψ; Γ `i t : T [δ] @ l

L | Ψ; Γ `i δ, t/x : ∆, x : T @ l

Note that for wk to be well-formed, it can only weaken the context g,Γ to the same con-

text variable g. The symmetrized variants L | Ψ `i Γ ≈ ∆ and L | Ψ; Γ `i δ ≈ δ′ : ∆

are pointwise generalizations of L | Ψ `i Γ and L | Ψ; Γ `i δ : ∆.

5.3.2 Types and Terms

Now let us consider the judgments for types and terms. I first define the well-formedness

of types T at layer i. By controlling layer i, the well-formedness judgment controls what

types are available. For example, contextual types �(Γ `c @ l) and �(Γ `c T @ l) are

only available at layer m and hence all lower layers (v, c, d) only have access to MLTT

terms and types.

In the rules for types, if a rule is parameterized by a layer i, then this rule is available

at all possible layers. For example, the meta-and regular variable rules are available at

all four layers. The Π rule is also parameterized by i, but since Π is clearly not a

variable, Π types are available as code objects at layer c, as types in MLTT at layer

d, and as types at layer m. Due to Tarski universes à la Palmgren (1998), Ell t decodes

the encoding t : Tyl to an actual type. If U is a meta-variable bound to a type at layer i′

in the meta-context Ψ, then U δ is a valid type at any layer i ≥ i′. The condition i ≥ i′

encodes the lifting lemma (c.f. Lemma 5.1), which allows an object from a lower layer

to be lifted to any higher layer freely. The associated regular substitution δ is needed

to instantiate open variables associated with U . On the other hand, rules for types that

provide meta-programming facilities, like contextual types and meta-functions, are only

available at layer m. Note that contextual types �(Γ `c @ l) and �(Γ `c T @ l) live

on universe level 0 regardless of the universe level l. This is because contextual types

encode intrinsically typed syntax trees of MLTT objects at layer m, which corresponds

149

to a logically stronger sub-language than MLTT, so universe level 0 is large enough to

encode all well-formed types and terms of MLTT. This observation is modeled in the

semantics (c.f. Sec. 5.4.6), where contextual types need not refer to other semantics at

layer m, so its semantics can be placed on level 0. Finally, for universe-polymorphic

functions
−→
` ⇒l T , they can only live on universe level ω, similar to Agda, and the

universe level l may refer to
−→
` and is the universe level of T . This fact is explicitly

encoded by the condition L,
−→
` ` l : Level, which is the well-formedness judgment for

universe levels. Due to this condition, l cannot contain ω, so universe-polymorphic

functions must introduce all universe variables at once.

L | Ψ; Γ `i T @ l At layer i type T is wf on universe level l

L | Ψ; Γ `i S @ l L | Ψ; Γ, x : S @ l `i T @ l′

L | Ψ; Γ `i Πl,l′(x : S).T @ l t l′

L | Ψ; Γ `i t : Tyl @ 1 + l

L | Ψ; Γ `i Ell t@ l

U : (∆ `i′ @ l) ∈ Ψ i′ ∈ {c,d} i′ ≤ i L | Ψ; Γ `i δ : ∆

L | Ψ; Γ `i U δ
@ l

L | Ψ `m Γ L | Ψ `d ∆

L | Ψ; Γ `m �(∆ `c @ l) @ 0

L | Ψ `m Γ L | Ψ; ∆ `d T @ l

L | Ψ; Γ `m �(∆ `c T @ l) @ 0

L | Ψ, g : Ctx; Γ `m T @ l

L | Ψ; Γ `m (g : Ctx)⇒l T @ l

L | Ψ `d ∆ L | Ψ, U : (∆ `d @ l); Γ `m T @ l′

L | Ψ; Γ `m (U : (∆ `d @ l))⇒l′ T @ l

L,
−→
` | Ψ; Γ `m T @ l |

−→
` | > 0 L,

−→
` ` l : Level

L | Ψ; Γ `m
−→
` ⇒l T @ ω

Following the same principle, I define the typing rules in Fig. 5.4. Well-typed terms

in vanilla MLTT are defined parametrically in layer i. These terms include encodings

of types, natural numbers, functions, and variables. The same as U δ, a meta-variable

u is also associated with a regular substitution δ to fill in the open variables. The

premise i′ ≤ i also builds the lifting lemma into the typing rule. Terms related to meta-

programming are only available at layer m, e.g. meta-functions, the box constructor

and letbox. For example, to introduce a meta-function for regular contexts, I use Λ to

introduce a context variable g. I use $ to apply a meta-function to a regular context.

Note that the regular context ∆ lives at layer d, so it is ensured a context in MLTT.

The core syntax of letbox requires a motive x.M , which computes the result type. The

150

L | Ψ; Γ `i t : T @ l At layer i term t has type T at universe level l

L | Ψ `⇑(i) Γ

L | Ψ; Γ `i Tyl : Ty1+l @ 2 + l

u : (∆ `i′ T @ l) ∈ Ψ i′ ≤ i L | Ψ; Γ `i δ : ∆

L | Ψ; Γ `i uδ : T [δ] @ l

L | Ψ `⇑(i) Γ x : T @ l ∈ Γ

L | Ψ; Γ `i x : T @ l

L | Ψ; Γ `i S @ l L | Ψ; Γ, x : S @ l `i t : T @ l′

L | Ψ; Γ `i λl,l
′
(x : S).t : Πl,l′(x : S).T @ l t l′

L | Ψ; Γ `i S @ l

L | Ψ; Γ, x : S @ l `i T @ l′ L | Ψ; Γ `i t : Πl,l′(x : S).T @ l t l′ L | Ψ; Γ `i s : S @ l

L | Ψ; Γ `i (t : Πl,l′(x : S).T) s : T [s/x] @ l′

L | Ψ `m Γ
L | Ψ, g : Ctx; Γ `m t : T @ l

L | Ψ; Γ `m Λl g.t : (g : Ctx)⇒l T @ l

L | Ψ; Γ `m t : (g : Ctx)⇒l T @ l

L | Ψ `d ∆

L | Ψ; Γ `m t $ ∆ : T [∆/g] @ l

L | Ψ `m Γ L | Ψ; ∆ `c T @ l

L | Ψ; Γ `m box T : �(∆ `c @ l) @ 0

L | Ψ `m Γ L | Ψ; ∆ `c t : T @ l

L | Ψ; Γ `m box t : �(∆ `c T @ l) @ 0

L | Ψ; Γ `m t : �(∆ `c @ l) @ 0 L | Ψ; Γ, x : �(∆ `c @ l) @ 0 `m M @ l′

L | Ψ, U : (∆ `c @ l); Γ `m t′ : M [box U id/x] @ l′

L | Ψ; Γ `m letboxl
′

x.M U ← (t : �(∆ `c @ l)) in t′ : M [t/x] @ l′

L | Ψ; Γ `m t : �(∆ `c T @ l) @ l L | Ψ; Γ, x : �(∆ `c T @ l) @ 0 `m M @ l′

L | Ψ, u : (∆ `c T @ l); Γ `m t′ : M [box uid/x] @ l′

L | Ψ; Γ `m letboxl
′

x.M u← (t : �(∆ `c T @ l)) in t′ : M [t/x] @ l′

L,
−→
` | Ψ; Γ `m t : T @ l |

−→
` | > 0 L,

−→
` ` l : Level

L | Ψ; Γ `m Λl −→` .t :
−→
` ⇒l T @ ω

L | Ψ; Γ `m t :
−→
` ⇒l T @ ω |

−→
` | = |

−→
l | > 0 ∀ l′ ∈

−→
l . L ` l′ : Level

L | Ψ; Γ `m t $
−→
l : T [

−→
l /
−→
`] @ l[

−→
l /
−→
`]

Figure 5.4: Typing rules for terms

151

letbox construct eliminates a term of a contextual type and binds it to a meta-variable.

If this term has a contextual type for types, then letbox introduces a new meta-variable

for types U ; if this term has a contextual type for terms, then letbox introduces a new

meta-varible for terms u. The letbox body t lives in an extended meta-context with

this new meta-variable and has type M with x substituted with it. At last, to eliminate

a universe-polymorphic functions, I pass in a list of universes as
−→
l . In addition to the

type, the result universe level is also substituted, i.e. becomes l[
−→
l /
−→
`]. Since l and all

universe levels in
−→
l are well-formed, the result of this substitution is also well-formed.

Finally, I discuss some selected equivalence rules. I focus here on term equivalences

and omit the equivalences for types L | Ψ; Γ `i T ≈ T ′@ l , where the only non-trivial

rules are decoding rules. All equivalence judgments include symmetry, transitivity, and

naturally derived congruence rules at all layers. This follows exactly the same principle

as outlined in Chapter 1. I show here two β rules and one η rule. In DeLaM, no

computation rule is available at layers v and c. Computation rules for terms in MLTT

like the β rule and the η rule for functions are available at both layers d and m to

handle both code promotion and code execution. Rules for meta-programs like the β

rule for letbox and for recursors are only available at layer m. Meta-functions and

universe-polymorphic functions also enjoy η equivalence, which is quite natural so I

omit the rules here.

L | Ψ; Γ `i t ≈ t′ : T @ l At layer i the term t is equivalent to the term t′

i ∈ {d,m} L | Ψ; Γ `i S @ l L | Ψ; Γ, x : S @ l `i t : T @ l′ L | Ψ; Γ `i s : S @ l

L | Ψ; Γ `i (λl,l
′
(x : S).t : Πl,l′(x : S).T) s ≈ t[s/x] : T [s/x] @ l′

i ∈ {d,m} L | Ψ; Γ `i t : Πl,l′(x : S).T @ l t l′

L | Ψ; Γ `i t ≈ λl,l
′
(x : S).(t : Πl,l′(x : S).T) x : Πl,l′(x : S).T @ l t l′

L | Ψ `m Γ L | Ψ; ∆ `c t : T @ l L | Ψ; Γ, xt : �(∆ `c T @ l) @ 0 `m M @ l′

L | Ψ, u : (∆ `c T @ l); Γ `m t′ : M [box uid/xt] @ l′

L | Ψ; Γ `m letboxl
′

xt.M u← ((box t) : �(∆ `c T @ l)) in t′ ≈ t′[t/u] : M [box t/xt] @ l′

152

5.3.3 Static Code and Lifting Lemma

Similar to Chapter 4, layered modal type theories have two guiding lemmas: the lifting

lemma and the static code lemma. The guiding lemmas are syntactic lemmas that can

be checked at the early stage of the technical investigation, and serve the purpose of

guiding the design of the type theory. The lifting lemma says that a well-typed term

at a lower layer is also well-typed at higher layers. The static code lemma states that

equivalence between code objects is syntactic equality.

Lemma 5.1 (Lifting). If i ≤ i′, and

• L | Ψ; Γ `i T @ l, then L | Ψ; Γ `i′ T @ l;

• L | Ψ; Γ `i T ≈ T ′@ l, then L | Ψ; Γ `i′ T ≈ T ′@ l;

• L | Ψ; Γ `i t : T @ l, then L | Ψ; Γ `i′ t : T @ l;

• L | Ψ; Γ `i t ≈ t′ : T @ l, then L | Ψ; Γ `i′ t ≈ t′ : T @ l;

• L | Ψ; Γ `i δ : ∆, then L | Ψ; Γ `i′ δ : ∆;

• L | Ψ; Γ `i δ ≈ δ′ : ∆, then L | Ψ; Γ `i′ δ ≈ δ′ : ∆.

Lemma 5.2 (Static Code). If i ∈ {v,c}, and

• L | Ψ; Γ `i T ≈ T ′@ l, then T = T ′;

• L | Ψ; Γ `i t ≈ t′ : T @ l, then t = t′;

• L | Ψ; Γ `i δ ≈ δ′ : ∆, then δ = δ′.

A consequence of the lifting lemma is that code objects at layer c can be lifted to

layers d and m for free. It justifies code execution by using the lifting lemma to execute

a code object of layer c at layer m. It also enables code promotion, which promotes the

syntactic representation of a code object at layer c to layer d to capture computation

of MLTT on the type level at layer d.

One consequence of the static code lemma is no interesting computational behavior

at layers v and c, so terms at both layers describe the static syntax of code objects.

This is a necessary condition to intensionally analyze code from layers c and v.

153

Presupposition is another important syntactic property for DeLaM. It says that if

the principal object is being defined at layer i, regular contexts and types live at layer

⇑ (i).

Lemma 5.3 (Presupposition).

• If L | Ψ; Γ `i T @ l, then L | Ψ `⇑(i) Γ and either

– L ` l : Level or

– i = m and l = ω.

• If L | Ψ; Γ `i T ≈ T ′@ l, then L | Ψ `⇑(i) Γ, L | Ψ; Γ `i T @ l, L | Ψ; Γ `i T ′@ l

and either

– L ` l : Level or

– i = m and l = ω.

• If L | Ψ; Γ `i t : T @ l, then L | Ψ `⇑(i) Γ, L | Ψ; Γ `⇑(i) T @ l and either

– L ` l : Level or

– i = m and l = ω.

• If L | Ψ; Γ `i t ≈ t′ : T @ l, then L | Ψ `⇑(i) Γ, L | Ψ; Γ `i t : T @ l,

L | Ψ; Γ `i t′ : T @ l, L | Ψ; Γ `⇑(i) T @ l and either

– L ` l : Level or

– i = m and l = ω.

• If L | Ψ; Γ `i δ : ∆, then L | Ψ `⇑(i) Γ and L | Ψ `⇑(i) ∆.

• If L | Ψ; Γ `i δ ≈ δ′ : Γ′, then L | Ψ `⇑(i) Γ, L | Ψ `⇑(i) ∆, L | Ψ; Γ `i δ : ∆ and

L | Ψ; Γ `i δ′ : ∆.

154

5.3.4 Universe, Regular and Meta-Substitutions

Other than regular substitutions, which substitute regular variables with terms, De-

LaM also needs universe and meta-substitutions to substitute universe and meta-

variables. A universe substitution φ replaces universe variables in one universe context

with universe levels in another, where φ is effectively just a list of universe levels. The

well-formedness judgment L ` φ : L′ requires all universe levels in φ are well-formed.

Various kinds of substitutions are defined in the usual way. Since they are very long and

tedious, I omit the definitions here. Full definitions can be found in (Hu and Pientka,

2024a, Sec. 5.1). The universe substitution lemma says that syntactic judgments are

closed under universe substitutions:

Lemma 5.4 (Universe Substitutions).

• If L′ | Ψ; Γ `i T @ l and L ` φ : L′, then L | Ψ[φ]; Γ[φ] `i T [φ] @ l[φ].

• If L′ | Ψ; Γ `i T ≈ T ′@ l and L ` φ : L′, then L | Ψ[φ]; Γ[φ] `i T [φ] ≈ T ′[φ] @ l[φ].

• If L′ | Ψ; Γ `i t : T @ l and L ` φ : L′, then L | Ψ[φ]; Γ[φ] `i t[φ] : T [φ] @ l[φ].

• If L′ | Ψ; Γ `i t ≈ t′ : T @ l and L ` φ : L′, then

L | Ψ[φ]; Γ[φ] `i t[φ] ≈ t′[φ] : T [φ] @ l[φ].

• If L′ | Ψ; Γ `i δ : Γ′ and L ` φ : L′, then L | Ψ[φ]; Γ[φ] `i δ[φ] : Γ′[φ].

• If L′ | Ψ; Γ `i δ ≈ δ′ : Γ′ and L ` φ : L′, then L | Ψ[φ]; Γ[φ] `i δ[φ] ≈ δ′[φ] : Γ′[φ].

The regular substitution lemma is standard. It only changes the regular context.

Lemma 5.5 (Regular Substitutions).

• If L | Ψ; Γ′ `i T @ l and L | Ψ; Γ `i δ : Γ′, then L | Ψ; Γ `i T [δ] @ l.

• If L | Ψ; Γ′ `i T ≈ T ′@ l and L | Ψ; Γ `i δ : Γ′, then L | Ψ; Γ `i T [δ] ≈ T ′[δ] @ l.

• If L | Ψ; Γ′ `i t : T @ l and L | Ψ; Γ `i δ : Γ′, then L | Ψ; Γ `i t[δ] : T [δ] @ l.

• If L | Ψ; Γ′ `i t ≈ t′ : T @ l and L | Ψ; Γ `i δ : Γ′, then

L | Ψ; Γ `i t[δ] ≈ t′[δ] : T [δ] @ l.

155

• If L | Ψ; Γ′ `i δ′ : Γ′′ and L | Ψ; Γ `i δ : Γ′, then L | Ψ; Γ `i δ′ ◦ δ : Γ′′.

• If L | Ψ; Γ′ `i δ′ ≈ δ′′ : Γ′′ and L | Ψ; Γ `i δ : Γ′, then L | Ψ; Γ `i δ′◦δ ≈ δ′′◦δ : Γ′′.

Meta-substitutions in DeLaM is very similar to Sec. 4.4. They replace MLTT

objects accordingly. The base cases are:

g[σ] := σ(g)

(Γ, x : T @ l)[σ] := Γ[σ], x : T [σ] @ l

U δ[σ] := σ(U)[δ[σ]]

uδ[σ] := σ(u)[δ[σ]]

In the cases of U δ and uδ, the action of σ triggers the action of the regular substitution

δ[σ]. Therefore, the action of regular substitutions and its properties must be rea-

soned prior to those of meta-substitutions. The well-formedness of meta-substitutions

is defined by the judgment L | Ψ ` σ : Φ as:

L ` Ψ

L | Ψ ` · : ·

L | Ψ ` σ : Φ L | Ψ `d Γ

L | Ψ ` σ,Γ/g : Φ, g : Ctx

L | Ψ ` σ : Φ L | Φ `d Γ

i ∈ {c,d} L | Ψ; Γ[σ] `i T @ l

L | Ψ ` σ, T/U : Φ, u : (Γ `i @ l)

L | Ψ ` σ : Φ L | Φ; Γ `d T @ l i ∈ {v,c} L | Ψ; Γ[σ] `i t : T [σ] @ l

L | Ψ ` σ, t/u : Φ, u : (Γ `i T @ l)

The equivalence between meta-substitutions simply takes the congruence of these rules.

The meta-substitution lemma says that syntactic judgments are closed under meta-

substitutions:

Lemma 5.6 (Meta-substitutions).

• If L | Φ; Γ `i T @ l and L | Ψ ` σ : Φ, then L | Ψ; Γ[σ] `i T [σ] @ l.

• If L | Φ; Γ `i T ≈ T ′@ l and L | Ψ ` σ : Φ, then L | Ψ; Γ[σ] `i T [σ] ≈ T ′[σ] @ l.

• If L | Φ; Γ `i t : T @ l and L | Ψ ` σ : Φ, then L | Ψ; Γ[σ] `i t[σ] : T [σ] @ l.

156

• If L | Φ; Γ `i t ≈ t′ : T @ l and L | Ψ ` σ : Φ, then

L | Ψ; Γ[σ] `i t[σ] ≈ t′[σ] : T [σ] @ l.

• If L | Φ; Γ `i δ : ∆ and L | Ψ ` σ : Φ, then L | Ψ; Γ[σ] `i δ[σ] : ∆[σ].

• If L | Φ; Γ `i δ ≈ δ′ : ∆ and L | Ψ ` σ : Φ, then L | Ψ; Γ[σ] `i δ[σ] ≈ δ′[σ] : ∆[σ].

It is worth noting that the process of proving the meta-substitution lemma is actu-

ally quite cumbersome. In the case for meta-variables, this lemma requires the regular

substitution lemma as a prerequisite. However, the proof of the regular substitution

lemma also requires reasoning about meta-substitutions in multiple cases, e.g. in the

meta-function application rule in Fig. 5.4, where a meta-substitution is applied to the

type, before the meta-substitution lemma is established. This requirement is even-

tually reflected as a demand of an agreement of “biases” in equivalence rules. One

immediate way to arrive at such an agreement is to swap both sides of the computa-

tional equivalence rules of terms above. This treatment is not a common pattern in

other type theories, and it is only required here because of dependent types and that

meta-substitutions trigger regular substitutions.16

5.3.5 Weak-Head Reductions

I follow Abel et al. (2018) to establish the proofs of weak normalization and the decid-

ability of convertibility, so I need a description of weak-head normal forms (WHNFs) and

a notion of weak-head reductions. Their definitions are entirely standard. WHNFs for

types (W) are either type constructors, or neutral types (V), which are meta-variables

(uδ) or a decoding of neutral terms (Ell ν). WHNFs for terms (w) are either in in-

troduction forms, or neutral terms (ν), which are either variables or elimination forms

blocked by other neutrals. Weak normalization then proves that all well-formed types

and terms must reach their WHNFs in finite steps of reductions. WHNFs and neutral

forms are captured by the following grammar:

W := Nat | Πl,l′(x : S).T | Tyl |
−→
` ⇒l T (WHNFs for types)

| (g : Ctx)⇒l T | (U : (Γ `d @ l))⇒l′ T | �(Γ `c @ l) | �(Γ `c T @ l)

16Readers may find concrete proof steps of Lemma 5.15 and a more detailed discussion in Remark
after it in the technical report (Hu and Pientka, 2024a).

157

V := U δ | Ell ν (Neutral forms for types)

w := ν | Nat | Πl,l′(x : s).t | Tyl | zero | succ t | λl,l
′
(x : S).t (WHNFs for terms)

| Λl −→` .t | Λl g.t | Λl,l′

d U.t | box T | box t
ν := x | uδ | (ν : Πl,l′(x : S).T) s | ν $

−→
l (Neutral forms for terms)

| ν $ Γ | ν $d T | letboxl
′
xT .M

U ← (ν : �(Γ `c @ l)) in t′

| letboxl′xt.M u← (ν : �(Γ `c T @ l)) in t′

| eliml1,l2
−→
M
−→
b (ν : �(Γ `c @ l)) | eliml1,l2

−→
M
−→
b ((box U δ) : �(Γ `c @ l))

| eliml1,l2
−→
M
−→
b (ν : �(Γ `c T @ l)) | eliml1,l2

−→
M
−→
b ((box uδ) : �(Γ `c T @ l))

The untyped one-step reductions for types (T T ′) and terms (t t′) are also

standard. In general, reductions are divided into two groups, one for reductions in head

positions, and the other for actual computation. For types, head reductions only occur

for El:

El0 Nat Nat El1+l Tyl Tyl Elltl
′

Πl,l′(x : s).t Πl,l′(x : Ell s).Ell
′
t

t t′

Ell t Ell t′

Reductions for terms also follow the same principle. They follow the same line as in

Sec. 4.5. One-step reductions enjoy typical properties:

Lemma 5.7 (Soundness). Given i ∈ {d,m},

• if L | Ψ; Γ `i T @ l and T T ′, then L | Ψ; Γ `i T ≈ T ′@ l;

• if L | Ψ; Γ `i t : T @ l and t t′, then L | Ψ; Γ `i t ≈ t′ : T @ l.

Lemma 5.8 (Preservation). Given i ∈ {d,m},

• if L | Ψ; Γ `i T @ l and T T ′, then L | Ψ; Γ `i T ′@ l;

• if L | Ψ; Γ `i t : T @ l and t t′, then L | Ψ; Γ `i t′ : T @ l.

Lemma 5.9 (Universe Substitutions). Given i ∈ {d,m},

• if L′ | Ψ; Γ `i T @ l, T T ′ and L ` φ : L′, then T [φ] T ′[φ];

158

• if L′ | Ψ; Γ `i t : T @ l, t t′ and L ` φ : L′, then t[φ] t′[φ].

Lemma 5.10 (Regular Substitutions). Given i ∈ {d,m},

• if L | Ψ; ∆ `i T @ l, T T ′ and L | Ψ; Γ `i δ : ∆, then T [δ] T ′[δ];

• if L | Ψ; ∆ `i t : T @ l, t t′ and L | Ψ; Γ `i δ : ∆, then t[δ] t′[δ].

Lemma 5.11 (Meta-Substitutions). Given i ∈ {d,m},

• if L | Φ; Γ `i T @ l, T T ′ and L | Ψ ` σ : Φ, then T [σ] T ′[σ];

• if L | Φ; Γ `i t : T @ l, t t′ and L | Ψ ` σ : Φ, then t[σ] t′[σ].

Lemma 5.12 (Determinacy).

• If T T ′ and T T ′, then T ′ = T ′′.

• If t t′ and t t′′, then t′ = t′′.

One-step reductions are generalized to multi-step reductions for types (T ∗ T ′)

and for terms (t ∗ t′). If multi-step reductions step to WHNFs, then determinacy

ensures that WHNFs are unique.

Lemma 5.13 (Determinacy).

• If T ∗ W and T ∗ W ′, then W = W ′.

• If t ∗ w and t ∗ w′, then w = w′.

Typed reductions L | Ψ; Γ `i T T ′@ l, L | Ψ; Γ `i t t′ : T @ l and their multi-

step variants are obtained by pairing untyped reductions with corresponding typing

judgments.

L | Ψ; Γ `i T @ l T T ′

L | Ψ; Γ `i T T ′@ l

L | Ψ; Γ `i T @ l T ∗ T ′

L | Ψ; Γ `i T ∗ T ′@ l

L | Ψ; Γ `i t : T @ l t t′

L | Ψ; Γ `i t t′ : T @ l

L | Ψ; Γ `i t : T @ l t ∗ t′

L | Ψ; Γ `i t ∗ t′ : T @ l

159

5.3.6 Recursion on Code

Finally, I describe the rules for the recursors for code (eliml1,l2
−→
M
−→
b (t : �E)). I

have listed the syntax towards the end of Fig. 5.3. As mentioned before, this term

encompasses in fact two mutual recursion principles: one for code of types and the

other for code of terms. Therefore, there are two motives MTyp and MTrm in
−→
M . They

describe the return types of the recursion principles on code of types and of terms

respectively. The branches also fall into two categories: the branches for recursively

analyzing types (bTyp) and for terms (bTrm).

As the recursor describes two recursion principles, they give rise to two typing rules.

I focus on the rule for the recursor for code of terms. The recursor for code of types

is slightly simpler in the scrutinee. I abbreviate the well-formedness of branches as
−→
b wf and concentrate on checking well-formedness of motives MTyp and MTrm and the

scrutinee t.

L, ` | Ψ, g : Ctx; Γ, xT : �(g `c @ `) @ 0 `m MTyp @ l1

L, ` | Ψ, g : Ctx, uT : (g `d @ `); Γ, xt : �(g `c uT @ `) @ 0 `m MTrm @ l2
−→
b wf L | Ψ; Γ `m t : �(∆ `c T @ l) @ 0 L | Ψ; ∆ `d T @ l

L | Ψ; Γ `m eliml1,l2
−→
M
−→
b (t : �(∆ `c T @ l)) : MTrm[l/`,∆/g, T/uT , t/xt] @ l2

The motives MTyp and MTrm abstract over the context variable g, which might change

during recursion. As the return type might also depend on the scrutinee, the motives

also abstract over xT (the scrutinee as code of type) or xt (the scrutinee as code of

term). In the latter case, I also keep track of the type of the scrutinee, denoted by uT .

The overall type of the recursion is MTrm[l/`,∆/g, T/uT , t/xt] where I replace g with

the concrete regular context ∆ of the scrutinee, uT with the type T of the scrutinee,

and xt with the scrutinee t itself in MTrm.

Note that T lives at layer d, which supports computation, while the term eventually

computed by t will be a static contextual code object describing the syntax of an MLTT

term. As a consequence, if T is for example (λx.x) Nat, it is equivalent to Nat. In other

words, it captures the fact that we are only interested in analyzing a code object of

type Nat and the exact shape of the type T is unimportant. On the other hand, if the

code object t contains (λx.x) Nat as a sub-code, the redex would remain, because this

160

code object represents a different static syntax tree from that of code Nat due to the

static code lemma.

Since contextual types also compute, to make sure the determinacy of one-step re-

duction, I choose to always reduce this T before reducing the scrutinee. Other strategies

could have been taken; but this particular one is the simplest to ensure determinacy.

T T ′

eliml1,l2
−→
M
−→
b (t : �(∆ `c T @ l)) eliml1,l2

−→
M
−→
b (t : �(∆ `c T ′@ l))

t t′

eliml1,l2
−→
M
−→
b (t : �(∆ `c W @ l)) eliml1,l2

−→
M
−→
b (t′ : �(∆ `c W @ l))

Note that t is only reduced after the contextual type has reached a WHNF W .

Now let us consider the well-formedness of branches. As described earlier in Sec. 5.2.4,

I distinguish branches for types (bTyp) and terms (bTrm). I use the branch for function

applications tapp as a running example and other branches can be derived naturally

following the same principle (see all the branches in Appendix F). To facilitate the dis-

cussion, I use colors to differentiate contexts, universe variables, types and terms in the

pattern and the scrutinee. For more readability, I simply write u for uid when a meta-

variable is associated with the identity substitution. In this branch, the scrutinee is the

code of (t : Πl,l′(x : S).T) s and is matched against the pattern (ut : Π`,`′(x : uS).uT) us.

Each sub-structure in the scrutinee is matched by a pattern variable. These pattern

variables are meta-code variables u extended to the meta-context Ψ and with matching

subscripts of the sub-structures. The well-formedness conditions of the pattern vari-

ables record the ambient contexts, and the types if the pattern variables are for code

of terms. When lining up the pattern variables and the sub-structures, there is a corre-

spondence not only between them, but also between their well-formedness conditions.

For example, the typing of the pattern variable us encodes the well-formedness of its

matching sub-structure s.

Regular Context Code Object Well-formedness

Sub-structures Γ s L | Ψ; Γ `c s : S @ l

Pattern variables g us us : (g `c uS @ `)

161

In addition to the pattern variables, there are two new universe variables ` and `′

to capture the universes of S and T . Finally, each meta-code variable gives rise to a

recursive call. The recursive calls are regular variables x extended to the regular context

with matching subscripts of the sub-structures. The recursive calls on code of MLTT

types such as uS and uT have the corresponding type MTyp appropriately refined. In

particular, the scrutinee xT in MTyp is instantiated with box uS and box uT , respectively.

Since uT has a longer regular context than uS, this fact is reflected in the variable g in

MTyp. Recursive calls on code of terms such as ut and us have the corresponding type

MTrm appropriately instantiated. Here I replace the scrutinee xt in MTrm with box us

and box ut, respectively. In addition to the regular context for each of ut and us, I also

refine the type uT in MTrm with a Π type and uS, respectively. Collecting all additional

assumptions in the contexts gives rise to the following well-formedness condition for the

branch tapp for function applications:

L, `, `′ | Ψ, g : Ctx

, uS : (g `c @ `), uT : (g, x : uS @ ` `c @ `′)

Pattern variables

, ut : (g `c Π`,`′(x : uS).uT @ ` t `′), us : (g `c uS @ `)

; Γ, xS : MTyp[`/`, g/g, box uS/xT] @ l1

, xT : MTyp[`
′/`, (g, x : uS @ `)/g, box uT/xT] @ l1

, xt : MTrm[` t `′/`, g/g,Π`,`′(x : uS).uT/uT , box ut/xt] @ l2

Recursive Calls

, xs : MTrm[`/`, g/g, uS/uT , box us/xt] @ l2

`m tapp : MTrm[`′/`, g/g, uT
id,us/x/uT , box ((ut : Π`,`′(x : uS).uT) us)/xt] @ l2

Since recursions only occur for syntactic sub-terms, it informally justifies the recur-

sors and their termination. This informal observation is made precise in the semantics

of code given in Sec. 5.4.4. The reduction rule is straightforward. I replace each compo-

nent with the appropriate instantiation. Here I focus on the rule for one-step reductions

to save space; the equivalence rule is naturally derived from the reduction rule.

eliml1,l2
−→
M
−→
b (box ((t : Πl,l′(x : S).T) s) : �(Γ `c W @ l)) tapp[l/`, l

′/`′, σ, δ]

where σ = Γ/g, S/uS, T/uT , t/ut, s/us is the meta-substitution which instantiates all

162

pattern variables, and δ builds all recursive calls. It is defined as:

δ = eliml1,l2
−→
M
−→
b (box S : �(Γ `c @ l)) /xS

, eliml1,l2
−→
M
−→
b (box T : �(Γ, x : S @ l `c @ l′)) /xT

, eliml1,l2
−→
M
−→
b (box t : �(Γ `c Πl,l′(x : S).T @ l t l′))/xt

, eliml1,l2
−→
M
−→
b (box s : �(Γ `c S @ l)) /xs

To end the discussion on syntax, I recapitulate the difference between letbox and

elim. Based on Hu and Pientka (2024b) and Chapter 4, the former is responsible for code

composition and running, while the latter is for intensional analysis. They differ specifi-

cally in their computational behavior. In particular, eliml1,l2
−→
M
−→
b (box uδ : �E) is neu-

tral, because uδ simply does not find a branch in
−→
b . Meanwhile,

letboxlx.M u′ ← (box uδ : �E) in t reduces to t[uδ/u′]. This distinction is further

revealed in the logical relations, where semantics for terms at layer c must carry two

kinds of information: syntactic information about their shapes and semantic informa-

tion about how they run (c.f. Sec. 5.4.4). In the next section, I will describe how to

model features in DeLaM semantically.

5.4 Kripke Logical Relations

The Kripke logical relations of DeLaM follow the same outline as in Abel et al. (2018)

and are extensions of those in Chapter 4: the logical relations are parameterized by

generic equivalences. To derive the fundamental theorems, I instantiate these generic

equivalences. However, DeLaM is quite complex due to the presence of dependent

types, Tarski-style universes, and the distinction between MLTT (c and d layers)

and meta-programming (m layer) which enables quoting, evaluating, and recursively

analyzing code. To shorten the proofs as much as possible, I simplify the logical relations

by adopting PER-style definitions. In this way, I can define the logical relations with

only two predicates – in contrast, (Abel et al., 2018) requires four predicates for types

and terms. This improvement further allows more compact statements of lemmas and

proofs by reducing their number to approximately half. This significantly eases the

meta-theoretic development. Nevertheless, the complete proofs remain very verbose

and therefore, in this thesis, I only focus on the main idea and refer the interested

163

LogRel for types
and terms, j = d

LogRel for regular ctx.
and subst., j = d

LogRel for types and
terms, i ≥ d, j = d

LogRel for types and
terms, i = c, j = d

LogRel for meta-
ctx. and subst.

LogRel for types and
terms, i = j = m

LogRel for regular ctx.
and subst., i = j = m

A→ B B depends on A

i, j parameters to LogRel

Figure 5.5: Structure of logical relations

readers to the technical report (Hu and Pientka, 2024a). The structure of the logical

relations is depicted in Fig. 5.5, where the nodes are clickable in a PDF viewer. The

logical relations are parameterized by i, the layer for terms, and j, the layer for types.

I will give more explanations on i and j in Sec. 5.4.2.

5.4.1 Generic Equivalences

First, I define the generic equivalences for types and terms. The generic equivalences

are parameters of judgments with laws to the logical relations, which I eventually in-

stantiate with the conversion checking algorithm to obtain its completeness proof. They

follow the same pattern as in Sec. 4.6. There are four generic equivalence judgments:

L | Ψ; Γ `i V ∼ V ′@ l and L | Ψ; Γ `i T ' T ′@ l are equivalences for neutral types

and any types, and L | Ψ; Γ `i ν ∼ ν ′ : T @ l and L | Ψ; Γ `i t ' t′ : T @ l are those for

neutral terms and any terms. The layer i only takes d or m because they are the only

layers with computation. Their laws are formulated following closely the recipe by Abel

et al. (2018) and are similar to Sec. 4.6. These judgments are subsumed by syntactic

equivalence at their layers and form PERs. They respect equivalence of contexts and

types, and weakenings of contexts. The rest of the laws are to capture how equivalences

are propagated under WHNFs. For example, for t and t′ of type Πl,l′(x : S).T to be

equivalent, a law requires t x and t′ x to be equivalent on type T for x : S. Two neutrals

are generically equivalent if all sub-components are generically equivalent pointwise.17

17A complete list of laws is available in the technical report (Hu and Pientka, 2024a, Sec. 7.1).

164

5.4.2 Logical Relations for Types and Terms in MLTT

The logical relations are defined on top of generic equivalence. They are Kripke in

their stability under weakenings. Since there are three different contexts, there are

three corresponding kinds of weakenings in DeLaM. In particular, θ :: L =⇒ L′ is a

universe weakening, γ :: L | Ψ =⇒g Φ is a meta-weakening, and τ :: L | Ψ; Γ =⇒i ∆ is

a regular weakening. The subscript i denotes the layer at which the regular contexts

Γ and ∆ live. Combining different weakenings is to simultaneously apply them at the

same time. Weakenings are applied in the order of θ, γ and at last τ . I let ψ range over

simultaneous weakenings of all three contexts:

ψ := (θ, γ, τ) :: L | Ψ; Γ =⇒i L
′ | Φ; ∆

where
θ :: L =⇒ L′

γ :: L′ | Ψ[θ] =⇒g Φ

τ :: L′ | θ; Γ[θ][γ] =⇒i ∆

Similarly, there are times when I need to only weaken the universe and meta-contexts.

At this time, I use α to range over these weakenings:

α := (θ, γ) :: L | Ψ =⇒ L′ | Φ

Moreover, following Chapter 4, the actions of weakenings are implicit in DeLaM, to

avoid clutters. That is, if T is well-formed in L′ | Φ; ∆, I directly say that T is weakened

and is also well-typed in L | Ψ; Γ.

As the first step, I define the logical relations for types and terms:

D :: L | Ψ; Γ �ji T ≈ T ′@ l and L | Ψ; Γ �ji t ≈ t′ : El(D) , where

(i, j) ∈ {(d,d), (m,d), (m,m)} or equivalently i ≥ j ≥ d. As I have set up in Sec. 1.4, I

assume an informal meta-type theory across the whole thesis, so I use D to refer to the

judgment L | Ψ; Γ �ji T ≈ T ′@ l in an inductive-recursive definition. The judgments

say that T and T ′ are related (resp. t and t′) as types at layer j and as terms at layer

i. When j = d, it means that T and T ′ are related types in MLTT after reductions,

regardless of which layer they and their terms actually live at. This separation of con-

165

L | Ψ; Γ `i T ∗ Nat@ 0

L | Ψ; Γ `i T ′ ∗ Nat@ 0

L | Ψ; Γ �ji T ≈ T ′@ 0

L | Ψ; Γ `i T ∗ Tyl @ 1 + l

L | Ψ; Γ `i T ′ ∗ Tyl @ 1 + l

L | Ψ; Γ �ji T ≈ T ′@ 1 + l

L | Ψ; Γ `i T ∗ V @ l

L | Ψ; Γ `i T ′ ∗ V ′@ l

L | Ψ; Γ `i V ∼ V ′@ l

L | Ψ; Γ �ji T ≈ T ′@ l

L | Ψ; Γ `i T ∗ Πl,l′(x : S1).T1 @ l t l′ L | Ψ; Γ `i T ′ ∗ Πl,l′(x : S2).T2 @ l t l′

E :: ∀ ψ :: L′ | Φ; ∆ =⇒i L | Ψ; Γ . L′ | Φ; ∆ �ji S1 ≈ S2 @ l

F :: ∀ ψ :: L′ | Φ; ∆ =⇒i L | Ψ; Γ and L′ | Φ; ∆ �ji s ≈ s′ : El(E(ψ)) .

L′ | Φ; ∆ �ji T1[s/x] ≈ T2[s′/x] @ l′

L | Ψ; Γ �ji T ≈ T ′@ l t l′

Figure 5.6: Logical relations for types in MLTT

sideration in j is particularly important in the layering restriction lemma (Lemma 5.14),

which gives a semantic explanation for code execution. As a mnemonic, the number of

vertical bars in the turnstile matches the number of contexts. As the thesis progresses,

this number gradually decreases, so it also serves as a progress bar for the technical

development.

The logical relations are defined by

1. first, recursion on j, which means that I first define the semantics for types of

MLTT before I consider all types at layer m,

2. then a transfinite well-founded recursion on the universe levels,

3. at last, an induction-recursion (Dybjer and Setzer, 2003) to relate types and terms.

The recursion on j before universe levels allows to restart the universe level from 0 when

referring to the logical relations for j = d in those for j = m. Therefore, all contextual

types can safely live on level 0. I will discuss more when I define the logical relations

for j = m in Sec. 5.4.6.

The logical relations for types are defined inductively in Fig. 5.6. The inductive

definition is named D, which is used in the recursion to relate terms. The four cases

are natural numbers, universes, neutral types and Π types. The last case is the most

complex one. First, T and T ′ reduce to their respective Π types. Then the third

166

premise, named E , relates input types for all weakenings, and the fourth premise F
relates output types for all weakenings given related inputs s and s′ given by E(ψ). The

predicate E(ψ) effectively gives L′ | Φ; ∆ �ji S1 ≈ S2 @ l, which is used by the recursive

predicate to relate s and s′. This is exactly the place that requires an inductive-recursive

definition. The logical relations for terms L | Ψ; Γ �ji t ≈ t′ : El(D) are defined by

recursion on D. In the case of Π types, the logical relations for terms are defined as

• L | Ψ; Γ `i t ∗ w : Πl,l′(x : S1).T1 @ l t l′ and

L | Ψ; Γ `i t′ ∗ w′ : Πl,l′(x : S1).T1 @ l t l′, i.e. t and t′ reduce to WHNFs w and

w′, respectively;

• L | Ψ; Γ `i w ' w′ : Πl,l′(x : S1).T1 @ l t l′, saying that w and w′ are generically

equivalent,

• at last, for all ψ :: L′ | Φ; ∆ =⇒i L | Ψ; Γ and related inputs

A :: L′ | Φ; ∆ �ji s ≈ s′ : El(E(ψ)), the results of applying w and w′ are re-

lated: L′ | Φ; ∆ �ji w s ≈ w′ s′ : El(F(ψ,A)).

When j = d, I have given the complete definition of the logical relations for MLTT.

Compared to the version by Abel et al. (2018), the number of definitions is reduced by

half by defining the logical relations in a PER style. I still have to prove the same set of

lemmas, but their statements and proofs are also halved in size. This makes the large

semantic development of DeLaM more manageable.

When j = m, there still need more cases to handle types for meta-programming

and universe-polymorphic functions (see Sec. 5.4.6). Nevertheless, the definitions given

here still apply. In other words, for types shared between layers d and m, their logical

relations only differ in layers. This observation is captured by the layering restriction

lemma:

Lemma 5.14 (Layering Restriction). If D :: L | Ψ; Γ �dm T ≈ T ′@ l,

• then E :: L | Ψ; Γ �mm T ≈ T ′@ l;

• then L | Ψ; Γ �dm t ≈ t′ : El(D) and L | Ψ; Γ �mm t ≈ t′ : El(E) are equivalent

statements.

167

L ` Ψ

L | Ψ �ji · ≈ ·
L ` Ψ u : Ctx ∈ Ψ

L | Ψ �ji u ≈ u

E :: ∀ α :: L′ | Φ =⇒ L | Ψ . L′ | Φ �ji ∆ ≈ ∆′

F :: ∀ α :: L′ | Φ =⇒ L | Ψ and L′ | Φ; Γ �ji δ ≈ δ′ : E(α) .

L′ | Φ; Γ �ji T [δ] ≈ T ′[δ′] @ l

L | Ψ �ji ∆, x : T @ l ≈ ∆′, x : T ′@ l

Figure 5.7: Logical relations for contexts

The most interesting direction in this lemma is m to d, i.e. that

L | Ψ; Γ �dm t ≈ t′ : El(D) implies L | Ψ; Γ �mm t ≈ t′ : El(E), given that T and

T ′ are related at layer d, i.e. in MLTT. Effectively, if we know that T and T ′ eventu-

ally reduce to some types from MLTT, then we can refine the relation between t and t′

from j = m to j = d. This lemma is crucial to model code execution semantically. The

similar situation occurs in simple types too as described at the beginning of Sec. 4.7 and

is formalized in the meta-variable case in the proof of the fundamental theorems (The-

orem 4.28). The same reasoning is applied to DeLaM as well. Consider an identity

function λ(x : Nat).x for natural numbers from layer c. The semantics of this function

says that given a normalizing input t in MLTT, (λx.x) t gives a normalizing output also

in MLTT. However, after being lifted to layer m, the identity function can be applied to

meta-programs like letbox u � box zero in u, which is clearly not in MLTT. Layering

restriction is here to rescue by saying that even though meta-programs are not from

MLTT, since Nat is a type in MLTT, the semantics of every normalizing meta-program

of type Nat can be refined/lowered to j = d to be passed as arguments to the identity

function. Note that this action has nothing to do with syntax. It does not actually

lower the layer of terms but is purely semantic and just refines the information of the

logical relations. Finally, the results are lifted again to j = m in the reverse direction.

In this way, the machinery in code execution is semantically explained. Interestingly,

though lifting (Lemma 5.1) monotonically brings terms from a lower layer to a higher

one syntactically, layering restriction does need to be expressed as an equivalence in the

semantics.

168

The logical relations for regular contexts (D :: L | Ψ �ji Γ ≈ ∆) and regular substitu-

tions

(L | Ψ; Γ �ji δ ≈ δ′ : D) are also defined inductive-recursively. The former is de-

fined inductively in Fig. 5.7 and requires all relations between types to be stable under

regular substitutions pointwise. The latter is defined recursively on the former, and

is a generalization of the logical relations of terms. They are also defined in the PER

style so that subsequent proofs are simplified. For the case of context extensions,

L | Ψ; Γ �ji δ ≈ δ′ : D is defined as

• δ = δ1, t/x and δ′ = δ′1, t
′/x, so substitutions are also extended;

• C :: ∀ α :: L′ | Φ =⇒ L | Ψ . L′ | Φ; Γ �ji δ1 ≈ δ′1 : E(α), which says that δ1 and δ′1

are recursively related by E(α);

• finally, ∀ α :: L′ | Φ =⇒ L | Ψ . L′ | Φ; Γ �ji t ≈ t′ : El(F(α, C(α))), which relates

t and t′. Note that t and t′ are related by F , which requires two arguments, a

weakening α, and a relation between two regular substitutions, which is given by

C.

The logical relations for regular contexts and regular substitutions also have a gen-

eralized version of layering restriction (Lemma 5.14).

Lemma 5.15 (Layering Restriction). If D :: L | Ψ �dm ∆ ≈ ∆′,

• then E :: L | Ψ �mm ∆ ≈ ∆′;

• then L | Ψ; Γ �dm δ ≈ δ′ : D and L | Ψ; Γ �mm δ ≈ δ′ : E are equivalent.

Proof. Induction on D. The step case is very similar to the function case above.

5.4.3 Properties of Logical Relations

Besides layering restriction, logical relations also have the following properties. First,

the weakening lemma says that the logical relations are indeed Kripke: they are closed

under weakenings.

Lemma 5.16 (Weakening). If D :: L | Ψ; Γ �di T ≈ T ′@ l,

169

• and if ψ :: L′ | Φ; ∆ =⇒i L | Ψ; Γ, then

E :: L′ | Φ; ∆ �di T ≈ T ′@ l;

• and if L | Ψ; Γ �di t ≈ t′ : El(D) and ψ :: L′ | Φ; ∆ =⇒i L | Ψ; Γ, then

L′ | Φ; ∆ �di t ≈ t′ : El(E).

The escape lemma says that the logical relations at layer i implies generic equiva-

lences at layer i.

Lemma 5.17 (Escape). If D :: L | Ψ; Γ �di T ≈ T ′@ l,

• then L | Ψ; Γ `i T ' T ′@ l;

• and if L | Ψ; Γ �di t ≈ t′ : El(D), then L | Ψ; Γ `i t ' t′ : T @ l and

L | Ψ; Γ `i t ' t′ : T ′@ l.

In the conclusion, the fact of j = d is not used anywhere. In particular, if i = m,

T and T ′ are types from layer m as well. This is not a problem, because the logical

relation only requires them to be types from MLTT after being reduced to WHNFs.

Next, the irrelevance lemmas say that the exact relation between types is not relevant

to relate terms.

Lemma 5.18 (Right Irrelevance). If D :: L | Ψ; Γ �di T ≈ T ′@ l,

E :: L | Ψ; Γ �di T ≈ T ′′@ l and L | Ψ; Γ �di t ≈ t′ : El(D), then

L | Ψ; Γ �di t ≈ t′ : El(E).

Lemma 5.19 (Left Irrelevance). If D :: L | Ψ; Γ �di T
′ ≈ T @ l,

E :: L | Ψ; Γ �di T
′′ ≈ T @ l and L | Ψ; Γ �di t ≈ t′ : El(D), then

L | Ψ; Γ �di t ≈ t′ : El(E).

Due to irrelevance, it is often convenient to discuss only the relation between terms

without having to specify the relation between types. In this case, I define

L | Ψ; Γ �ji t ≈ t′ : T @ l as an abbreviation for some T ′, such that there is

D :: L | Ψ; Γ �ji T ≈ T ′@ l and L | Ψ; Γ �ji t ≈ t′ : El(D).

Finally, symmetry and transitivity prove that the logical relations indeed form PERs.

Lemma 5.20 (Symmetry).

170

• If D :: L | Ψ; Γ �di T ≈ T ′@ l, then E :: L | Ψ; Γ �di T
′ ≈ T @ l.

• If L | Ψ; Γ �di t ≈ t′ : El(D), then L | Ψ; Γ �di t
′ ≈ t : El(E).

Lemma 5.21 (Transitivity).

• If D1 :: L | Ψ; Γ �di T1 ≈ T2 @ l and D2 :: L | Ψ; Γ �di T2 ≈ T3 @ l, then

D3 :: L | Ψ; Γ �di T1 ≈ T3 @ l.

• If L | Ψ; Γ �di t1 ≈ t2 : El(D1) and L | Ψ; Γ �di t2 ≈ t3 : El(D2), then

L | Ψ; Γ �di t1 ≈ t3 : El(D3).

The logical relations for regular contexts and regular substitutions also have similar

properties. In general, the lemmas are just generalizations of corresponding lemmas

above.

Lemma 5.22 (Weakening).

• If D :: L | Ψ �di ∆ ≈ ∆′ and α :: L′ | Φ =⇒ L | Ψ, then E :: L′ | Φ �di ∆ ≈ ∆′.

• If L | Ψ; Γ �di δ ≈ δ′ : D, α :: L′ | Φ =⇒ L | Ψ and τ :: L′ | Φ; Γ′ =⇒i Γ, then

L′ | Φ; Γ′ �di δ ≈ δ′ : E.

Lemma 5.23 (Escape).

• If D :: L | Ψ �di ∆1 ≈ ∆2, then L | Ψ `i ∆1 ' ∆2.

• If L | Ψ; Γ �di δ ≈ δ′ : D, then L | Ψ; Γ `i δ ' δ′ : ∆1 and L | Ψ; Γ `i δ ' δ′ : ∆2.

Lemma 5.24 (Right Irrelevance). If D :: L | Ψ �di ∆1 ≈ ∆2, E :: L | Ψ �di ∆1 ≈ ∆3

and L | Ψ; Γ �di δ ≈ δ′ : D, then L | Ψ; Γ �di δ ≈ δ′ : E.

Lemma 5.25 (Left Irrelevance). If D :: L | Ψ �di ∆1 ≈ ∆2, E :: L | Ψ �di ∆3 ≈ ∆2

and L | Ψ; Γ �di δ ≈ δ′ : D, then L | Ψ; Γ �di δ ≈ δ′ : E.

Similarly, due to irrelevance, I define L | Ψ; Γ �ji δ ≈ δ′ : ∆ as for some ∆′, E ::

L | Ψ �ji ∆ ≈ ∆′ and L | Ψ; Γ �ji δ ≈ δ′ : E .

Lemma 5.26 (Symmetry).

171

• If D :: L | Ψ �di ∆1 ≈ ∆2, then E :: L | Ψ �di ∆2 ≈ ∆1.

• If L | Ψ; Γ �di δ ≈ δ′ : D, then L | Ψ; Γ �di δ
′ ≈ δ : E.

Lemma 5.27 (Transitivity).

• If D1 :: L | Ψ �di ∆1 ≈ ∆2 and D2 :: L | Ψ �di ∆2 ≈ ∆3, then

D3 :: L | Ψ �di ∆1 ≈ ∆3.

• If L | Ψ; Γ �di δ1 ≈ δ2 : D1 and L | Ψ; Γ �di δ2 ≈ δ3 : D2, then

L | Ψ; Γ �di δ1 ≈ δ3 : D3.

5.4.4 Semantics for MLTT and Code

At the end of Sec. 5.3.6, I mentioned that terms at layer c need to maintain both

semantic information and syntactic information. In Chapter 4 and also Hu and Pientka

(2024b), I achieve this by embedding the semantic information in an inductively defined

judgment which stores syntactic information. This is exactly how I proceed here as well.

First, I define semantics for types, terms and regular substitutions that are stable under

regular substitutions. Effectively, these definitions give the semantics for pure MLTT. I

always set j = d because I am only concerned about types from MLTT for now. I define

L | Ψ; Γ �d≥d T ≈ T ′@ l as for all L′ | Φ =⇒ L | Ψ, k ≥ d, and L′ | Φ; ∆ �dk δ ≈ δ′ : Γ,

it holds that L′ | Φ; ∆ �dk T [δ] ≈ T ′[δ′] @ l. The condition k ≥ d means that T and T ′

are related at both layers d and m. The judgment is L | Ψ; Γ �d≥d t ≈ t′ : T @ l defined

similarly, but instead I require the conclusion to be L′ | Φ; ∆ �dk t[δ] ≈ t′[δ′] : T [δ] @ l.

The generalizations L | Ψ �d≥d ∆ ≈ ∆′ and L | Ψ; Γ �d≥d δ ≈ δ′ : ∆ are defined in a

similar manner. These semantic judgments capture the running information of these

objects. For convenience, I also define asymmetric variants by requiring both sides to

be equal, e.g. L | Ψ; Γ �d≥d T @ l is defined as L | Ψ; Γ �d≥d T ≈ T @ l. Given that

these judgments characterize pure MLTT, they are closed under semantically related

regular substitutions. For example,

Lemma 5.28 (Regular Substitutions).

• If L | Ψ; Γ �d≥d T ≈ T ′@ l and L | Ψ; ∆ �d≥d δ ≈ δ′ : Γ, then

L | Ψ; ∆ �d≥d T [δ] ≈ T ′[δ′] @ l.

172

L | Ψ; Γ �dc S @ l L | Ψ; Γ, x : S @ l �dc T @ l′

L | Ψ; Γ �d≥d Πl,l′(x : S).T @ l t l′

L | Ψ; Γ �dc Πl,l′(x : S).T @ l t l′

L | Ψ; Γ �dc S @ l L | Ψ; Γ, x : S @ l �dc T @ l′

L | Ψ; Γ �dc t : Πl,l′(x : S).T @ l t l′ L | Ψ; Γ �dc s : S @ l

L | Ψ; Γ �d≥d T
′ ≈ T [s/x] @ l′ L | Ψ; Γ �d≥d (t : Πl,l′(x : S).T) s : T ′@ l′

L | Ψ; Γ �dc (t : Πl,l′(x : S).T) s : T ′@ l′

Figure 5.8: Selected rules for semantic judgment for code

• If L | Ψ; Γ �d≥d t ≈ t′ : T @ l and L | Ψ; ∆ �d≥d δ ≈ δ′ : Γ, then

L | Ψ; ∆ �d≥d t[δ] ≈ t′[δ′] : T [δ] @ l.

• If L | Ψ; Γ �d≥d δ ≈ δ′ : ∆ and L | Ψ; ∆′ �d≥d δ1 ≈ δ′1 : Γ, then

L | Φ; ∆′ �d≥d δ ◦ δ1 ≈ δ′ ◦ δ′1 : ∆.

Given the semantic judgments for running types, terms, etc., I then encapsulate

them with syntactic information about shapes in the semantic judgments for code. In

particular, I inductively define L | Ψ; Γ �dc T @ l for the semantics of code T ,

L | Ψ; Γ �dc t : T @ l for the semantics of code t of type T , and L | Ψ; Γ �dc δ : ∆

for the semantics of code for regular substitution δ. I give two example rules for the

judgments in Fig. 5.8 (see all the rules in Appendix G). The framed premises in the

rules come from the typing rules. They recursively record the syntactic information of

sub-structures. The other premises are for semantic information. For a type, e.g. a Π

type, L | Ψ; Γ �d≥d Πl,l′(x : S).T @ l denotes that the Π type can be run at both layers

d and m. For a term, e.g. a function application, there needs to be two pieces of infor-

mation: the semantic information of t s and the semantic equivalence between T ′ and

T [s/x]. Note that T [s/x] is originated from layer c and is brought to layer d via lifting

to establish a semantic equivalence with T ′. This semantic equivalence characterizes

code promotion, where code objects T and s are lifted to layer d for computation. All

other rules in the semantic judgments follow this exact pattern to encode both kinds of

173

information. The following semantic lifting lemma extracts the semantic information

from the judgments.

Lemma 5.29 (Semantic lifting).

• If L | Ψ; Γ �dc T @ l, then L | Ψ; Γ �d≥d T @ l.

• If L | Ψ; Γ �di t : T @ l, then L | Ψ; Γ �d≥d t : T @ l.

• If L | Ψ; Γ �di δ : ∆, then L | Ψ; Γ �d≥d δ : ∆.

Since the semantic judgments for MLTT are closed under regular substitutions and

the semantic judgments for code are basically typing judgments with extra semantic

information, I show that the semantic judgments for code are also closed under regular

substitutions, e.g.

Lemma 5.30 (Regular substitutions).

• If L | Ψ; Γ �dc T @ l and L | Ψ; ∆ �dc δ : Γ, then L | Ψ; ∆ �dc T [δ] @ l.

• If i ∈ {v,c}, L | Ψ; Γ �di t : T @ l and L | Ψ; ∆ �di δ : Γ, then

L | Ψ; ∆ �di t[δ] : T [δ] @ l.

• If i ∈ {v,c}, L | Ψ; Γ �di δ : ∆ and L | Ψ; ∆′ �di δ
′ : Γ, then

L | Φ; ∆′ �di δ ◦ δ′ : ∆.

The closure under regular substitutions is crucial to model code composition se-

mantically. Given a regular substitution δ, though it does not propagate under box, i.e.

(box e)[δ] = box e, it might still be applied if it is given as part of a meta-variable. In

other words, assuming a meta-substitution σ, uδ[σ] = σ(u)[δ[σ]] where σ(u) first looks

up u in σ, and then the regular substitution δ[σ] is applied to the result of the lookup.

The regular substitution lemma ensures that the overall result of code composition still

maintains both semantic and syntactic information properly.

Next, I define the symmetrized variants L | Ψ; Γ �dc T ≈ T ′@ l as L | Ψ; Γ �dc T @ l

and T = T ′, and L | Ψ; Γ �dc t ≈ t′ : T @ l as L | Ψ; Γ �dc t : T @ l and t = t′.

Effectively, I extend the logical relations for types and terms in Sec. 5.4.2 with i = c.

This extension allows me to conveniently express the final semantic judgments for the

fundamental theorems in Sec. 5.4.7.

174

L � · ≈ ·
∀ L′ =⇒ L . L′ � Φ ≈ Φ′

L � Φ, u : Ctx ≈ Φ′, u : Ctx

E :: ∀ θ :: L′ =⇒ L . L′ � Φ ≈ Φ′ i ∈ {c,d}
F :: ∀ θ :: L′ =⇒ L and L′ | Ψ � σ ≈ σ′ : E(θ) and k ≥ d .

L′ | Ψ �dk Γ[σ] ≈ Γ′[σ′] (1)

L � Φ, u : (Γ `i @ l) ≈ Φ′, u : (Γ′ `i @ l)

E :: ∀ θ :: L′ =⇒ L . L′ � Φ ≈ Φ′ i ∈ {v,c}
F :: ∀ θ :: L′ =⇒ L and L′ | Ψ � σ ≈ σ′ : E(θ) and k ≥ d . L′ | Ψ �dk Γ[σ] ≈ Γ′[σ′]
A :: ∀ θ :: L′ =⇒ L and B :: L′ | Ψ � σ ≈ σ′ : E(θ) and k ≥ d and

L′ | Ψ; ∆ �dk δ ≈ δ′ : F(θ,B, k) . L′ | Ψ; ∆ �dk T [σ][δ] ≈ T ′[σ′][δ′] @ l (2)

L � Φ, u : (Γ `i T @ l) ≈ Φ′, u : (Γ′ `i T ′@ l)

Figure 5.9: Logical relations for meta-contexts

5.4.5 Logical Relations for Meta-Contexts and

Meta-Substitutions

The semantic judgments for code in Sec. 5.4.4 are used in two places in the semantics:

one is the logical relations for meta-contexts and substitutions in this section, and

the other is the logical relations for types and terms for layer m in the next section.

Continuing the recipe, the logical relations for meta-contexts and substitutions are

defined inductive-recursively in the PER style. I first define those for meta-contexts

D :: L � Ψ ≈ Φ inductively in Fig. 5.9. The Kripke structure of the logical relations

is in the weakening of universe contexts. All premises ∀ L′ =⇒ L . L′ � Φ ≈ Φ′ builds

the Kripke structure into the logical relations. The premise (1) requires the relation

between Γ and Γ′ to be stable under related meta-substitutions for k ≥ d. Similarly,

the premise (2) requires the relation between T and T ′ to be stable under both related

meta-and regular substitutions.

The logical relations for meta-substitutions L | Ψ � σ ≈ σ′ : D are defined by re-

cursion on those for meta-contexts. I only consider the third case, which is for extension

of (Γ `i @ l) and (Γ′ `i @ l), where i ∈ {c,d}, which needs to satisfy the following con-

ditions:

175

• σ = σ1, T/u and σ′ = σ′1, T
′/u, with two related types T and T ′ to substitute u;

• for all θ :: L′ =⇒ L, it holds that L′ | Ψ � σ1 ≈ σ′1 : E(θ), i.e. σ1 and σ′1 are

recursively related;

• finally, depending on the value of i,

– if i = d, then L | Ψ; Γ �d≥d T ≈ T ′@ l, so T and T ′ are related at both layers

d and m. In particular, they do not need to be syntactically identical;

– if i = c, then L | Ψ; Γ �dc T ≈ T ′@ l, which stores the syntactic information

of T and implies T = T ′. Due to the semantic lifting lemma, it also implies

L | Ψ; Γ �d≥d T ≈ T ′@ l.

In short, the logical relations for meta-substitutions relate two meta-substitutions point-

wise, and store the syntactic information of types and terms for contextual kinds at layer

c. In Sec. 5.4.7, the fundamental theorems use these logical relations to require types,

terms, etc. to be stable under meta-substitutions.

5.4.6 Logical Relations for Layer M

Up until this section, I only use the logical relations for j = d. In this section, I go all

the way back and revisit the logical relations for types and terms, but for i = j = m.

This section gives semantics to types for meta-programming and is the last step before

giving the semantic judgments. The logical relations for types at layer m is defined

by extending Fig. 5.6 after setting i = j = m with Fig. 5.10. As the first step, I first

reduce T and T ′ to some normal types, e.g. contextual types, meta-function types, or

universe-polymorphic functions. For contextual types for types to be related, I require

∆ and ∆′ to be related at both layers d and m (due to ≥ d). For contextual types for

terms, I in addition require the logical relation between T1 and T ′1 to be stable under

regular substitutions. Since the logical relations for contextual types is not recursive for

i = j = m, I can safely restart the universe level at 0. This justifies the syntactic rules as

well, where contextual types live on universe level 0. The logical relation of contextual

types for terms L | Ψ; Γ �ji t ≈ t′ : El(D) is defined by the following conditions:

• first, L | Ψ; Γ `m t ∗ w : �(∆ `c T1 @ l) @ 0 and

L | Ψ; Γ `m t′ ∗ w′ : �(∆′ `c T ′1 @ l) @ 0, reducing t and t′ to WHNFs, and

176

L | Ψ; Γ `m T ∗ �(∆ `c @ l) @ 0 L | Ψ; Γ `m T ′ ∗ �(∆′ `c @ l) @ 0

L | Ψ �d≥d ∆ ≈ ∆′

L | Ψ; Γ �mm T ≈ T ′@ 0

L | Ψ; Γ `m T ∗ �(∆ `c T1 @ l) @ 0 L | Ψ; Γ `m T ′ ∗ �(∆′ `c T ′1 @ l) @ 0

L | Ψ �d≥d ∆ ≈ ∆′ L | Ψ; ∆ �d≥d T1 ≈ T ′1 @ l

L | Ψ; Γ �mm T ≈ T ′@ 0

L | Ψ; Γ `m T ∗ (g : Ctx)⇒l T1 @ l L | Ψ; Γ `m T ′ ∗ (g : Ctx)⇒l T ′1 @ l

E :: ∀ ψ :: L′ | Φ; ∆′′ =⇒i L | Ψ; Γ and L′ | Φ �d≥d ∆ ≈ ∆′ .
L′ | Φ; ∆′′ �mm T1[∆/g] ≈ T ′1[∆′/g] @ l

L | Ψ; Γ �mm T ≈ T ′@ l

L | Ψ; Γ `m T ∗ (U : (∆ `d @ l))⇒l′ T1 @ l′

L | Ψ; Γ `m T ′ ∗ (U : (∆′ `d @ l))⇒l′ T ′1 @ l′

L′ | Φ �d≥d ∆ ≈ ∆′

E :: ∀ ψ :: L′ | Φ; ∆′′ =⇒i L | Ψ; Γ and L′ | Φ; ∆ �d≥d T2 ≈ T ′2 @ l .
L′ | Φ; ∆′′ �mm T1[T2/U] ≈ T ′1[T ′2/U] @ l′

L | Ψ; Γ �mm T ≈ T ′@ l′

L | Ψ; Γ `m T ∗
−→
` ⇒l T1 @ ω L | Ψ; Γ `m T ′ ∗

−→
` ⇒l T ′1 @ ω

E :: ∀ ψ :: L′ | Φ; ∆ =⇒i L | Ψ; Γ and
−→
l that are well-formed in L′ and |

−→
` | = |

−→
l | .

L′ | Φ; ∆ �mm T1[
−→
l /
−→
`] ≈ T ′1[

−→
l /
−→
`] @ l[

−→
l /
−→
`] (3)

L | Ψ; Γ �mm T ≈ T ′@ ω

Figure 5.10: Logical relations for types at layer m

• L | Ψ; Γ `m w ' w′ : �(∆ `c T1 @ l) @ 0, i.e. the WHNFs are generically equiva-

lent, and

• finally, L | Ψ; Γ � w ' w′ : �(∆ `c T1 @ l), which is an inductive relation of two

177

cases:

L | Ψ; ∆ �dc t1 : T1 @ l

L | Ψ; Γ � box t1 ' box t1 : �(∆ `c T1 @ l)

L | Ψ; Γ `m ν ∼ ν ′ : �(∆ `c T1 @ l) @ 0

L | Ψ; Γ � ν ' ν ′ : �(∆ `c T1 @ l)

The last condition relates w and w′ on the contextual types �(∆ `c T1 @ l) in two cases.

Either w = w′ = box t1 for some t1, which accompanies its semantic judgment for

code, i.e. L | Ψ; ∆ �dc t1 : T1 @ l. When recursing on w, in the semantics, the mutual

recursion principle for code is in fact interpreted as the mutual induction principle for

L | Ψ; ∆ �dc t1 : T1 @ l. On the other hand, if one composes t1 with some other code, the

regular substitution lemma (Lemma 5.30) ensures that the result code still maintains

proper semantic and syntactic information. Finally, if t1 is run as a program, then the

semantic lifting lemma (Lemma 5.29) is applied to obtained the semantic information

for execution, in conjunction with the layering restriction lemma (Lemma 5.14) if t1 is

run at layer m. In conclusion, the semantics justifies all usages of code. If w and w′ are

neutral, then I cannot say more than that they are generically equivalent.

The next two cases are meta-functions for contexts and for types. They are very

similar to Π types. Their premises E extensionally quantify related inputs so that the

output types remain related. In fact, meta-functions are even simpler than Π types

because the relations of inputs are obtain from j = d, so they are not even recursive in

i = j = m. The relations for their terms are similar to Π types as well. I first require

these terms to reduce to WHNFs and then applying these WHNFs to related inputs

produces related outputs.

The last case in the logical relations is the universe-polymorphic functions. In the

premise (3), I substitute some arbitrary well-formed
−→
l for

−→
` in l. I cannot know

in particular which exact universe level the result of the substitution is. The only

thing that I am sure about is that l[
−→
l /
−→
`] is some finite, well-formed universe level.

Therefore, in order to refer to any finite universe level, universe-polymorphic functions

must be modeled on level ω, hence requiring a transfinite recursion on universe levels

in the definition of the logical relations.

178

The logical relations for regular contexts and substitutions for i = j = m have been

defined in Fig. 5.7.

5.4.7 Semantic Judgments and Fundamental Theorems

Finally, I define the semantic judgments for DeLaM. The semantic judgments states

the stability of principal objects in the judgments under all substitutions at all higher

layers. First, I define the semantic judgment for meta-contexts L
 Ψ as for all

L′ ` φ : L, it holds that L′ � Ψ[φ] ≈ Ψ[φ]. Then the semantic judgment for equiv-

alent regular contexts L | Ψ
i Γ ≈ ∆ where i ∈ {d,m} is defined as a conjunction

of L
 Ψ and for all L′ ` φ : L, L′ | Φ � σ ≈ σ′ : Ψ[φ] and k ≥ i, it holds that

L′ | Φ �⇑(i)
k Γ[φ][σ] ≈ ∆[φ][σ′]. Effectively, this judgment says that the relation between

Γ and ∆ is stable under all universe and meta-substitutions at all layers k ≥ i. Note

that in the conclusion, I always set j =⇑ (i), which is where regular contexts live when

terms live at layer i. Its asymmetric version L | Ψ
i Γ requires both sides to be equal:

L | Ψ
i Γ ≈ Γ.

Next, I define the semantic judgment for types L | Ψ; Γ
i T ≈ T ′@ l . It follows

the same principle. I first require L | Ψ
⇑(i) Γ, and then for all L′ ` φ : L,

L′ | Φ � σ ≈ σ′ : Ψ[φ], k ≥ i and L′ | Φ; ∆ �⇑(i)
k δ ≈ δ′ : Γ[φ][σ], it holds that

L′ | Φ; ∆ �⇑(i)
k T [φ][σ][δ] ≈ T ′[φ][σ′][δ′] @ l[φ]

In other words, the relation between T and T ′ is stable under all substitutions at

all layers above i. Then the semantic judgment for terms L | Ψ; Γ
i t ≈ t′ : T @ l is

defined in the same way, except that I require L | Ψ; Γ
⇑(i) T @ l, and at the end, the

conclusion is changed to

L′ | Φ; ∆ �⇑(i)
k t[φ][σ][δ] ≈ t′[φ][σ′][δ′] : T [φ][σ][δ] @ l[φ]

The last semantic judgment is for regular substitutions L | Ψ; Γ
i δ ≈ δ′ : ∆ , which is

again defined similarly. These semantic judgments set up the right inductive invariants

for the fundamental theorems, so that they can be proved by induction on the syntactic

judgments. The fundamental theorems are stated as follows:

179

Theorem 5.31 (Fundamental).

• If L ` Ψ, then L
 Ψ.

• If L | Ψ `i Γ and i ∈ {d,m}, then L | Ψ
i Γ.

• If L | Ψ `i Γ ≈ ∆ and i ∈ {d,m}, then L | Ψ
i Γ ≈ ∆.

• If L | Ψ; Γ `i T @ l, then L | Ψ; Γ
i T @ l.

• If L | Ψ; Γ `i T ≈ T ′@ l, then L | Ψ; Γ
i T ≈ T ′@ l.

• If L | Ψ; Γ `i t : T @ l, then L | Ψ; Γ
i t : T @ l.

• If L | Ψ; Γ `i t ≈ t′ : T @ l, then L | Ψ; Γ
i t ≈ t′ : T @ l.

• If L | Ψ; Γ `i δ : ∆, then L | Ψ; Γ
i δ : ∆.

• If L | Ψ; Γ `i δ ≈ δ′ : ∆, then L | Ψ; Γ
i δ ≈ δ′ : ∆.

The proof of the fundamental theorems is a more complicated version of what is

shown in Sec. 4.9 and follows a very interesting pattern, where I must work backwards

following the order of layers. More specifically, to prove the first statement of Theo-

rem 5.31 in an induction, if a typing rule is only available for i = m, then I proceed

normally as in other type theories. However, if a rule is available at multiple layers, e.g.

the congruence rule for Π types, then I have multiple statements to prove.

First, let i = m. Then the semantic judgment eventually requires a proof of

L′ | Φ; ∆ �mm T [φ][σ][δ] ≈ T ′[φ][σ′][δ′] @ l[φ], since k ≥ m means k = m. Next let i = d.

In this case, k ∈ {d,m}, so the proof requires L′ | Φ; ∆ �dk T [φ][σ][δ] ≈ T ′[φ][σ′][δ′] @ l[φ].

This case is very similar to the case for i = m, with very minor differences in layers.

When i = c, then k ≥ c, so k now can take three different values. As the proof obliga-

tion, I need to prove L′ | Φ; ∆ �dk T [φ][σ][δ] ≈ T ′[φ][σ′][δ′] @ l[φ]. Note that here cases

for k ≥ d actually have been proved when i = d, so the only addition is to handle

k = c. But then even this case is quite trivial, because when k = c, the goal becomes

the semantic judgment for code of types, which is just a repackaging of the cases for

k ≥ d. Interested readers may refer to the technical report (Hu and Pientka, 2024a)

for detailed proofs.

180

If we consider what information layers contain, this proof pattern makes even more

sense. For a term at layer m, the only information that it has is how it runs at layer

m. Meanwhile if a term is from layer d, then it can be run at both layers d and m

due to lifting. For code from layer c, I must in addition keep track of its syntactic

shape, which adds strictly more information on top of its running information. The

proof of the fundamental theorems is similar to opening an onion: the proof peels off

and assigns semantics to DeLaM from the outside layer by layer as it adds more and

more information, until the very end when DeLaM is entirely modeled.

If I set all substitutions to identities and k = i, then the fundamental theorems

simply imply the logical relations.

Corollary 5.32 (Completeness of logical relations). If i ∈ {d,m},

• If L | Ψ; Γ `i T ≈ T ′@ l, then L | Ψ; Γ �ii T ≈ T ′@ l and L | Ψ; Γ `i T ' T ′@ l.

• If L | Ψ; Γ `i t ≈ t′ : T @ l, then L | Ψ; Γ �ii t ≈ t′ : T @ l and L | Ψ; Γ `i t ' t′ :

T @ l.

Note that j = i =⇑ (i) because i ∈ {d,m}. In other words, syntactically equivalent

types or terms are also logically related and thus generically equivalent. In Sec. 5.5.3,

where I set the generic equivalences to the conversion checking algorithm, this corollary

immediately proves the completeness of the conversion checking algorithm.

5.5 Consequences of Fundamental Theorems

With the fundamental theorems, I can now instantiate the generic equivalences to ob-

tain important conclusions like weak normalization, injectivity of type constructors,

consistency and the decidability of convertibility. In this section, we focus on deriving

these conclusions.

5.5.1 First Instantiation: Syntactic Equivalence

The first instantiation assigns syntactic equivalence for types and terms to the generic

equivalences. In this case, the laws are quite trivial to prove. The first important

theorem to extract from the fundamental theorems is weak normalization.

Theorem 5.33 (Weak normalization). If i ∈ {d,m}, then

181

• if L | Ψ; Γ `i T @ l, then for some WHNF W , L | Ψ; Γ `i T ∗ W @ l;

• if L | Ψ; Γ `i t : T @ l, then for some WHNF w, L | Ψ; Γ `i t ∗ w : T @ l.

It is only a weak normalization theorem, because I fix one specific reduction strategy.

The weak normalization theorem says that well-formed types and terms always reduce to

some WHNFs. This theorem is proved from Corollary 5.32, where weak normalization

is built in the logical relations.

The next important theorem is injectivity of type constructors.

Theorem 5.34 (Injectivity of type constructors).

• If L | Ψ; Γ `i Πl,l′(x : S).T ≈ Πl,l′(x : S ′).T ′@ l t l′ and i ∈ {d,m}, then L | Ψ; Γ `i
S ≈ S ′@ l and L | Ψ; Γ, x : S @ l `i T ≈ T ′@ l′.

• If L | Ψ; Γ `m �(∆ `c @ l) ≈ �(∆′ `c @ l) @ 0, then L | Ψ `d ∆ ≈ ∆′.

• If L | Ψ; Γ `m �(∆ `c T @ l) ≈ �(∆′ `c T ′@ l) @ 0, then L | Ψ `d ∆ ≈ ∆′ and

L | Ψ; ∆ `d T ≈ T ′@ l.

The theorem says that type constructors are injective w.r.t. syntactic equivalence.

This theorem is proved from Corollary 5.32. The logical relations for types require

matching sub-structures to be related, from which I extract their equivalences.

The last theorem that I obtain from this instantiation is the consistency theorem.

Theorem 5.35 (Consistency). There is no term t that satisfies this typing judgment:

· | ·; · `m t : ` =⇒1+` Π1+`,`(x : Ty`).El
` x@ ω

The consistency theorem says that, it is not possible to generically construct a term

of any type on any universe level. The proof proceeds as follows. First, this theorem

is the same as proving that there is no t′ such that ` | ·;x : Ty`@ 1 + ` `m t′ : El` x@ `.

Let us assume such t′. Then it has a neutral type El` x, so t′ must reduce to some

neutral ν by the logical relations of El` x. Then an induction on ν shows that ν must

be eventually blocked by x. But x as a neutral type cannot be eliminated, nor can it

have type El` x, so a contradiction is established.

182

L | Ψ; Γ `i T ⇐̂⇒ T ′@ l and L | Ψ; Γ `i V ←→ V ′@ l and L | Ψ; Γ `i W ⇐⇒ W ′@ l

L | Ψ; Γ `i T ∗ W @ l

L | Ψ; Γ `i T ′ ∗ W ′
@ l

L | Ψ; Γ `i W ⇐⇒ W ′
@ l

L | Ψ; Γ `i T ⇐̂⇒ T ′@ l

L | Ψ `i Γ u : (∆ `i′ @ l) ∈ Ψ
i′ ≤ i L | Ψ; Γ `i δ ⇐̂⇒ δ′ : ∆

L | Ψ; Γ `i uδ ←→ uδ
′
@ l

L | Ψ; Γ `i ν ←→ ν ′ : Tyl @ 1 + l

L | Ψ; Γ `i Ell ν ←→ Ell ν ′@ l

L | Ψ `i Γ

L | Ψ; Γ `i Nat⇐⇒ Nat@ 0

L | Ψ `i Γ

L | Ψ; Γ `i Tyl ⇐⇒ Tyl @ 1 + l

L | Ψ; Γ `i S ⇐̂⇒ S ′@ l

L | Ψ; Γ, x : S @ l `i T ⇐̂⇒ T ′@ l′

L | Ψ; Γ `i Πl,l′(x : S).T ⇐⇒ Πl,l′(x : S ′).T ′@ l t l′

L | Ψ; Γ `i V ←→ V ′@ l

L | Ψ; Γ `i V ⇐⇒ V ′@ l

L | Ψ `m Γ L,
−→
` | Ψ; Γ `m T ⇐̂⇒ T ′@ l

L | Ψ; Γ `m (
−→
` ⇒l T)⇐⇒ (

−→
` ⇒l′ T ′) @ ω

L | Ψ `m Γ L | Ψ `d ∆ ⇐̂⇒ ∆′

L | Ψ; Γ `m �(∆ `c @ l)⇐⇒ �(∆′ `c @ l) @ 0

L | Ψ `m Γ L | Ψ `d ∆ ⇐̂⇒ ∆′ L | Ψ; ∆ `d T ⇐̂⇒ T ′@ l

L | Ψ; Γ `m �(∆ `c T @ l)⇐⇒ �(∆′ `c T ′@ l) @ 0

L | Ψ; Γ `i t ⇐̂⇒ t′ : T @ l and L | Ψ; Γ `i w ⇐⇒ w′ : W @ l for terms

L | Ψ; Γ `i T ∗ W @ l L | Ψ; Γ `i t ∗ w : T @ l

L | Ψ; Γ `i t′ ∗ w′ : T @ l L | Ψ; Γ `i w ⇐⇒ w′ : W @ l

L | Ψ; Γ `i t ⇐̂⇒ t′ : T @ l

L | Ψ; Γ `i ν ←→ ν ′ : W @ l

L | Ψ; Γ `i ν ⇐⇒ ν ′ : V @ l

L | Ψ; Γ `i w : Πl,l′(x : S).T @ l t l′ L | Ψ; Γ `i w′ : Πl,l′(x : S).T @ l t l′

L | Ψ; Γ, x : S @ l `i (w : Πl,l′(x : S).T) x ⇐̂⇒ (w′ : Πl,l′(x : S).T) x : T @ l′

L | Ψ; Γ `i w ⇐⇒ w′ : Πl,l′(x : S).T @ l t l′

L | Ψ `m Γ L | Ψ; ∆ `c t : T @ l t = t′

L | Ψ; Γ `m box t⇐⇒ box t′ : �(∆ `c T @ l) @ 0

L | Ψ; Γ `m ν ←→ ν ′ : �(∆ `c T @ l) @ 0

L | Ψ; Γ `m ν ⇐⇒ ν ′ : �(∆ `c T @ l) @ 0

Figure 5.11: Selected rules for conversion checking algorithm

183

L | Ψ; Γ `i ν ←→ ν ′ : W @ l and L | Ψ; Γ `i ν ←̂→ ν ′ : T @ l for neutral terms

L | Ψ; Γ `i ν ←̂→ ν ′ : T @ l L | Ψ; Γ `i T ∗ W @ l

L | Ψ; Γ `i ν ←→ ν ′ : W @ l

L | Ψ `i Γ x : T @ l ∈ Γ

L | Ψ; Γ `i x ←̂→ x : T @ l

L | Ψ `i Γ u : (∆ `i′ T @ l) ∈ Ψ i′ ≤ i L | Ψ; Γ `i δ ⇐̂⇒ δ′ : ∆

L | Ψ; Γ `i uδ ←̂→ uδ
′
: T [δ] @ l

L | Ψ; Γ `i S ⇐̂⇒ S ′@ l L | Ψ; Γ, x : S @ l `i T ⇐̂⇒ T ′@ l′

L | Ψ; Γ `i ν ←→ ν ′ : Πl,l′(x : S ′′).T ′′@ l t l′ L | Ψ; Γ `i s ⇐̂⇒ s′ : S ′′@ l

L | Ψ; Γ `i (ν : Πl,l′(x : S).T) s ←̂→ (ν ′ : Πl,l′(x : S ′).T ′) s′ : T [s/x] @ l′

L | Ψ `m Γ L | Ψ `d ∆ ⇐̂⇒ ∆′ L | Ψ; Γ, x : �(∆ `c @ l′) @ 0 `m M ⇐̂⇒ M ′
@ l

L | Ψ, u : (∆ `c @ l′); Γ `m t ⇐̂⇒ t′ : M [box uid/x] @ l

L | Ψ; Γ `m ν ←→ ν ′ : �(∆ `c @ l′) @ 0

left = letboxlx.M u← (ν : �(∆ `c @ l′)) in t
right = letboxlx.M ′ u← (ν ′ : �(∆′ `c @ l′)) in t′

L | Ψ; Γ `m left ←̂→ right : M [t/x] @ l

Figure 5.12: Selected rules for conversion checking algorithm for neutral terms

5.5.2 Conversion Checking

Following Abel et al. (2018) and Chapter 4, I define the conversion checking algo-

rithm. Due to layering and meta-programming constructs, there are more operations

in the conversion checking algorithm than that by Abel et al., because I also need

to compare regular contexts and substitutions. The conversion checking algorithm is

split into two modes: checking and inference. In the checking mode, the algorithm

returns true or false, while in the inference mode, the algorithm infers a universe

level and potentially a type on that level for neutral terms. Selected rules for the

algorithm are defined Fig. 5.11 and 5.12. The algorithm is layered at i ∈ {d,m},
the only two layers where interesting computation occurs. The main entry points are

L | Ψ; Γ `i T ⇐̂⇒ T ′@ l , which checks the convertibility of T and T ′ on level l, and

L | Ψ; Γ `i t ⇐̂⇒ t′ : T @ l , which checks the convertibility of t and t′ of type T on level

l. Both entry points first reduce the inputs to WHNFs. Then the WHNFs are compared

by L | Ψ; Γ `i W ⇐⇒ W ′@ l and L | Ψ; Γ `i w ⇐⇒ w′ : W @ l , which actually do the

184

case analyses based on the shapes. At some point, the checking for WHNFs enters the

inference mode, in order to compare neutrals. The neutral form checking algorithm

for types L | Ψ; Γ `i V ←→ V ′@ l returns the universe level l of V and V ′ if they are

convertible. The neutral form checking algorithm for terms is a bit more complex. The

actual worker is L | Ψ; Γ `i ν ←̂→ ν ′ : T @ l , which returns a type T and its universe

level l, if ν and ν ′ are convertible. However, before returning the type T to the checking

mode, L | Ψ; Γ `i ν ←→ ν ′ : W @ l first reduces it to a WHNF, so the output type of

this algorithm is a normal type W . Finally, the checking mode for types and terms is

generalized to regular contexts and substitutions pointwise, giving L | Ψ `d Γ ⇐̂⇒ ∆

and L | Ψ; Γ `i δ ⇐̂⇒ δ′ : ∆ . The checking mode for regular contexts is needed when

I compare contextual types. I also need to check the convertibility between regular

substitutions when I encounter neutral meta-variables uδ and uδ
′
, in which case I need

to compare δ and δ′.

The conversion checking algorithm is very close to that by Abel et al. in its spirit.

The checking mode for terms is type-directed. I employ a suitable check according to

the shape of the input type. For functions, I check in suitably extended contexts, and for

other types, I case-analyze terms accordingly. The inference mode is syntax-directed.

It fails immediately if two neutral forms fail to have the same syntactic structure.

5.5.3 Second Instantiation: Conversion Checking Algorithm

In the second instantiation, I assign the conversion checking algorithm to the generic

equivalences: L | Ψ; Γ `i V ∼ V ′@ l as L | Ψ; Γ `i V ←→ V ′@ l,

L | Ψ; Γ `i T ' T ′@ l as L | Ψ; Γ `i T ⇐̂⇒ T ′@ l, and L | Ψ; Γ `i t ' t′ : T @ l

as L | Ψ; Γ `i t ⇐̂⇒ t′ : T @ l. The most complex case is L | Ψ; Γ `i ν ∼ ν ′ : T @ l, which

is assigned a conjunction of L | Ψ; Γ `i ν ←̂→ ν ′ : T ′@ l and L | Ψ; Γ `i T ≈ T ′@ l.

Here I always take i ∈ {d,m}. First, the soundness lemma for the conversion checking

algorithm is proved by simple mutual induction:

Lemma 5.36 (Soundness).

• If L | Ψ; Γ `i T ⇐̂⇒ T ′@ l, then L | Ψ; Γ `i T ≈ T ′@ l.

• If L | Ψ; Γ `i t ⇐̂⇒ t′ : T @ l, then L | Ψ; Γ `i t ≈ t′ : T @ l.

185

The completeness lemma is established by Corollary 5.32.

Lemma 5.37 (Completeness).

• If L | Ψ; Γ `i T ≈ T ′@ l, then L | Ψ; Γ `i T ⇐̂⇒ T ′@ l.

• If L | Ψ; Γ `i t ≈ t′ : T @ l, then L | Ψ; Γ `i t ⇐̂⇒ t′ : T @ l.

Therefore, conversion checking and syntactic equivalence are logically equivalent. To

establish the decidability of convertibility, I need the following lemma, which establishes

the decidability of conversion checking between reflexively convertible types or terms.

Lemma 5.38 (Decidability of conversion checking).

• if L | Φ; ∆ `i T ⇐̂⇒ T @ l, L | Ψ; Γ `i T ′ ⇐̂⇒ T ′@ l, L ` Φ ≈ Ψ and

L | Φ `i ∆ ≈ Γ, then whether L | Φ; ∆ `i T ⇐̂⇒ T ′@ l is decidable.

• if L | Φ; ∆ `i t ⇐̂⇒ t : T @ l, L | Ψ; Γ `i t′ ⇐̂⇒ t′ : T @ l, L ` Φ ≈ Ψ and

L | Φ `i ∆ ≈ Γ, then whether L | Φ; ∆ `i t ⇐̂⇒ t′ : T @ l is decidable.

By using the completeness lemma, we obtain the desired decidability proof.

Theorem 5.39 (Decidability of convertibility).

• If L | Ψ; Γ `i T @ l and L | Ψ; Γ `i T ′@ l, then whether L | Ψ; Γ `i T ≈ T ′@ l is

decidable.

• If L | Ψ; Γ `i t : T @ l and L | Ψ; Γ `i t′ : T @ l, then whether

L | Ψ; Γ `i t ≈ t′ : T @ l is decidable.

5.6 Summary

In this chapter, I develop DeLaM, a dependent type theory based on layering and

the matryoshka principle. DeLaM supports not only code running, but also recursion

on code objects, and therefore I have found a candidate to resolve my original research

problem: supporting meta-programming in dependent type theory. In particular, in the

examples, I have shown that DeLaM can be used to develop domain-specific solvers like

ac-check that focuses on the syntax of terms, as well as a “try-all” heuristic like crush

186

that analyzes the syntax of types, in a completely type-safe manner. In summary, De-

LaM demonstrates a promising path to support dependently typed meta-programming

in proof assistants.

Despite that DeLaM has nice properties like normalization and the decidability

of convertibility, it still requires work to understand how DeLaM can be applied in

practice. More studies are required to understand what other features are needed for

practical use, and what is a suitable programming paradigm to write meta-programs

in systems like DeLaM. These questions advocate more research in this subject and I

would hope to see that one day, dependently typed meta-programming is materialized

in proof assistants.

187

Part III

Discussions and Conclusions

188

6
Related Work And Discussions

6.1 Modal Type Theories

There is a long history of combining modalities and programming languages. Many

researchers have given different kinds of formulations. Prawitz (1965) first proposes a

formulation in natural deduction for the modal logic S4. However, as pointed out by

Bierman and de Paiva (2000); Pfenning and Davies (2001), Prawitz’s formulation is not

closed under substitutions, so the system is unsound. Indeed, how to support coherent

substitutions is the main challenge of designing modal type theories. One fix proposed

by Bierman and de Paiva (2000) is to “bolt” substitutions onto the introduction rule:

∀ i ∈ [0, n).Γ ` si : �Si x0 : �S0, · · · , xn−1 : �Sn−1 ` t : �T

Γ ` box t with s0/x0, · · · , sn−1/xn−1 : �T

Γ ` t : �T

Γ ` unbox t : T

Here the introduction rule for � maintains a substitution which replaces all modal

assumptions that t depends on (i.e. si for xi for all i). The second premise ensures

that t only depends on modal assumptions of type �Si. This formulation captures

189

the intuition in modal logic S4 that “valid facts only depend on valid assumptions”.

The elimination rule simply extracts T out of �. The β rule applies the pre-stored

substitutions:

unbox (box t with s0/x0, · · · , sn−1/xn−1) t[s0/x0, · · · , sn−1/xn−1]

Though this formulation is closed under substitutions, it does not seem very practical.

For one, having to specify a substitution when introducing � seems too restrictive.

It would be more helpful if this substitution can be specified during elimination. For

comparison, function arguments are provided during function application; functions

would not be very useful if arguments must be specified as part of function abstractions.

Therefore, in this thesis, I investigate the Kripke and dual-context styles proposed

by Davies and Pfenning (2001); Pfenning and Davies (2001); Pfenning and Wong (1995).

The novelty of Davies, Pfenning and Wong’s work is to realize that the modal logic S4

corresponds to (compositional) meta-programming by reading the modality � as code.

Their work not only gives a logical account for meta-programming directly, but also

sets a stepping stone for intensional analysis accomplished in this thesis. This series of

work by Pfenning and others also includes two different formulations of modal logics,

leading to two different styles of meta-programming, the Kripke style and the dual-

context style, described in Chapter 1. Davies and Pfenning (2001) give a translation

between the syntax of the Kripke-style and dual-context-style λ�, showing that two

styles have identical expressive power. This translation, however, is static and does not

take equivalence into account. In fact, this translation does not preserve equivalence

because � in the Kripke style is extensional due to the η rule, while the dual-context

style is not. Therefore, in the presence of dependent types where types may include

arbitrary computation, it is not straightforward to compare the expressive power of

Mint and dependently typed variants of the dual-context-style systems, e.g. crisp type

theory by Licata et al. (2018).

In Part I of this thesis, I focus on the Kripke style. In the Kripke style, typing

judgments are relative to context stacks. Each context in a stack models a Kripke

world in a Kripke universes and the � modality models travels among these worlds.

The relation among worlds is governed by the range of modal offsets, which control

190

the number of worlds to travel backwards (see Sec. 2.1 and 2.2). Martini and Masini

(1996) present a variant of the Kripke style, but their system annotates all terms with

a level for these Kripke worlds, so it is too verbose to use. Kripke-style systems are

also investigated under the name of the Fitch style. The Fitch style is first motivated

by Borghuis (1994), where Borghuis motivates his modal Pure Type Systems (PTS)

by the Fitch-style natural deduction. The Fitch-style natural deduction uses sequences

of sub-ordinate proofs to organize sub-proofs linearly, instead of trees in the Gentzen-

style natural deduction. A modal conclusion in the Fitch style only has a restricted

access (called reiteration) to modal assumptions. This restricted reiteration structure

inspires Borghuis to also employ context stacks (or generalized contexts in Borghuis’

terminologies) for typing modal PTS. Interestingly, despite different motivations, the

Kripke and Fitch styles18 eventually arrive at virtually identical systems. Unlike the

Kripke-style λ�, where the elimination form of � (unboxn) integrates both modal and

regular weakening, Borghuis’ elimination rule has explicit rules for regular weakening

and modal weakening. As a consequence, weakening is not a property of the overall

system in Borghuis’ work but is built in the definition. Furthermore, Borghuis studies

strong normalization via a translation of the modal PTS to a PTS, whereas I give a

direct strong normalization proof for both λ� and Mint.

Clouston (2018) develops a few other modal λ-calculi in Fitch style, including sys-

tems K and idempotent S4, and their categorical semantics. In idempotent S4, ��A

and �A are equivalent. In the formulation, it is the same as using the unbox eliminator

by dropping modal offsets entirely. Clouston switches to another variant, which uses

a special lock symbol µ to separate worlds in a single context. Clearly, this method

is ultimately the same as context stacks, though is still arguably inconvenient due to

extra side conditions like “delete all of the locks that occur in the context” or “no lock

occurs in context Γ”. These checks and operations on contexts with locks correspond

to modal structural properties in the Kripke style. For example, “deleting all of the

locks” corresponds to the property of modal fusion (see Sec. 2.2). The condition that

“no locks occur in context Γ” is naturally captured simply by the stack structure of the

18In fact, Borghuis did not refer to his formulation as “the Fitch style”. This name was first intro-
duced by Clouston (2018) at a much later time. See (Bellin et al., 2001, Sec. 6.1) for a contemporary
remark.

191

context stack in Kripke-style systems. Hence, the context-stack formulation is cleaner

and easier to use.

Compared to the dual-context style, the Kripke or Fitch style is challenging because

the latter’s substitution calculus is not very obvious. Indeed, a significant portion of

Part I is devoted to develop K-substitutions. Due to this challenge, direct normalization

proofs for even simply typed S4 and its sub-systems are only given very recently (Val-

liappan et al., 2022; Hu and Pientka, 2022a). Valliappan et al. (2022) focus on the

lock-based formulation and give a formulation for non-idempotent S4, where ��A and

�A are not equivalent and the eliminator unboxn requires modal offsets. Unlike the

Kripke style, where all four sub-systems of S4 only differ by the range of modal off-

sets and truncoids successfully capture the Kripke structure of � in both syntax and

semantics, Valliappan et al. (2022) have to give different formulations for the four sub-

systems, leading to four similar but distinct normalization proofs. In (Hu and Pientka,

2022a), I give a categorical strong normalization proof for all four sub-systems of S4

and describe contextual types in the Kripke style. A contextual type in the Kripke

style is relative to a context stack. Murase et al. (2023) present a Fitch-style S4 with

contextual types only relative to contexts and context polymorphism.

Gratzer et al. (2019) study a dependently typed idempotent S4. Their normaliza-

tion proof follows Abel (2013) as Part I. Their approach is different from mine in an

extra parameter of poset to model the Kripke structure, so their subsequent proofs

must be aware of this poset. In my presentation, truncoids abstract away the exact

Kripke structure, so one normalization proof can be instantiated to apply for all four

sub-systems of S4. A dependently typed variant of the system K and its categorical

characterization is given by Birkedal et al. (2020).

In Part II, I switch my focus to the layered style, a variant of the dual-context

style, to support intensional analysis. The dual-context style is much easier to un-

derstand and extend due to its quite obvious substitution calculus: a pair of meta-

and regular substitutions, where two kinds of substitutions respect distributivity (see

Lemma 4.8). Kavvos (2020) looks into the dual-context style and gives formulations for

sub-systems of S4, including K, T and K4. These sub-systems in the dual-context style

have different introduction rules for � and variable rules from S4, so the dual-context

style has a disadvantage of less modularity in the typing rules compared to the Kripke

192

style. Kavvos further gives their strong normalization proofs using the classic Tait’s

computability (Tait, 1967) and their categorical semantics.

Shulman (2018) gives a dependently typed dual-context-style system, spatial type

theory. In addition to the � modality, he introduces other modalities to relate topology

and homotopy. Licata et al. (2018) restrict spatial type theory to only the � modality

and introduce crisp type theory. This type theory is motivated to obtain an internal

models of universes in homotopy type theory (Program, 2013).

Recently, the dual-context style is generalized to capture multiple modalities by Gratzer

et al. (2020); Gratzer (2022). The result is a dependently typed parametric type the-

ory, multimodal type theory (MTT).19 MTT is parameterized by a 2-category.20 This

2-category not only models the modalities, but also describes how the modalities in-

teract. Thus, it could be possible to use MTT to model layers d and m of DeLaM.

Layers v and c, contextual types and the recursors on code, however, heavily rely on a

fixed interpretation (i.e. viewing terms at both layers as static pieces of code), it is not

clear how full DeLaM can be fit into MTT’s framework.

Another candidate that might subsume layered modal type theory and DeLaM is

adjoint logic (Jang et al., 2024b). Adjoint logic is a logical system which simultaneously

contains multiple logical systems. A logical system might access truths from other

logical systems using pairs of adjoint modalities. Jang et al. (2024b) show that adjoint

logic can be used to model many programming styles, including memory management

and meta-programming. As of now, this adjoint style of logic has not been fully scaled

to dependent type theory, so how it concretely models the layered-style systems remains

future work.

In the layered systems, I use layers to account for the number of nested �’s, which

shares some similarities with graded and quantitative systems (Atkey, 2018; Abel and

Bernardy, 2020; Moon et al., 2021). The latter systems use grades to keep track of uses

of variables. It would be interesting to have a universal framework to contain all these

19MTT also uses the µ symbol to manage contexts, which I find somewhat misleading, as it is
unrelated to the same symbol used in the Fitch style.

20For readers who are not familiar with the concept, a 1-category is a category in the classical sense.
A 2-category can be viewed as a 2-level, higher algebraic structure, where the equivalence on the first
level possesses a non-trivial 1-categorical structure. In a regular 1-category, this higher categorical
structure is simply not considered.

193

different uses of modalities, though it requires further investigations.

The layered systems distinguish computational behaviors at different layers and uses

the static code lemma to support pattern matching or recursors on code. This approach

is similar to GuTT (Gratzer and Birkedal, 2022), a guarded type theory supporting Löb

induction. GuTT has two layers. The first layer excludes dynamics of Löb induction

(but not for other terms) and enjoys normalization. The lost dynamics is recovered

at the second layer, at the cost of normalization. GuTT and the layered systems are

similar in that they both take advantage of differences between layers and one layer is

the extension of the other.

6.2 Normalization for Type Theories

The normalization of natural deduction systems can be dated back to Gentzen (1935)’s

PhD thesis, where he proves the consistency of propositional and first order logic.

Gentzen’s consistency proof constructs an intermediate system called the sequent cal-

culus and uses the process of cut elimination, which effectively corresponds to a sub-

stitution lemma and proves that the cut rule in the sequent calculus is redundant.

Consistency is concluded by showing the equivalence between natural deduction and

the cut-free sequent calculus. Reading his proof computationally, the proof in fact

constitutes a strong normalization algorithm which computes the βη normal form of a

term.

As opposed to Gentzen’s purely syntactic approach, in the context of type theory,

people tend to use semantic approaches. One of the most classical approaches is Tait’s

computability, or logical relations, or reducibility candidates (Tait, 1967; Girard, 1989).

The original problem which Tait solves is the strong normalization of STLC with β

reduction. A proof following Tait’s steps typically proceeds as follows: first, establish the

Church-Rosser property (Barendregt, 1985), which states that syntactically equivalent

terms eventually reduce to the same term (the common reduct). Then prove progress

and preservation (Wright and Felleisen, 1994) to show that this common reduct has the

same type as the original terms. Strong normalization is then proved by characterizing

strongly normalizing terms of each type constructor via logical relations. This process

is standard in much work prior to 2000 (Luo, 1990; Coquand and Gallier, 1990; Girard,

1972; Coquand, 1985, etc.). However, this process becomes very verbose for larger

194

systems and sometimes even too tedious, so many researchers have looked into other

ways to establish normalization.

In Part I, I presented normalization by evaluation (NbE). NbE is originally proposed

by Martin-Löf (1975); Berger and Schwichtenberg (1991). Instead of term reductions,

NbE employs some mathematical domain, in which computation is performed, and

then extracts normal forms from this domain. This method is more convenient as

there is no longer need to directly establish syntactic properties like Church-Rosser and

subject reduction. Instead, these properties are (implicitly) inherited from the chosen

mathematical domain, so the proof is much more light-weight and its size is much

smaller for complex systems than Tait’s original approach. Other than NbE based

on untyped domain models, which is the method used in Part I and is pioneered by

Abel (2013), another frequent approach is based on category theory. Altenkirch et al.

(1995) first give an NbE proof for STLC based on a presheaf model. In this setting,

a presheaf model is in fact a Kripke model, where the base category of weakenings

of contexts corresponds to the Kripke relation formed by weakenings. The categorical

lingo helps to organize thoughts and foresee necessary intermediate lemmas. NbE based

on presheaf models is a frequent method in my published work (Hu and Pientka, 2022a,

2024b). Altenkirch and Kaposi (2016a) further scale the presheaf model to dependent

types. Their model is effectively an instance of categories with families (CwFs) (Dybjer,

1995), a categorical formulation for dependent types. Cubric et al. (1998) describe a

different categorical NbE proof, based on a category theory enriched by PERs. This

method is not very easy to extend because it requires the development of a whole new

variant of category theory with PERs.

In Part II, I switched to another variant of Tait’s computability method, based

on (Abel et al., 2018), which only proves weak normalization. The advantage, however,

is to avoid proving Church-Rosser, which entails many technical setups. The rem-

edy for weak normalization is a type-directed conversion checking algorithm. Though

this method induces a significant larger proof size compared to NbE proofs, many re-

searchers (Pientka et al., 2019; Pujet and Tabareau, 2022, 2023; Adjedj et al., 2024,

etc.) including myself still find this method useful because of its clear, mechanized

reference in Agda. I will discuss this method in more details in the next section about

mechanization.

195

Another improvement of the classical Tait’s method is Sterling (2022)’s synthetic

Tait’s computability method. This method connects type theory with topos theory

and resolves difficult problems in type theory, like normalization, using properties in

topos theory. This new method notably proves normalization of cubical type theory

(Cohen et al., 2015) and normalization of MTT (Gratzer, 2022). Nevertheless, I person-

ally find that this method at the current stage requires a very high bar for a mathemat-

ical background for general computer scientists. I am hoping that future simplifications

will make this method more accessible and hence more frequently used in the research

community.

6.3 Mechanization of Normalization for Type The-

ories

From the 1990’s the question of how to mechanize the normalization proof for dependent

type theory has been fundamental to gain trust in the type-theoretic foundation which

proof assistants such as Coq, Agda and Lean are built on. One of the earliest works

is by Barras and Werner (1997). They formalize strong normalization for the calculus

of construction (CoC) in Coq using logical relations. More recently, Abel et al. (2018)

mechanize a normalization proof for Martin-Löf logical framework in Agda and is what

Part II is based on. Pujet and Tabareau (2022) extend this work by mechanizing

observational equality (Altenkirch et al., 2007) and a two-level cumulative universe

hierarchy. In addition to the level 0 and level 1 universes, they have an extra level

∞ universe, which subsumes both level 0 and 1 universes. Then the proof can simply

lift all types to the ∞ level and avoid explicit discussions of universe levels entirely.

This treatment resembles the typical paper proof. This work is further superseded

by Pujet and Tabareau (2023), which mechanizes impredicative observational equality.

Cumulativity of universes, however, is removed from the universe hierarchy. Adjedj et al.

(2024) redesign and port (Abel et al., 2018) to Coq. This work also takes advantage of

Coq’s excellent extraction mechanism to extract a certified executable for type-checker.

In contrast, mechanizations of NbE algorithms in dependent type theory are less

common. Danielsson (2006) presents the first mechanization of NbE for Martin-Löf

logical framework using induction-recursion in AgdaLight. As pointed out by Chapman

196

(2008), Danielsson (2006)’s formulation contains non-strictly positive predicates, which

compromise the trust in this work.

Chapman (2008) formalizes Martin-Löf logical framework in the style of CwFs in

Agda and presents a sound normalizer. However, the normalizer is not shown complete

whereas normalization algorithms in Part I are shown complete and sound.

Altenkirch and Kaposi (2016a,b, 2017) mechanize an NbE algorithm for Martin-

Löf logical framework in Agda and prove completeness and soundness using a presheaf

formulation akin to CwFs. Their development explores an advanced combination of

intrinsic syntactic representations and involved features like induction-induction (Fors-

berg and Setzer, 2010) and quotient inductive types. In comparison, this thesis only

relies on two standard extensions: induction-recursion and functional extensionality.

The simplicity leads to a mechanization of a full hierarchy of universes in Agda in

Chapter 3 and a (slow) certified executable after extraction. This mechanization is the

only one for untyped domain models in Agda to my knowledge.

Most mechanizations of NbE are done in Agda, as it supports induction-recursion,

which strengthens the logical power of the meta-language to define the semantics for

universes. Nevertheless, attempts are also made in Coq. Wieczorek and Biernacki

(2018) mechanize an NbE algorithm à la Abel (2013) for Martin-Löf logical framework

in Coq. Since Coq does not support induction-recursion, they universally quantify

over the impredicative universe Prop in their models. Their algorithm can also be

extracted to and run in Haskell or OCaml. One benefit of using Coq is that Prop is

automatically removed during extraction. Hence, their extraction code is cleaner than

the one generated from Agda. Recently, Jang et al. (2024a) are working on the same

NbE method and developing a fully certified type-checker for MLTT in Coq. This work

not only re-defines the PER model using impredicativity in Coq to accommodate an

infinite cumulative universe hierarchy, but also is designed for future extensions, e.g. a

mechanization of normalization for Cocon (Pientka et al., 2019).

197

(sound)
intensional analysis

homogeneity normalization

code running

Figure 6.1: Impossible tetrahedron for meta-programming foundations

6.4 Modalities, Meta-programming and Intensional

Analysis

Early ideas of meta-programming using quasi-quoting style can be traced back to

Lisp/Scheme (Abelson and Sussman, 1996). In Lisp’s untyped setting, all programs

are represented as lists, so intensional analysis is reduced to inspections of lists and is

relatively simple. Supporting type-safe meta-programming leads to all sorts of com-

plications. MetaML (Taha and Sheard, 2000) is an early example for type-safe meta-

programming. MetaML employs a quasi-quoting style similar to Lisp. However, MetaML

does not support any form of intensional analysis. In fact, in order to enable compile-

time optimization of generated code, MetML deliberately avoids intensional analysis.

Though quasi-quoting has a long history in meta-programming and is modeled by the

Kripke style in typed settings, as described at the beginning of Chapter 4, it does not

seem compatible with intensional analysis. On the other hand, though the dual-context

style forces programmers to write meta-programs in a comonadic style, it has a better

setup for intensional analysis, so I developed the layered style based on the dual-context

style in Part II. The dual-context style is also the approach taken in Beluga (Pientka,

2008; Pientka and Dunfield, 2008) and Moebius (Jang et al., 2022).

Boespflug and Pientka (2011) extend the dual-context style to the multi-context

style. Though the multi-context style and the Kripke style both use multiple contexts

for typing, the number of contexts in the former is fixed (hence context arrays), while in

198

the latter, contexts are often pushed and popped during typing (hence context stacks).

Moebius (Jang et al., 2022) combines the multi-context style and contextual types,

and supports pattern matching on code in System F. Moebius has subject reduction.

However, to adapt Moebius to a type theory, normalization must be proved, but it is

not obvious how to support coverage. Whether layering provides a solution requires a

future investigation.

Cocon (Pientka et al., 2019) is a 2-layered meta-programming type theory and is

similar to DeLaM in many ways. At the lower layer in Cocon is a logical framework

(LF) (Harper et al., 1993) to define object languages. A term in an object language

in LF can be analyzed and recursed on in MLTT at the higher layer. Though code

running is not a built-in facility in Cocon, it might be defined as a recursive function

in MLTT if the object language can be soundly embedded into MLTT. Semantically,

Cocon is similar to DeLaM in the 2-layered structure. Both systems need one model

for each layer. However, due to the flexibility of LF, the model for the lower layer in

Cocon does not and cannot have any specific relation to the one for MLTT at the

higher layer, while in DeLaM, models at different layers are related by the layering

restriction lemma. It is this lemma which enables code running universally in DeLaM.

A categorical semantics for Cocon is given by Pientka and Schöpp (2020); Hu et al.

(2022). Kovács (2022); Allais (2024) define 2-level type theory (2LTT), which is similar

to Cocon, but it focuses more on using dependent type theory to compose code of

practical languages and does not support intensional analysis.

In Fig. 6.1, I summarize different features of meta-programming systems and put

them into an impossible tetrahedron. The idea is that in this tetrahedron, it is possible

to find a type theory supporting each surface (hence trivially each edge), but as of now,

no system achieves all four vertices of the tetrahedron. I set one of the vertices to

be “homogeneity”, in the hope that future investigations could break this tetrahedron

and find a more uniform way to design a type theory that combines code running and

intensional analysis than layering. On the surface of intensional analysis, normalization

and code running, are clearly the layered systems in Part II. On the surface of homo-

geneity, normalization and intensional analysis is Cocon, which does not guarantee code

running for all code. On the surface of homogeneity, normalization and code running

is (contextual) λ� and its dependently typed variant, where only code composition and

199

code running are possible. On the surface of homogeneity, intensional analysis and code

running lies Moebius, for example, which does not have normalization because it needs

a way to ensure coverage for pattern matching. Breaking this tetrahedron effectively

implies a new method to support meta-programming in type theories.

There are other dependently typed meta-programming systems using modalities to

quantify code. Kawata and Igarashi (2019) study λMD, a logical framework with stages.

λMD is similar to Mint in that it also employs quasi-quoting and does not support

intensional analysis. One difference with Mint is that λMD uses stage variables to

keep track of stages, while Mint use context stacks and unbox levels for the same pur-

pose. Brady and Hammond (2006) improve Pasalic et al. (2002)’s Meta-D by extending

Martin-Löf type theory with stages, similar to Mint. Fundamentally, the type theory by

Brady and Hammond (2006) is the dependently typed system T with cross-stage persis-

tence. Extending the T variant of Mint with cross-stage persistence would constitute

Brady and Hammond (2006)’ system. Though the authors claim that their type theory

is strongly normalizing, they do not provide any proof, whereas Mint’s normalization

proof naturally adapts to all subsystems of S4, including T .

Ωmega (Viera and Pardo, 2006) is a sound, simply typed meta-programming system

with pattern matching on code. Ωmega implements the quasi-quoting style. The open

context of a code is annotated in the type, similar to contextual types. However, the

type of the code itself is not remembered, so their type system is not as complex due

to reduced type information.

6.5 Future Work

In this section, I discuss some future work for DeLaM.

6.5.1 Russell-Style Universes in DeLaM

DeLaM employs a Tarski-style universe hierarchy, where types and terms belong to

different grammars. This separation is introduced purely due to technical considera-

tions. The Tarski style is closer to the semantics and hence advantageous in formulating

the recursion principles for code in DeLaM both in syntax and in semantics, as in the

semantic judgments for code. However, the Tarski style is not often used in proof assis-

tants, where the Russell style is the common practice. Therefore, an important future

200

work to make DeLaM more practical is to derive its Russell-style variant. Syntac-

tically, this implies that the recursion principle for code in this variant is no longer

mutual, because there is only one grammar for both types and terms. In retrospect, I

think that the Russell style should be fairly straightforward to work out. Here, I list

a few important adjustments. Note that the universes are still non-cumulative; cumu-

lativity induces subtyping, which is an orthogonal complication that I would like to

avoid thinking about at this moment. First, there is only one kind of contextual types

in the syntax: �(Γ `c T @ l), and the code of types simply has type �(Γ `c Tyl @ 1 + l).

Correspondingly, there is only one elimination principle for code:

eliml (`, g, uT , xt.M)
−→
b (t : �(Γ `c T @ l′))

Since the recursion principle is no longer mutual, it only requires one motive M on

universe level l for the return type of the recursion. In this case, this whole recursion

has type M [l′/`,Γ/g, T/uT , t/xt]. The recursor still requires a list of branches
−→
b , but

there are fewer of branches than the Tarski style, as there is no distinction between

types and terms anymore. On the surface, the recursion still occurs for sub-structures,

so termination remains quite natural. To model the semantics for code, the steps taken

in Sec. 5.4.4 should still be correct in principle. A semantic judgment for MLTT is

needed to capture the running information at layers d and m, and this judgment is

embedded in another inductively defined judgment for code of MLTT to recursively

remember the syntactic shapes of the terms. Whether the adjustments outlined here

will work, however, is left for the future.

6.5.2 NbE for DeLaM

An NbE algorithm based on an untyped domain model has many advantages. It not

only gives a strong normalization algorithm, hence also a trivial conversion checking

algorithm, but also is very easy to mechanize and implement. The proofs are also much

less complex than the current method based on reductions and an explicit conversion

checking algorithm. Therefore, developing an NbE algorithm with an untyped domain

model is a valuable option.

To develop an NbE algorithm, it is convenient to first convert DeLaM into a version

201

with explicit substitutions. The purpose of introducing explicit substitutions is to delay

the action of substitutions to evaluation, so that proofs about the PER model are

simplified. This part should be achievable by following Abel and Pientka (2010).

The main difficulty of giving an NbE lies in the definition of the domain model. More

specifically, the domain model must capture the syntactic aspects of code, so the part

of the domain model for code is necessarily isomorphic to the syntax of DeLaM. What

should this part be? I can think of two possible options, each with its own advantages

and disadvantages.

The first option is that this part of the domain model is just the syntax of De-

LaM, i.e. the syntax of DeLaM is a subset of the domain model. This option is

quite convenient, especially when giving the semantics for the recursors on code, as

the recursors directly act on code itself. This option is in fact taken in the categorical

normalization proof in the published work for layered modal simple type theory (Hu

and Pientka, 2024b). In the settings of an untyped domain model, however, this option

is not entirely beneficial. With dependent types, the well-formedness of code is rela-

tive to a meta-context, so this option would already require the PER model to respect

meta-weakenings among meta-contexts, adding an extra Kripke structure to the PER

model. This addition is not very desirable because the advantage of an untyped domain

model is to only focus on the runtime of the evaluation process, so the PER model itself

does not need to respect any weakening originally. Bringing in a Kripke structure to

the PER model seems to have defeated the purpose.

Another possible option is to introduce a representation of syntax in the untyped

domain model, where meta-variables, similar to regular variables, are represented by de

Bruijn levels. This option recovers the PER model from the problem in the previous

option by avoiding the addition of a Kripke structure. However, the downside is that

the relation between the actual syntax and the domain representation of syntax is no

longer identity. This representation must simulate meta-substitutions, which have been

defined in the syntax, and relate its action on the recursors on code with syntax. To

handle lifting, the evaluation process must also evaluate this domain representation, in

addition to syntax, to other domain values.

Some comparisons between both options seem to suggest that the second option is

slightly better. Whether this intuition is the case requires more careful investigations.

202

6.5.3 Mechanization of DeLaM

Due to time limitation, I leave the mechanization of DeLaM for future work. Although

the mechanization in principle should just follow this thesis and the technical report (Hu

and Pientka, 2024a) closely, there are a number of difficulties which might have been

over-simplified for the purpose of paper presentation.

One immediate problem is universe levels and their equivalence. Throughout this

thesis, I intentionally conflate the equivalence of universe levels with their equality,

and omit the fact that the decision of equivalence requires an algorithm. Though

this algorithm is relatively simple, in an actual mechanization, related details must be

explicitly spelled out and therefore introduce more noise than the paper presentation.

A more challenging problem caused by universe polymorphism is universe variables

and their well-foundedness. To model the universe hierarchy, the logical relations must

be defined by recursion on universe levels. In this thesis, this is expressed by a transfinite

recursion due to the ω level, which is above all countable levels. In mechanization, how

this transfinite structure should be handled remains unclear at this point.

Another complication is the parametricity of the logical relations. In the thesis, the

logical relations are defined parametrically. In particular, the logical relations for types

and terms overlap in cases for MLTT. This parametricity is for conciseness, but also

introduces conceptual connections between layers d and m and reveals the connection

established by the layering restriction lemma. Proofs for overlapping cases are also ar-

gued altogether, so the size of the paper proof might be halved due to the parametricity.

However, this parametricity might not be easily mechanized. The major difficulty is

that the logical relations for layer m require too many complex intermediate definitions

after defining the logical relations for layer d. In particular, to model static code, the

semantic judgment for code is inductively defined, which itself refers to the logical rela-

tions for terms and substitutions at layer d. Though this difficulty does not ultimately

impede the mechanization, it is likely to blow up the scale of the mechanization by

requiring duplications of all necessary lemmas at both layers d and m. Given the size of

the proofs of normalization and decidable convertibility is already quite large on paper,

a mechanized proof could be very difficult to manage, and as more progress is made,

the type-checking time of the project could become less and less bearable.

203

Finally, a complete development of an NbE algorithm described in Sec. 6.5.2 is likely

to reduce the workload of the mechanization. Therefore, it is more viable to first work

on NbE on paper first, and then transcribe the paper proof in a proof assistant.

6.5.4 Other Extensions for DeLaM

The DeLaM presented in Chapter 5 is minimal in that more facilities are needed in

order to write more potentially useful meta-programs / tactics. In fact, a few extensions

are quite straightforward by looking at the semantics. For example, it should be possible

to obtain code for regular contexts and recurse on the structure of regular contexts. To

enable these features, DeLaM can be extended with �Ctx, which indicates the static

code of a regular context. Since the semantics of �Ctx live at layer d as modeled by

the logical relations, this type can live on the universe level 0 at layer m.

Similarly, it should be possible to meta-program and recurse on the code of a regular

substitution, following Pientka (2008). For a regular context ∆, a contextual type for a

regular substitution is �(Γ `c ∆). Again, since the semantics of regular substitutions

already has been given in the logical relations at layer d, �(Γ `c ∆) can also live in

the universe level 0 at layer m.

In principle, many types and operations on objects from MLTT can be added to

layer m in DeLaM to provide more practical facilities for meta-programming.

6.6 An Outline of Implementing DeLaM

Implementing DeLaM in a proof assistant is an obvious and very interesting future

work. It will allows us to understand what features should be included in the type-

theoretic foundation to make type-safe meta-programming practical. Nevertheless, due

to time limitations, I do not intend to tackle this problem in this thesis, so I will leave

an implementation as a future work. However, I would still like to put down my visions

and thoughts on this implementation. As we all know, there is a large gap between how

a type theory is defined on paper and how it is actually implemented. DeLaM is not a

very conventional type theory, in that it can be implemented in many different styles,

depending on the angles which the implementors take. In this section, I only discuss

my angle and leave other angles to the imagination of the readers.

The implementation that I envision is based on the observation that there are essen-

204

tially two (related) dependently typed systems in DeLaM, induced by layers c and m.

Both systems should be extendable. The idea is then to separate the implementation

into two modes, mode c (default) and mode m. Mode m is what one would probably

expect: it implements layer m of DeLaM, and allows users to write meta-programs.

Meta-programs can pattern matching on any MLTT definitions that are in the current

scope. Mode m should also be able to use all definitions from its imports, both from

mode m and from mode c. Hence, the examples in Sec. 5.1 can be written in this mode.

Necessary normalization occurs in order to do type-checking.

Mode c, on the other hand, only extends MLTT. In this mode, the exact syntax of

MLTT definitions is preserved, so these definitions could participate in meta-programs

in mode m. Mode c is special, in that users could still import modules from mode

m and refer to definitions and meta-programs from mode m in mode c. Before being

type-checked, definitions in mode c are first passed to a code generation phase. If

a definition refers to any meta-program, then necessary β reduction is performed by

the code generator to reduce away all meta-programs, so that the eventual term fits in

MLTT. It is crucial that the code generator does not do more reduction than necessary,

because if users use meta-programs to define a function in MLTT, usually they would

want to keep the exact generated syntax. This exact syntax can be subsequently pattern

matched on in mode m. To give a concrete example, ac-check, search and crush in

Sec. 5.1 are put in module A in mode m, because they are meta-programs. Meanwhile,

lem and lem2 can be put in a different module B in mode c, which imports module A.

Before type-checking lem and lem2, the code generator first reduces the meta-programs.

The code generator first attempts to reduce the calls to ac-check and crush to normal

forms, and continues to reduce away letbox. Eventually, meta-programs in both lemmas

reduce to some valid MLTT syntax, so their definitions type-check in MLTT at layer

c. In this way, mode c strictly correspond to MLTT. However, this code generation

phase might fail even if a term has a pure MLTT type. In this case, this term includes

meta-programs that cannot be fully reduced away. The following is one such program:

foo : Nat → Nat

foo x = letbox u ← (if eq? x zero then box zero else box zero) in u

In this program, I artificially create a branch based on the value of the input x. Both

branches return box zero so this comparison is essentially bogus, but it does prevent

205

the letbox from being fully reduced. Therefore, foo cannot be type-checked in mode c.

This way of implementing DeLaM has multiple advantages. First, it ensures the

extendability of both modes, so users may choose to program in MLTT or meta-

program in DeLaM. The explicit separation between modes is helpful for users to keep

track of the mode that they are working in. This organization also gives freedom of

trusted bases to the users. They can directly choose DeLaM as the trusted base. In

this case, they simply do everything in mode m. For users who would like to keep a

minimal trusted base, they can choose to work in mode c most of time, and only use

the meta-programming facilities in mode m for convenience. In this case, the type-

checker makes sure that all meta-programs are eventually reduced away, so only pure

MLTT terms are admitted. Many existing proof assistants could be extended based

on this organization. The actual time to extend an existing proof assistant, e.g. Agda,

is difficult to establish with today’s knowledge, so I leave it as future work.

206

7
Conclusions

In this thesis, I investigate various modal type theories with applications in meta-

programming. In all type theories in this thesis, I focus on the necessity modality

�, which describes types of code under Curry-Howard correspondence. This reading

provides a convenient logical foundation, which serves as a good starting point to de-

sign type theories. In Part I, I first look into the Kripke-style modal type theories.

The Kripke-style systems faithfully model the familiar quasi-quoting style for meta-

programming. In the Kripke style, type theories maintain a stack of contexts, and we

can use the constructor box and the eliminator unbox to push and pop this stack. The

Kripke style also has an additional advantage of modeling all four sub-systems of S4 at

once, by simply tweaking the range of modal offsets. In Part I, I first give a modular

strong normalization proof for λ�, a simply typed Kripke-style modal type theory. In-

stantiating this proof proves strong normalization of all four sub-systems of S4. I then

scale λ� to dependent types, introducing Mint, a modal intuitionistic type theory. The

strong normalization proof scales naturally to Mint.

Though Mint readily serves as a good program logic for meta-programming systems

207

like MetaML where users can compose and execute code, it is not very clear how

Mint can support intensional analysis, in particular a general recursion principle on

the structure of code. To tackle this problem, in Part II, I investigate the layered

systems, which are a modified style from the dual-context style. In a layered modal

type theory, sub-languages form a hierarchy, where a sub-language from an inner layer

is subsumed by one from an outer layer. This characteristic is called the matryoshka

principle, which is the fundamental philosophy behind the layered style. Following the

footsteps in Part I, I first design an (almost) simply typed layered modal type theory

and prove its weak normalization and decidability of convertibility. Finally, I scale

this design to dependent types, introducing DeLaM, a dependent layered modal type

theory. DeLaM not only supports quotation, composition and execution of MLTT

code, but also supports a general recursion principle on the structure of code. Hence,

DeLaM achieves the research objective for this part. As future work, I have also

outlined a few places in DeLaM to make potential improvements, as well as a number

of key points when implementing it.

I believe that the research results in this thesis contribute to a bigger picture of

combining type theory and meta-programming and can stimulate more research towards

this direction.

208

Bibliography

Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. 1991. Ex-

plicit Substitutions. J. Funct. Program. 1, 4 (1991), 375–416. https://doi.org/

10.1017/S0956796800000186

Andreas Abel. 2013. Normalization by Evaluation: Dependent Types and Impredica-

tivity. Habilitation Thesis. Ludwig-Maximilians-Universität München, Munich, Ger-

many. https://www.cse.chalmers.se/~abela/habil.pdf

Andreas Abel and Jean-Philippe Bernardy. 2020. A Unified View of Modalities in

Type Systems. Proc. ACM Program. Lang. 4, ICFP (2020), 90:1–90:28. https:

//doi.org/10.1145/3408972

Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2018. Decidability of Conversion

for Type Theory in Type Theory. Proc. ACM Program. Lang. 2, POPL (2018),

23:1–23:29. https://doi.org/10.1145/3158111

Andreas Abel and Brigitte Pientka. 2010. Explicit Substitutions for Contextual

Type Theory. In Proceedings 5th International Workshop on Logical Frameworks

and Meta-languages: Theory and Practice, LFMTP 2010, Edinburgh, UK, July 14,

2010 (EPTCS, Vol. 34), Karl Crary and Marino Miculan (Eds.). 5–20. https:

//doi.org/10.4204/EPTCS.34.3

Andreas Abel, Andrea Vezzosi, and Théo Winterhalter. 2017. Normalization by Eval-

uation for Sized Dependent Types. Proc. ACM Program. Lang. 1, ICFP (2017),

33:1–33:30. https://doi.org/10.1145/3110277

209

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1017/S0956796800000186
https://www.cse.chalmers.se/~abela/habil.pdf
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3158111
https://doi.org/10.4204/EPTCS.34.3
https://doi.org/10.4204/EPTCS.34.3
https://doi.org/10.1145/3110277

Harold Abelson and Gerald J. Sussman. 1996. Structure and Interpretation of Computer

Programs, Second Edition. MIT Press.

Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pédrot, and Löıc

Pujet. 2024. Martin-Löf à la Coq. In Proceedings of the 13th ACM SIGPLAN In-

ternational Conference on Certified Programs and Proofs, CPP 2024, London, UK,

January 15-16, 2024, Amin Timany, Dmitriy Traytel, Brigitte Pientka, and Sandrine

Blazy (Eds.). ACM, 230–245. https://doi.org/10.1145/3636501.3636951

Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. 2003. A Func-

tional Correspondence between Evaluators and Abstract Machines. In Proceedings

of the 5th International ACM SIGPLAN Conference on Principles and Practice of

Declarative Programming, PPDP 2003, Uppsala, Sweden, August 27-29, 2003. ACM,

8–19. https://doi.org/10.1145/888251.888254

Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. 2015. Univalent Cate-

gories and the Rezk Completion. Math. Struct. Comput. Sci. 25, 5 (2015), 1010–1039.

https://doi.org/10.1017/S0960129514000486

Guillaume Allais. 2024. Scoped and Typed Staging by Evaluation. In Proceedings of the

2024 ACM SIGPLAN International Workshop on Partial Evaluation and Program

Manipulation, PEPM 2024, London, UK, January 16, 2024, Gabriele Keller and

Meng Wang (Eds.). ACM, 83–93. https://doi.org/10.1145/3635800.3636964

Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical Re-

construction of a Reduction Free Normalization Proof. In Proceedings of the 6th

International Conference on Category Theory and Computer Science, CTCS 1995,

Cambridge, UK, August 7-11, 1995 (Lecture Notes in Computer Science, Vol. 953),

David H. Pitt, David E. Rydeheard, and Peter T. Johnstone (Eds.). Springer, 182–

199. https://doi.org/10.1007/3-540-60164-3_27

Thorsten Altenkirch and Ambrus Kaposi. 2016a. Normalisation by Evaluation for

Dependent Types. In 1st International Conference on Formal Structures for Com-

putation and Deduction, FSCD 2016, Porto, Portugal, June 22-26, 2016 (LIPIcs,

210

https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1145/888251.888254
https://doi.org/10.1017/S0960129514000486
https://doi.org/10.1145/3635800.3636964
https://doi.org/10.1007/3-540-60164-3_27

Vol. 52), Delia Kesner and Brigitte Pientka (Eds.). Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 6:1–6:16. https://doi.org/10.4230/LIPICS.FSCD.2016.

6

Thorsten Altenkirch and Ambrus Kaposi. 2016b. Type Theory in Type Theory Us-

ing Quotient Inductive Types. In Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Pe-

tersburg, Florida, USA, January 20-22, 2016, Rastislav Bod́ık and Rupak Majumdar

(Eds.). ACM, 18–29. https://doi.org/10.1145/2837614.2837638

Thorsten Altenkirch and Ambrus Kaposi. 2017. Normalisation by Evaluation for Type

Theory, in Type Theory. Log. Methods Comput. Sci. 13, 4 (2017). https://doi.

org/10.23638/LMCS-13(4:1)2017

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational

Equality, Now!. In Proceedings of the ACM Workshop Programming Languages meets

Program Verification, PLPV 2007, Freiburg, Germany, October 5, 2007, Aaron

Stump and Hongwei Xi (Eds.). ACM, 57–68. https://doi.org/10.1145/1292597.

1292608

Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nicolas Tabareau.

2018. Towards Certified Meta-Programming with Typed Template-Coq. In Proceed-

ings of the 9th International Conference on Interactive Theorem Proving, ITP 2018,

Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12,

2018 (Lecture Notes in Computer Science, Vol. 10895), Jeremy Avigad and Assia

Mahboubi (Eds.). Springer, 20–39. https://doi.org/10.1007/978-3-319-94821-

8_2

Kenneth Appel and Wolfgang Haken. 1977. The Solution of the Four-Color-Map Prob-

lem. Scientific American 237, 4 (1977), 108–121. https://doi.org/10.1038/

scientificamerican1077-108

Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In Proceedings

of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

211

https://doi.org/10.4230/LIPICS.FSCD.2016.6
https://doi.org/10.4230/LIPICS.FSCD.2016.6
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.23638/LMCS-13(4:1)2017
https://doi.org/10.23638/LMCS-13(4:1)2017
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1038/scientificamerican1077-108
https://doi.org/10.1038/scientificamerican1077-108

2018, Oxford, UK, July 09-12, 2018, Anuj Dawar and Erich Grädel (Eds.). ACM,

56–65. https://doi.org/10.1145/3209108.3209189

Hendrik Pieter Barendregt. 1985. The Lambda Calculus - Its Syntax and Semantics.

Studies in Logic and the Foundations of Mathematics, Vol. 103. North-Holland.

Bruno Barras and Benjamin Werner. 1997. Coq in Coq. https://www.

lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf Unpublished

manuscript.

Gianluigi Bellin, Valeria C. V. de Paiva, and Eike Ritter. 2001. Extended Curry-Howard

Correspondence for A Basic Constructive Modal Logic. In Proceedings of Methods for

Modalities.

Ulrich Berger and Helmut Schwichtenberg. 1991. An Inverse of the Evaluation Func-

tional for Typed Lambda-calculus. In Proceedings of the 6th Annual Symposium on

Logic in Computer Science, LICS 1991, Amsterdam, the Netherlands, July 15-18,

1991. IEEE Computer Society, 203–211. https://doi.org/10.1109/LICS.1991.

151645

Marc Bezem, Thierry Coquand, Peter Dybjer, and Mart́ın Escardó. 2022. Type Theory

with Explicit Universe Polymorphism. In 28th International Conference on Types for

Proofs and Programs, TYPES 2022, LS2N, University of Nantes, France, June 20-

25, 2022 (LIPIcs, Vol. 269), Delia Kesner and Pierre-Marie Pédrot (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–13:16. https://doi.org/10.4230/

LIPICS.TYPES.2022.13

Gavin M. Bierman and Valeria de Paiva. 2000. On An Intuitionistic Modal Logic. Stud

Logica 65, 3 (2000), 383–416. https://doi.org/10.1023/A:1005291931660

Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M.

Pitts, and Bas Spitters. 2020. Modal Dependent Type Theory and Dependent Right

Adjoints. Math. Struct. Comput. Sci. 30, 2 (2020), 118–138. https://doi.org/10.

1017/S0960129519000197

212

https://doi.org/10.1145/3209108.3209189
https://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
https://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.4230/LIPICS.TYPES.2022.13
https://doi.org/10.4230/LIPICS.TYPES.2022.13
https://doi.org/10.1023/A:1005291931660
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.1017/S0960129519000197

Mathieu Boespflug and Brigitte Pientka. 2011. Multi-level Contextual Type Theory.

In Proceedings of the 6th International Workshop on Logical Frameworks and Meta-

languages: Theory and Practice, LFMTP 2011, Nijmegen, the Netherlands, August

26, 2011 (EPTCS, Vol. 71), Herman Geuvers and Gopalan Nadathur (Eds.). 29–43.

https://doi.org/10.4204/EPTCS.71.3

V. A. J. Borghuis. 1994. Coming to Terms with Modal Logic : on the Interpretation of

Modalities in Typed Lambda-calculus. PhD Thesis. Technische Universiteit Eindhoven,

Eindhoven, the Netherlands. https://doi.org/10.6100/IR427575

Edwin C. Brady and Kevin Hammond. 2006. A Verified Staged Interpreter is A Verified

Compiler. In Proceedings of the 5th International Conference on Generative Program-

ming and Component Engineering, GPCE 2006, Portland, Oregon, USA, October

22-26, 2006, Stan Jarzabek, Douglas C. Schmidt, and Todd L. Veldhuizen (Eds.).

ACM, 111–120. https://doi.org/10.1145/1173706.1173724

William Burr. 2020. False Warnings of Soviet Missile Attacks Put U.S. Forces on

Alert in 1979-1980. https://nsarchive.gwu.edu/briefing-book/nuclear-

vault/2020-03-16/false-warnings-soviet-missile-attacks-during-1979-

80-led-alert-actions-us-strategic-forces

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Ap-

pel. 2018. VST-Floyd: A Separation Logic Tool to Verify Correctness of C Programs.

J. Autom. Reason. 61, 1-4 (2018), 367–422. https://doi.org/10.1007/S10817-

018-9457-5

Andrew Cave and Brigitte Pientka. 2012. Programming with Binders and Indexed Data-

types. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January

22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 413–424. https://doi.

org/10.1145/2103656.2103705

James Chapman. 2008. Type Theory Should Eat Itself. In Proceedings of the Inter-

national Workshop on Logical Frameworks and Metalanguages: Theory and Prac-

tice, LFMTP@LICS 2008, Pittsburgh, Pennsylvania, USA, June 23, 2008 (Electronic

213

https://doi.org/10.4204/EPTCS.71.3
https://doi.org/10.6100/IR427575
https://doi.org/10.1145/1173706.1173724
https://nsarchive.gwu.edu/briefing-book/nuclear-vault/2020-03-16/false-warnings-soviet-missile-attacks-during-1979-80-led-alert-actions-us-strategic-forces
https://nsarchive.gwu.edu/briefing-book/nuclear-vault/2020-03-16/false-warnings-soviet-missile-attacks-during-1979-80-led-alert-actions-us-strategic-forces
https://nsarchive.gwu.edu/briefing-book/nuclear-vault/2020-03-16/false-warnings-soviet-missile-attacks-during-1979-80-led-alert-actions-us-strategic-forces
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1145/2103656.2103705
https://doi.org/10.1145/2103656.2103705

Notes in Theoretical Computer Science, Vol. 228), Andreas Abel and Christian Urban

(Eds.). Elsevier, 21–36. https://doi.org/10.1016/J.ENTCS.2008.12.114

David R. Christiansen and Edwin C. Brady. 2016. Elaborator Reflection: Extending

Idris in Idris. In Proceedings of the 21st ACM SIGPLAN International Conference on

Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, Jacques

Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 284–297. https://doi.

org/10.1145/2951913.2951932

William D. Clinger and Jonathan Rees. 1991. Macros That Work. In Conference Record

of the 18th Annual ACM Symposium on Principles of Programming Languages, POPL

1996, Orlando, Florida, USA, January 21-23, 1991, David S. Wise (Ed.). ACM Press,

155–162. https://doi.org/10.1145/99583.99607

Ranald Clouston. 2018. Fitch-Style Modal Lambda Calculi. In Proceedings of the

21st International Conference on Foundations of Software Science and Computation

Structures, FoSSaCS 2018, Held as Part of the European Joint Conferences on The-

ory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018

(Lecture Notes in Computer Science, Vol. 10803), Christel Baier and Ugo Dal Lago

(Eds.). Springer, 258–275. https://doi.org/10.1007/978-3-319-89366-2_14

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2015. Cubical

Type Theory: A Constructive Interpretation of the Univalence Axiom. In 21st In-

ternational Conference on Types for Proofs and Programs, TYPES 2015, Tallinn,

Estonia, May 18-21, 2015 (LIPIcs, Vol. 69), Tarmo Uustalu (Ed.). Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 5:1–5:34. https://doi.org/10.4230/LIPICS.

TYPES.2015.5

Committee on Government Reform and Oversight. 1998. The Year 2000 Problem:

Fourth Report by the Committee on Government Reform and Oversight, Together

with Additional Views. https://www.congress.gov/105/crpt/hrpt827/CRPT-

105hrpt827.pdf

Thierry Coquand. 1985. Une théorie des constructions. PhD Thesis. Université Paris

VII., Paris, France.

214

https://doi.org/10.1016/J.ENTCS.2008.12.114
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1145/99583.99607
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.4230/LIPICS.TYPES.2015.5
https://doi.org/10.4230/LIPICS.TYPES.2015.5
https://www.congress.gov/105/crpt/hrpt827/CRPT-105hrpt827.pdf
https://www.congress.gov/105/crpt/hrpt827/CRPT-105hrpt827.pdf

Thierry Coquand and Jean Gallier. 1990. A Proof of Strong Normalization for the The-

ory of Constructions Using a Kripke-like Interpretation. Technical Reports (CIS)

(July 1990). https://repository.upenn.edu/cis_reports/568 University of

Pennsylvania, Philadelphia, Pennsylvania, USA.

Thierry Coquand and Gérard P. Huet. 1988. The Calculus of Constructions. Inf. Com-

put. 76, 2/3 (1988), 95–120. https://doi.org/10.1016/0890-5401(88)90005-3

Lúıs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. 2004. C-CoRN, the Construc-

tive Coq Repository at Nijmegen. In Proceedings of the 3rd International Confer-

ence on Mathematical Knowledge Management, MKM 2004, Bialowieza, Poland,

September 19-21, 2004 (Lecture Notes in Computer Science, Vol. 3119), Andrea

Asperti, Grzegorz Bancerek, and Andrzej Trybulec (Eds.). Springer, 88–103. https:

//doi.org/10.1007/978-3-540-27818-4_7

Djordje Cubric, Peter Dybjer, and Philip J. Scott. 1998. Normalization and the Yoneda

Embedding. Math. Struct. Comput. Sci. 8, 2 (1998), 153–192. http://journals.

cambridge.org/action/displayAbstract?aid=44745

Ryan Culpepper, Matthias Felleisen, Matthew Flatt, and Shriram Krishnamurthi. 2019.

From Macros to DSLs: The Evolution of Racket. In 3rd Summit on Advances in

Programming Languages, SNAPL 2019, Providence, Rhode Island, USA, May 16-

17, 2019 (LIPIcs, Vol. 136), Benjamin S. Lerner, Rastislav Bod́ık, and Shriram

Krishnamurthi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 5:1–5:19.

https://doi.org/10.4230/LIPICS.SNAPL.2019.5

Nils Anders Danielsson. 2006. A Formalisation of a Dependently Typed Language

as An Inductive-Recursive Family. In International Workshop on Types for Proofs

and Programs, TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised Selected

Papers (Lecture Notes in Computer Science, Vol. 4502), Thorsten Altenkirch and

Conor McBride (Eds.). Springer, 93–109. https://doi.org/10.1007/978-3-540-

74464-1_7

Rowan Davies and Frank Pfenning. 1996. A Modal Analysis of Staged Computation. In

Conference Record of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

215

https://repository.upenn.edu/cis_reports/568
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/978-3-540-27818-4_7
https://doi.org/10.1007/978-3-540-27818-4_7
http://journals.cambridge.org/action/displayAbstract?aid=44745
http://journals.cambridge.org/action/displayAbstract?aid=44745
https://doi.org/10.4230/LIPICS.SNAPL.2019.5
https://doi.org/10.1007/978-3-540-74464-1_7
https://doi.org/10.1007/978-3-540-74464-1_7

Programming Languages, POPL 1996, St. Petersburg Beach, Florida, USA, January

21-24, 1996, Hans-Juergen Boehm and Guy L. Steele Jr. (Eds.). ACM Press, 258–270.

https://doi.org/10.1145/237721.237788

Rowan Davies and Frank Pfenning. 2001. A Modal Analysis of Staged Computation.

J. ACM 48, 3 (2001), 555–604. https://doi.org/10.1145/382780.382785

N.G de Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser theorem.

Indagat. Math. 75, 5 (1972), 381–392. https://doi.org/10.1016/1385-7258(72)

90034-0

Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and

Programming Language. In Proceedings of the 28th International Conference on Au-

tomated Deduction, CADE 2021, Virtual Event, July 12-15, 2021 (Lecture Notes in

Computer Science, Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer,

625–635. https://doi.org/10.1007/978-3-030-79876-5_37

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and

Jakob von Raumer. 2015. The Lean Theorem Prover (System Description). In

Proceedings of the 25th International Conference on Automated Deduction, CADE

2015, Berlin, Germany, August 1-7, 2015 (Lecture Notes in Computer Science,

Vol. 9195), Amy P. Felty and Aart Middeldorp (Eds.). Springer, 378–388. https:

//doi.org/10.1007/978-3-319-21401-6_26

David Delahaye. 2000. A Tactic Language for the System Coq. In Proceedings of the

7th International Conference on Logic for Programming and Automated Reasoning,

LPAR 2000, Reunion Island, France, November 11-12, 2000 (Lecture Notes in Com-

puter Science, Vol. 1955), Michel Parigot and Andrei Voronkov (Eds.). Springer,

85–95. https://doi.org/10.1007/3-540-44404-1_7

Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael D. Bailey,

Frank Li, Nicholas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, and

Vern Paxson. 2014. The Matter of Heartbleed. In Proceedings of the 2014 Confer-

ence on Internet Measurement Conference, IMC 2014, Vancouver, British Columbia,

216

https://doi.org/10.1145/237721.237788
https://doi.org/10.1145/382780.382785
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/3-540-44404-1_7

Canada, November 5-7, 2014, Carey Williamson, Aditya Akella, and Nina Taft (Eds.).

ACM, 475–488. https://doi.org/10.1145/2663716.2663755

Peter Dybjer. 1995. Internal Type Theory. In International Workshop on Types for

Proofs and Programs, TYPES 1995, Torino, Italy, June 5-8, 1995, Selected Papers

(Lecture Notes in Computer Science, Vol. 1158), Stefano Berardi and Mario Coppo

(Eds.). Springer, 120–134. https://doi.org/10.1007/3-540-61780-9_66

Peter Dybjer. 2000. A General Formulation of Simultaneous Inductive-Recursive Def-

initions in Type Theory. J. Symb. Log. 65, 2 (2000), 525–549. https://doi.org/

10.2307/2586554

Peter Dybjer and Anton Setzer. 2001. Indexed Induction-Recursion. In Proceedings

of the International Seminar on Proof Theory in Computer Science, PTCS 2001,

Dagstuhl Castle, Germany, October 7-12, 2001 (Lecture Notes in Computer Science,

Vol. 2183), Reinhard Kahle, Peter Schroeder-Heister, and Robert F. Stärk (Eds.).

Springer, 93–113. https://doi.org/10.1007/3-540-45504-3_7

Peter Dybjer and Anton Setzer. 2003. Induction-recursion and Initial Algebras. Ann.

Pure Appl. Log. 124, 1-3 (2003), 1–47. https://doi.org/10.1016/S0168-0072(02)

00096-9

Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de

Moura. 2017. A Metaprogramming Framework for Formal Verification. Proc. ACM

Program. Lang. 1, ICFP (2017), 34:1–34:29. https://doi.org/10.1145/3110278

Fredrik Nordvall Forsberg and Anton Setzer. 2010. Inductive-Inductive Definitions.

In Proceedings of the 24th International Workshop on Computer Science Logic, CSL

2010, Brno, Czech Republic, August 23-27, 2010 (Lecture Notes in Computer Science,

Vol. 6247), Anuj Dawar and Helmut Veith (Eds.). Springer, 454–468. https://doi.

org/10.1007/978-3-642-15205-4_35

Murdoch James Gabbay and Aleksandar Nanevski. 2013. Denotation of Contextual

Modal Type Theory (CMTT): Syntax and Meta-programming. J. Appl. Log. 11, 1

(2013), 1–29. https://doi.org/10.1016/j.jal.2012.07.002

217

https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.2307/2586554
https://doi.org/10.2307/2586554
https://doi.org/10.1007/3-540-45504-3_7
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1145/3110278
https://doi.org/10.1007/978-3-642-15205-4_35
https://doi.org/10.1007/978-3-642-15205-4_35
https://doi.org/10.1016/j.jal.2012.07.002

Gerhard Gentzen. 1935. Untersuchungen über das logische Schließen. I. Mathematische

Zeitschrift 39, 1 (Dec. 1935), 176–210. https://doi.org/10.1007/BF01201353

Jean-Yves Girard. 1972. Interpétation fonctionnelle et élimination des coupures de

l’arithmétique d’ordre supérieur. PhD Thesis. Université Paris VII., Paris, France.

Jean-Yves Girard. 1989. Proofs and Types. Number 7 in Cambridge tracts in theoretical

computer science. Cambridge University Press, Cambridge [England] ; New York.

https://dl.acm.org/doi/10.5555/64805

Georges Gonthier. 2023. A Computer-checked Proof of the Four Color Theorem. Tech-

nical Report. Inria. https://inria.hal.science/hal-04034866

Georges Gonthier et al. 2008. Formal Proof–the Four-color Theorem. Notices of the AMS

55, 11 (2008), 1382–1393. https://www.ams.org/notices/200811/tx081101382p.

pdf

Jean Goubault-Larrecq. 1996. On Computational Interpretations of the Modal Logic

S4: II. The λevQ-calculus. Technical Report. Univeristy of Karlsruhe, Karlsruhe,

Germany.

W. T. Gowers, Ben Green, Freddie Manners, and Terence Tao. 2023. On A Conjecture

of Marton. CoRR abs/2311.05762 (2023). arXiv:2311.05762 https://arxiv.org/

abs/2311.05762

Daniel Gratzer. 2022. Normalization for Multimodal Type Theory. In In Proceedings

of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

2022, Haifa, Israel, August 2-5, 2022, Christel Baier and Dana Fisman (Eds.). ACM,

2:1–2:13. https://doi.org/10.1145/3531130.3532398

Daniel Gratzer and Lars Birkedal. 2022. A Stratified Approach to Löb Induction. In

7th International Conference on Formal Structures for Computation and Deduction,

FSCD 2022, August 2-5, 2022, Haifa, Israel (LIPIcs, Vol. 228), Amy P. Felty (Ed.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1–23:22. https://doi.org/

10.4230/LIPIcs.FSCD.2022.23

218

https://doi.org/10.1007/BF01201353
https://dl.acm.org/doi/10.5555/64805
https://inria.hal.science/hal-04034866
https://www.ams.org/notices/200811/tx081101382p.pdf
https://www.ams.org/notices/200811/tx081101382p.pdf
https://arxiv.org/abs/2311.05762
https://arxiv.org/abs/2311.05762
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.4230/LIPIcs.FSCD.2022.23
https://doi.org/10.4230/LIPIcs.FSCD.2022.23

Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal

Dependent Type Theory. In Proceedings of the 35th Annual ACM/IEEE Symposium

on Logic in Computer Science, LICS 2020, Saarbrücken, Germany, July 8-11, 2020,

Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller (Eds.). ACM,

492–506. https://doi.org/10.1145/3373718.3394736

Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. 2019. Implementing A Modal

Dependent Type Theory. Proc. ACM Program. Lang. 3, ICFP (2019), 107:1–107:29.

https://doi.org/10.1145/3341711

Jason Gross, Adam Chlipala, and David I. Spivak. 2014. Experience Implementing A

Performant Category-Theory Library in Coq. In Proceedings of the 5th International

Conference on Interactive Theorem Proving, ITP 2014, Held as Part of the Vienna

Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014 (Lecture Notes in

Computer Science, Vol. 8558), Gerwin Klein and Ruben Gamboa (Eds.). Springer,

275–291. https://doi.org/10.1007/978-3-319-08970-6_18

Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David Costanzo. 2011.

CertiKOS: A Certified Kernel for Secure Cloud Computing. In Proceedings of the

2nd Asia-Pacific Workshop on Systems, APSys 2011, Shanghai, China, July 11-12,

2011, Haibo Chen, Zheng Zhang, Sue Moon, and Yuanyuan Zhou (Eds.). ACM, 3.

https://doi.org/10.1145/2103799.2103803

Robert Harper, Furio Honsell, and Gordon D. Plotkin. 1993. A Framework for Defining

Logics. J. ACM 40, 1 (1993), 143–184. https://doi.org/10.1145/138027.138060

Jason Z. S. Hu and Jacques Carette. 2021. Formalizing Category Theory in Agda.

In Proceedings of the 10th ACM SIGPLAN International Conference on Certified

Programs and Proofs, CPP 2021, Virtual Event, Denmark, January 17-19, 2021,

Catalin Hritcu and Andrei Popescu (Eds.). ACM, 327–342. https://doi.org/10.

1145/3437992.3439922

Jason Z. S. Hu, Junyoung Jang, and Brigitte Pientka. 2023. Normalization by Eval-

uation for Modal Dependent Type Theory. J. Funct. Program. 33 (2023). https:

//doi.org/10.1017/S0956796823000060

219

https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3341711
https://doi.org/10.1007/978-3-319-08970-6_18
https://doi.org/10.1145/2103799.2103803
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1017/S0956796823000060
https://doi.org/10.1017/S0956796823000060

Jason Z. S. Hu and Brigitte Pientka. 2022a. A Categorical Normalization Proof for the

Modal Lambda-Calculus. In Proceedings of the 38th Conference on the Mathematical

Foundations of Programming Semantics, MFPS 2022, Cornell University, Ithaca,

New York, USA, with a satellite event at IRIF, Denis Diderot University, Paris,

France, and online, July 11-13, 2022 (EPTICS, Vol. 1), Justin Hsu and Christine

Tasson (Eds.). EpiSciences. https://doi.org/10.46298/ENTICS.10360

Jason Z. S. Hu and Brigitte Pientka. 2022b. An Investigation of Kripke-style Modal

Type Theories. CoRR abs/2206.07823 (2022). arXiv:2206.07823 https://doi.org/

10.48550/arXiv.2206.07823

Jason Z. S. Hu and Brigitte Pientka. 2023. Layered Modal Type Theories. CoRR

abs/2305.06548 (2023). arXiv:2305.06548 https://doi.org/10.48550/arXiv.

2305.06548

Jason Z. S. Hu and Brigitte Pientka. 2024a. DeLaM: A Dependent Layered Modal Type

Theory for Meta-programming. CoRR abs/2404.17065 (2024). arXiv:2404.17065

https://doi.org/10.48550/arXiv.2404.17065

Jason Z. S. Hu and Brigitte Pientka. 2024b. Layered Modal Type Theory: Where

Meta-programming Meets Intensional Analysis. In Proceedings of the 33rd European

Symposium on Programming on Programming Languages and Systems, ESOP 2024,

Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Part I (Lecture Notes

in Computer Science, Vol. 14576), Stephanie Weirich (Ed.). Springer, 52–82. https:

//doi.org/10.1007/978-3-031-57262-3_3

Jason Z. S. Hu and Brigitte Pientka. 2025. A Dependent Type Theory for Meta-

programming with Intensional Analysis. Proc. ACM Program. Lang. 9, POPL (2025).

https://doi.org/10.1145/3704851

Jason Z. S. Hu, Brigitte Pientka, and Ulrich Schöpp. 2022. A Category Theoretic View

of Contextual Types: From Simple Types to Dependent Types. ACM Trans. Comput.

Log. 23, 4 (2022), 25:1–25:36. https://doi.org/10.1145/3545115

220

https://doi.org/10.46298/ENTICS.10360
https://doi.org/10.48550/arXiv.2206.07823
https://doi.org/10.48550/arXiv.2206.07823
https://doi.org/10.48550/arXiv.2305.06548
https://doi.org/10.48550/arXiv.2305.06548
https://doi.org/10.48550/arXiv.2404.17065
https://doi.org/10.1007/978-3-031-57262-3_3
https://doi.org/10.1007/978-3-031-57262-3_3
https://doi.org/10.1145/3704851
https://doi.org/10.1145/3545115

Gérard P. Huet and Amokrane Säıbi. 2000. Constructive Category Theory. In Proof,

Language, and Interaction, Essays in Honour of Robin Milner, Gordon D. Plotkin,

Colin Stirling, and Mads Tofte (Eds.). The MIT Press, 239–276.

Junyoung Jang, Antoine Gaulin, Jason Z. S. Hu, and Brigitte Pientka. 2024a. McLTT:

A Bottom-up Approach to Implementing A Proof Assistant. https://github.com/

Beluga-lang/McLTT

Junyoung Jang, Samuel Gélineau, Stefan Monnier, and Brigitte Pientka. 2022. Mœbius:

Metaprogramming using Contextual Types: The Stage Where System F Can Pattern

Match on Itself. Proc. ACM Program. Lang. 6, POPL (2022), 1–27. https://doi.

org/10.1145/3498700

Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka. 2024b. Adjoint

Natural Deduction. In 9th International Conference on Formal Structures for Com-

putation and Deduction, FSCD 2024, July 10-13, 2024, Tallinn, Estonia (LIPIcs,

Vol. 299), Jakob Rehof (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

15:1–15:23. https://doi.org/10.4230/LIPICS.FSCD.2024.15

Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas, and Derek

Dreyer. 2018. Mtac2: Typed Tactics for Backward Reasoning in Coq. Proc. ACM

Program. Lang. 2, ICFP (2018), 78:1–78:31. https://doi.org/10.1145/3236773

G. A. Kavvos. 2020. Dual-Context Calculi for Modal Logic. Log. Methods Comput. Sci.

16, 3 (2020). https://doi.org/10.23638/LMCS-16(3:10)2020

G. A. Kavvos. 2021. Intensionality, Intensional Recursion and the Gödel-Löb Axiom.

IfCoLoG Journal of Logics and their Applications 8, 8 (2021), 2287–2312. https:

//collegepublications.co.uk/ifcolog/?00050

Akira Kawata and Atsushi Igarashi. 2019. A Dependently Typed Multi-stage Calculus.

In Proceedings of the 17th Asian Symposium on Programming Languages and Systems,

APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019 (Lecture Notes in

Computer Science, Vol. 11893), Anthony Widjaja Lin (Ed.). Springer, 53–72. https:

//doi.org/10.1007/978-3-030-34175-6_4

221

https://github.com/Beluga-lang/McLTT
https://github.com/Beluga-lang/McLTT
https://doi.org/10.1145/3498700
https://doi.org/10.1145/3498700
https://doi.org/10.4230/LIPICS.FSCD.2024.15
https://doi.org/10.1145/3236773
https://doi.org/10.23638/LMCS-16(3:10)2020
https://collegepublications.co.uk/ifcolog/?00050
https://collegepublications.co.uk/ifcolog/?00050
https://doi.org/10.1007/978-3-030-34175-6_4
https://doi.org/10.1007/978-3-030-34175-6_4

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml - System

Description. In Proceedings of the 12th International Symposium on Functional and

Logic Programming, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014 (Lecture Notes

in Computer Science, Vol. 8475), Michael Codish and Eijiro Sumii (Eds.). Springer,

86–102. https://doi.org/10.1007/978-3-319-07151-0_6

Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce F. Duba.

1986. Hygienic Macro Expansion. In Proceedings of the 1986 ACM Conference on

LISP and Functional Programming, LFP 1986, Cambridge, Massachusetts, USA,

August 4-6, 1986, William L. Scherlis, John H. Williams, and Richard P. Gabriel

(Eds.). ACM, 151–161. https://doi.org/10.1145/319838.319859

András Kovács. 2022. Staged Compilation with Two-level Type Theory. Proc. ACM

Program. Lang. 6, ICFP (2022), 540–569. https://doi.org/10.1145/3547641

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver

Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: a

general, extensible modal framework for interactive proofs in separation logic. Proc.

ACM Program. Lang. 2, ICFP (2018), 77:1–77:30. https://doi.org/10.1145/

3236772

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-

order Concurrent Separation Logic. In Proceedings of the 44th ACM SIGPLAN Sym-

posium on Principles of Programming Languages, POPL 2017, Paris, France, Jan-

uary 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 205–217.

https://doi.org/10.1145/3009837.3009855

Saul A. Kripke. 1963. Semantical Analysis of Modal Logic I Normal Modal Propositional

Calculi. Mathematical Logic Quarterly 9, 5-6 (1963), 67–96. https://doi.org/10.

1002/malq.19630090502

Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and

Christian Ferdinand. 2016. CompCert - A Formally Verified Optimizing Compiler. In

8th European Congress on Embedded Real Time Software and Systems, ERTS 2016,

Toulouse, France, January, 2016. https://inria.hal.science/hal-01238879

222

https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1145/319838.319859
https://doi.org/10.1145/3547641
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1002/malq.19630090502
https://inria.hal.science/hal-01238879

Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. 2018. Internal Uni-

verses in Models of Homotopy Type Theory. In 3rd International Conference on For-

mal Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford,

UK (LIPIcs, Vol. 108), Hélène Kirchner (Ed.). Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 22:1–22:17. https://doi.org/10.4230/LIPICS.FSCD.2018.22

Zhaohui Luo. 1990. An Extended Calculus of Constructions. PhD Thesis. University of

Edinburgh, Edinburgh, Scotland. https://era.ed.ac.uk/handle/1842/12487

Assia Mahboubi and Enrico Tassi. 2022. Mathematical Components. Zenodo. https:

//doi.org/10.5281/zenodo.7118596

Geoffrey Mainland. 2012. Explicitly Heterogeneous Metaprogramming with Meta-

Haskell. In Proceedings of the 17th ACM SIGPLAN International Conference on

Functional Programming, ICFP 2012, Copenhagen, Denmark, September 9-15, 2012,

Peter Thiemann and Robby Bruce Findler (Eds.). ACM, 311–322. https://doi.

org/10.1145/2364527.2364572

Per Martin-Löf. 1984. Intuitionistic Type Theory. Studies in proof theory, Vol. 1. Bib-

liopolis.

Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic

Colloquium 1973, H.E. Rose and J.C. Shepherdson (Eds.). Studies in Logic and the

Foundations of Mathematics, Vol. 80. Elsevier, 73–118. https://doi.org/10.1016/

S0049-237X(08)71945-1

Simone Martini and Andrea Masini. 1996. A Computational Interpretation of Modal

Proofs. In Proof Theory of Modal Logic, Heinrich Wansing (Ed.). Springer Nether-

lands, Dordrecht, 213–241. https://doi.org/10.1007/978-94-017-2798-3_12

Benjamin Moon, Harley Eades III, and Dominic Orchard. 2021. Graded Modal De-

pendent Type Theory. In Proceedings of the 30th European Symposium on Pro-

gramming on Programming Languages and Systems, ESOP 2021, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2021,

223

https://doi.org/10.4230/LIPICS.FSCD.2018.22
https://era.ed.ac.uk/handle/1842/12487
https://doi.org/10.5281/zenodo.7118596
https://doi.org/10.5281/zenodo.7118596
https://doi.org/10.1145/2364527.2364572
https://doi.org/10.1145/2364527.2364572
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1007/978-94-017-2798-3_12

Luxembourg City, Luxembourg, March 27 - April 1, 2021 (Lecture Notes in Com-

puter Science, Vol. 12648), Nobuko Yoshida (Ed.). Springer, 462–490. https:

//doi.org/10.1007/978-3-030-72019-3_17

Yuito Murase, Yuichi Nishiwaki, and Atsushi Igarashi. 2023. Contextual Modal Type

Theory with Polymorphic Contexts. In Proceedings of the 32nd European Symposium

on Programming on Programming Languages and Systems, ESOP 2023, Held as Part

of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023,

Paris, France, April 22-27, 2023 (Lecture Notes in Computer Science, Vol. 13990),

Thomas Wies (Ed.). Springer, 281–308. https://doi.org/10.1007/978-3-031-

30044-8_11

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual Modal

Type Theory. ACM Trans. Comput. Log. 9, 3 (2008), 23:1–23:49. https://doi.

org/10.1145/1352582.1352591

Ulf Norell. 2007. Towards A Practical Programming Language Based on Dependent Type

Theory. PhD Thesis. Chalmers University of Technology, Gothenburg, Sweden.

Erik Palmgren. 1998. On Universes in Type Theory. In Twenty Five Years of Con-

structive Type Theory. Oxford University Press. https://doi.org/10.1093/oso/

9780198501275.003.0012

Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Squid: Type-safe, Hy-

gienic, and Reusable Quasiquotes. In Proceedings of the 8th ACM SIGPLAN Interna-

tional Symposium on Scala, SCALA@SPLASH 2017, Vancouver, British Columbia,

Canada, October 22-23, 2017, Heather Miller, Philipp Haller, and Ondrej Lhoták

(Eds.). ACM, 56–66. https://doi.org/10.1145/3136000.3136005

Emir Pasalic, Walid Taha, and Tim Sheard. 2002. Tagless Staged Interpreters for Typed

Languages. In Proceedings of the 7th ACM SIGPLAN International Conference on

Functional Programming, ICFP 2002, Pittsburgh, Pennsylvania, USA, October 4-6,

2002, Mitchell Wand and Simon L. Peyton Jones (Eds.). ACM, 218–229. https:

//doi.org/10.1145/581478.581499

224

https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1007/978-3-031-30044-8_11
https://doi.org/10.1007/978-3-031-30044-8_11
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1093/oso/9780198501275.003.0012
https://doi.org/10.1093/oso/9780198501275.003.0012
https://doi.org/10.1145/3136000.3136005
https://doi.org/10.1145/581478.581499
https://doi.org/10.1145/581478.581499

Daniel Peebles, James Deikun, Ulf Norell, Dan Doel, Darius Jahandarie, and James

Cook. 2018. Categories: Categories Parametrized by Morphism Equality in Agda.

https://github.com/copumpkin/categories

Frank Pfenning and Rowan Davies. 2001. A Judgmental Reconstruction of Modal

Logic. Math. Struct. Comput. Sci. 11, 4 (2001), 511–540. https://doi.org/10.

1017/S0960129501003322

Frank Pfenning and Christine Paulin-Mohring. 1989. Inductively Defined Types in

the Calculus of Constructions. In Proceedings of the 5th International Conference

on Mathematical Foundations of Programming Semantics, MFPS 1989, Tulane Uni-

versity, New Orleans, Louisiana, USA, March 29-April 1, 1989 (Lecture Notes in

Computer Science, Vol. 442), Michael G. Main, Austin Melton, Michael W. Mis-

love, and David A. Schmidt (Eds.). Springer, 209–228. https://doi.org/10.1007/

BFB0040259

Frank Pfenning and Hao-Chi Wong. 1995. On A Modal Lambda Calculus for S4. In

11th Annual Conference on Mathematical Foundations of Programming Semantics,

MFPS 1995, Tulane University, New Orleans, Louisiana, USA, March 29-April 1,

1995 (Electronic Notes in Theoretical Computer Science, Vol. 1), Stephen D. Brookes,

Michael G. Main, Austin Melton, and Michael W. Mislove (Eds.). Elsevier, 515–534.

https://doi.org/10.1016/S1571-0661(04)00028-3

Brigitte Pientka. 2008. A Type-theoretic Foundation for Programming with Higher-

order Abstract Syntax and First-class Substitutions. In Proceedings of the 35th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2008, San Francisco, California, USA, January 7-12, 2008, George C. Necula

and Philip Wadler (Eds.). ACM, 371–382. https://doi.org/10.1145/1328438.

1328483

Brigitte Pientka and Andreas Abel. 2015. Well-Founded Recursion over Contextual

Objects. In 13th International Conference on Typed Lambda Calculi and Applications,

TLCA 2015, Warsaw, Poland, July 1-3, 2015 (LIPIcs, Vol. 38), Thorsten Altenkirch

(Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 273–287. https://doi.

org/10.4230/LIPICS.TLCA.2015.273

225

https://github.com/copumpkin/categories
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1007/BFB0040259
https://doi.org/10.1007/BFB0040259
https://doi.org/10.1016/S1571-0661(04)00028-3
https://doi.org/10.1145/1328438.1328483
https://doi.org/10.1145/1328438.1328483
https://doi.org/10.4230/LIPICS.TLCA.2015.273
https://doi.org/10.4230/LIPICS.TLCA.2015.273

Brigitte Pientka and Jana Dunfield. 2008. Programming with Proofs and Explicit Con-

texts. In Proceedings of the 10th International ACM SIGPLAN Conference on Prin-

ciples and Practice of Declarative Programming, Valencia, Spain, July 15-17, 2008,

Sergio Antoy and Elvira Albert (Eds.). ACM, 163–173. https://doi.org/10.1145/

1389449.1389469

Brigitte Pientka and Ulrich Schöpp. 2020. Semantical Analysis of Contextual Types. In

Proceedings of the 23rd International Conference on Foundations of Software Science

and Computation Structures, FoSSaCS 2020, Held as Part of the European Joint Con-

ferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-

30, 2020 (Lecture Notes in Computer Science, Vol. 12077), Jean Goubault-Larrecq

and Barbara König (Eds.). Springer, 502–521. https://doi.org/10.1007/978-3-

030-45231-5_26

Brigitte Pientka, David Thibodeau, Andreas Abel, Francisco Ferreira, and Rébecca

Zucchini. 2019. A Type Theory for Defining Logics and Proofs. In Proceedings of

the 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,

Vancouver, British Columbia, Canada, June 24-27, 2019. IEEE, 1–13. https://

doi.org/10.1109/LICS.2019.8785683

Dag Prawitz. 1965. Natural Deduction: A Proof-theoretical Study. Stockholm.

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univa-

lent Foundations of Mathematics. Institute for Advanced Study. https://

homotopytypetheory.org/book/

Löıc Pujet and Nicolas Tabareau. 2022. Observational Equality: Now for Good. Proc.

ACM Program. Lang. 6, POPL (2022), 1–27. https://doi.org/10.1145/3498693

Löıc Pujet and Nicolas Tabareau. 2023. Impredicative Observational Equality. Proc.

ACM Program. Lang. 7, POPL (2023), 2171–2196. https://doi.org/10.1145/

3571739

Pierre-Marie Pédrot. 2019. Ltac2: Tactical Warfare. In The 5th International Workshop

on Coq for Programming Languages, CoqPL 2019, Lisbon, Portugal. 13–19.

226

https://doi.org/10.1145/1389449.1389469
https://doi.org/10.1145/1389449.1389469
https://doi.org/10.1007/978-3-030-45231-5_26
https://doi.org/10.1007/978-3-030-45231-5_26
https://doi.org/10.1109/LICS.2019.8785683
https://doi.org/10.1109/LICS.2019.8785683
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://doi.org/10.1145/3498693
https://doi.org/10.1145/3571739
https://doi.org/10.1145/3571739

John C. Reynolds. 1998. Definitional Interpreters for Higher-Order Programming Lan-

guages. High. Order Symb. Comput. 11, 4 (1998), 363–397. https://doi.org/10.

1023/A:1010027404223

Carsten Schürmann, Joëlle Despeyroux, and Frank Pfenning. 2001. Primitive Recursion

for Higher-order Abstract Syntax. Theor. Comput. Sci. 266, 1-2 (2001), 1–57. https:

//doi.org/10.1016/S0304-3975(00)00418-7

Tim Sheard and Simon L. Peyton Jones. 2002. Template Meta-programming for

Haskell. SIGPLAN Notices 37, 12 (2002), 60–75. https://doi.org/10.1145/

636517.636528

Michael Shulman. 2018. Brouwer’s Fixed-point Theorem in Real-cohesive Homotopy

Type Theory. Math. Struct. Comput. Sci. 28, 6 (2018), 856–941. https://doi.org/

10.1017/S0960129517000147

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster,

Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. 2020.

The MetaCoq Project. J. Autom. Reason. 64, 5 (2020), 947–999. https://doi.

org/10.1007/s10817-019-09540-0

Jonathan Sterling. 2022. First Steps in Synthetic Tait Computability: The Objective

Metatheory of Cubical Type Theory. PhD Thesis. Carnegie Mellon University, Pitts-

burgh, Pennsylvania, USA. https://doi.org/10.1184/r1/19632681.v1

Walid Taha. 2000. A Sound Reduction Semantics for Untyped CBN Multi-stage Compu-

tation. Or, the Theory of MetaML is Non-trivial (Extended Abstract). In Proceedings

of the 2000 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based

Program Manipulation, PEPM 2000, Boston, Massachusetts, USA, January 22-23,

2000, Julia L. Lawall (Ed.). ACM, 34–43. https://doi.org/10.1145/328690.

328697

Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with Explicit Annota-

tions. In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-Based Program Manipulation, PEPM 1997, Amsterdam, the Netherlands,

227

https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1016/S0304-3975(00)00418-7
https://doi.org/10.1016/S0304-3975(00)00418-7
https://doi.org/10.1145/636517.636528
https://doi.org/10.1145/636517.636528
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1184/r1/19632681.v1
https://doi.org/10.1145/328690.328697
https://doi.org/10.1145/328690.328697

June 12-13, 1997, John P. Gallagher, Charles Consel, and A. Michael Berman (Eds.).

ACM, 203–217. https://doi.org/10.1145/258993.259019

Walid Taha and Tim Sheard. 2000. MetaML and Multi-stage Programming with

Explicit Annotations. Theor. Comput. Sci. 248, 1-2 (2000), 211–242. https:

//doi.org/10.1016/S0304-3975(00)00053-0

William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. J.

Symb. Log. 32, 2 (1967), 198–212. https://doi.org/10.2307/2271658

Terence Tao. 2023. A Maclaurin Type Inequality. CoRR abs/2310.05328 (2023).

arXiv:2310.05328 https://arxiv.org/abs/2310.05328

The Agda Team. 2024. Agda 2.6.4.3. https://wiki.portal.chalmers.se/agda/

pmwiki.php

The Coq Development Team. 2023. The Coq Proof Assistant. https://doi.org/10.

5281/zenodo.8161141

The Mathlib Community. 2020. The Lean Mathematical Library. In Proceedings of

the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs,

CPP 2020, New Orleans, Louisiana, USA, January 20-21, 2020, Jasmin Blanchette

and Catalin Hritcu (Eds.). ACM, 367–381. https://doi.org/10.1145/3372885.

3373824

Amin Timany and Bart Jacobs. 2016. Category Theory in Coq 8.5. In 1st Inter-

national Conference on Formal Structures for Computation and Deduction, FSCD

2016, Porto, Portugal, June 22-26, 2016 (LIPIcs, Vol. 52), Delia Kesner and

Brigitte Pientka (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 30:1–

30:18. https://doi.org/10.4230/LIPIcs.FSCD.2016.30

Nachiappan Valliappan, Fabian Ruch, and Carlos Tomé Cortiñas. 2022. Normalization

for Fitch-style Modal Calculi. Proc. ACM Program. Lang. 6, ICFP (2022), 772–798.

https://doi.org/10.1145/3547649

228

https://doi.org/10.1145/258993.259019
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.2307/2271658
https://arxiv.org/abs/2310.05328
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.4230/LIPIcs.FSCD.2016.30
https://doi.org/10.1145/3547649

Paul van der Walt and Wouter Swierstra. 2012. Engineering Proof by Reflection in Agda.

In 24th International Symposium on Implementation and Application of Functional

Languages, IFL 2012, Oxford, UK, August 30-September 1, 2012, Revised Selected

Papers (Lecture Notes in Computer Science, Vol. 8241), Ralf Hinze (Ed.). Springer,

157–173. https://doi.org/10.1007/978-3-642-41582-1_10

Marcos Viera and Alberto Pardo. 2006. A Multi-stage Language with Intensional Anal-

ysis. In Proceedings of 5th International Conference on Generative Programming and

Component Engineering, GPCE 2006, Portland, Oregon, USA, October 22-26, 2006,

Stan Jarzabek, Douglas C. Schmidt, and Todd L. Veldhuizen (Eds.). ACM, 11–20.

https://doi.org/10.1145/1173706.1173709

Washington Post. 2007. Sept. 26, 1983: The Man Who Saved the World by Doing ...

Nothing. https://www.wired.com/2007/09/dayintech-0926-2/

Makarius Wenzel et al. 2024. The Isabelle/Isar Reference Manual. https://isabelle.

in.tum.de/doc/isar-ref.pdf

Alfred North Whitehead and Bertrand Russell. 1925–1927. Principia Mathematica.

Cambridge University Press, Cambridge [England].

Pawel Wieczorek and Dariusz Biernacki. 2018. A Coq Formalization of Normalization

by Evaluation for Martin-Löf Type Theory. In Proceedings of the 7th ACM SIGPLAN

International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles,

California, USA, January 8-9, 2018, June Andronick and Amy P. Felty (Eds.). ACM,

266–279. https://doi.org/10.1145/3167091

John Wiegley. 2019. Category-theory: Category Theory in Coq. https://github.

com/jwiegley/category-theory

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Sound-

ness. Inf. Comput. 115, 1 (1994), 38–94. https://doi.org/10.1006/INCO.1994.

1093

Noam Zeilberger. 2008. Focusing and Higher-order Abstract Syntax. In Proceedings of

the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

229

https://doi.org/10.1007/978-3-642-41582-1_10
https://doi.org/10.1145/1173706.1173709
https://www.wired.com/2007/09/dayintech-0926-2/
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://doi.org/10.1145/3167091
https://github.com/jwiegley/category-theory
https://github.com/jwiegley/category-theory
https://doi.org/10.1006/INCO.1994.1093
https://doi.org/10.1006/INCO.1994.1093

guages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, George C.

Necula and Philip Wadler (Eds.). ACM, 359–369. https://doi.org/10.1145/

1328438.1328482

Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar Nanevski, and

Viktor Vafeiadis. 2013. Mtac: A Monad for Typed Tactic Programming in Coq. In

Proceedings of the 18th ACM SIGPLAN International Conference on Functional Pro-

gramming, ICFP 2013, Boston, Massachusetts, USA, September 25-27, 2013, Greg

Morrisett and Tarmo Uustalu (Eds.). ACM, 87–100. https://doi.org/10.1145/

2500365.2500579

230

https://doi.org/10.1145/1328438.1328482
https://doi.org/10.1145/1328438.1328482
https://doi.org/10.1145/2500365.2500579
https://doi.org/10.1145/2500365.2500579

Appendices

231

A
Missing Typing Rules for Chapter 2

The additional rules primarily characterize how explicit K-substitutions interact with

terms. First we have identity and composition.

−→
Γ ` t : T

−→
Γ ` t[

−→
I] ≈ t : T

−→
Γ ′ ` −→σ :

−→
Γ ′′

−→
Γ `
−→
δ :
−→
Γ ′

−→
Γ ′′ ` t : T

−→
Γ ` t[−→σ ◦

−→
δ] ≈ t[−→σ][

−→
δ] : T

Then there are a few cases for variables. When hitting a term extension, then the term

is extracted if the topmost variable x is being substituted. In the following rules, I

assume x is the topmost variable. It is fine since I am working with de Bruijn indices,

so x has de Bruijn index 0. In the second rule, the de Bruijn index for y on the left

hand side is one larger than that on the right:

−→
Γ ` −→σ :

−→
Γ ′; Γ

−→
Γ ` t : A

−→
Γ ` x[−→σ , t] ≈ t : A

−→
Γ ` −→σ :

−→
Γ ′; Γ

−→
Γ ` t : B y : A ∈ Γ

−→
Γ ` y[−→σ , t] ≈ y[−→σ] : A

232

In the following rule, the de Bruijn index for y is actually increased by one on the right

hand side:

y : A ∈ Γ
−→
Γ ; (Γ, x : B) ` y[wk] ≈ y : A

The following rules characterize how K-substitutions are applied to other terms:

−→
Γ ` −→σ :

−→
∆

−→
∆; · ` t : A

−→
Γ ` box t[−→σ] ≈ box (t[−→σ ;⇑1]) : �A

−→
∆ ` t : �A

−→
Γ ;
−→
Γ ′ ` −→σ :

−→
∆;
−→
∆ ′ |

−→
∆ ′| = n |

−→
Γ ′| = O(−→σ , n)

−→
Γ ;
−→
Γ ′ ` unboxn t[−→σ] ≈ unboxO(−→σ ,n) (t[−→σ | n]) : A
−→
Γ ; Γ ` −→σ :

−→
∆; ∆

−→
∆; ∆, x : A ` t : B

−→
Γ ; Γ ` λx.t[−→σ] ≈ λx.(t[(−→σ ◦ wkx), x/x]) : A −→ B
−→
Γ ` −→σ :

−→
∆

−→
∆ ` s : A −→ B

−→
∆ ` t : A

−→
Γ ` s t[−→σ] ≈ (s[−→σ]) (t[−→σ]) : B

K-substitutions also have non-trivial interactions among themselves. First, there

are identity laws and associativity of composition:

−→
Γ ` −→σ :

−→
∆

−→
Γ ` −→σ ◦

−→
I ≈ −→σ :

−→
∆

−→
Γ ` −→σ :

−→
∆

−→
Γ `
−→
I ◦ −→σ ≈ −→σ :

−→
∆

−→
Γ ′′ ` −→σ ′′ :

−→
Γ ′′′

−→
Γ ′ ` −→σ ′ :

−→
Γ ′′

−→
Γ ` −→σ :

−→
Γ ′

−→
Γ ` (−→σ ′′ ◦ −→σ ′) ◦ −→σ ≈ −→σ ′′ ◦ (−→σ ′ ◦ −→σ) :

−→
Γ ′′′

The following rules characterize the propagation of composition under term and modal

233

extensions:

−→
Γ ′ ` −→σ :

−→
Γ ′′; Γ

−→
Γ ′ ` t : A

−→
Γ `
−→
δ :
−→
Γ ′

−→
Γ ` −→σ , t ◦

−→
δ ≈ (−→σ ◦

−→
δ), t[

−→
δ] :
−→
Γ ′′; (Γ, x : A)

−→
Γ ` −→σ :

−→
Γ ′

−→
Γ ′′ `

−→
δ :
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ′′ ` (−→σ ;⇑n) ◦

−→
δ ≈ (−→σ ◦

−→
δ | n);⇑O(

−→
δ ,n):

−→
Γ ′; ·

The following rules describe weakenings and modal extensions:

−→
Γ ′ ` −→σ :

−→
Γ ; Γ

−→
Γ ′ ` t : A

−→
Γ ′ ` wkx ◦ (−→σ , t) ≈ −→σ :

−→
Γ ; Γ

−→
Γ ′ ` −→σ :

−→
Γ ; (Γ, x : A)

−→
Γ ′ ` −→σ ≈ (wk ◦ −→σ), (x[−→σ]) :

−→
Γ ; (Γ, x : A)

−→
Γ ` −→σ :

−→
∆; · |

−→
∆ | > 0 O(−→σ , 1) = n

−→
Γ ` −→σ ≈ −→σ | 1;⇑n:

−→
∆; ·

234

B
Full Set of Rules for Mint

`
−→
Γ Context stack

−→
Γ is well formed.

` ε; ·

`
−→
Γ

`
−→
Γ ; ·

`
−→
Γ ; Γ

−→
Γ ; Γ ` T : Tyi

`
−→
Γ ; Γ, x : T

`
−→
Γ ≈

−→
∆

−→
Γ and

−→
∆ are equivalent context stacks.

` ε; · ≈ ε; ·

`
−→
Γ ≈

−→
∆

`
−→
Γ ; · ≈

−→
∆; ·

`
−→
Γ ; Γ ≈

−→
∆; ∆

−→
Γ ; Γ ` T ≈ T ′ : Tyi

−→
∆; ∆ ` T ≈ T ′ : Tyi

−→
Γ ; Γ ` T : Tyi

−→
∆; ∆ ` T ′ : Tyi

`
−→
Γ ; Γx : T ≈

−→
∆; ∆, x : T ′

235

−→
Γ ` −→σ :

−→
∆ : −→σ is a K-substitution susbtituting terms in

−→
∆ into ones in

−→
Γ .

`
−→
Γ

−→
Γ `
−→
I :
−→
Γ

`
−→
Γ ; Γ, x : T

−→
Γ ; Γ, x : T ` wk :

−→
Γ ; Γ

−→
Γ ` −→σ :

−→
Γ ′; Γ

−→
Γ ′; Γ ` T : Tyi

−→
Γ ` t : T [−→σ]

−→
Γ ` −→σ , t :

−→
Γ ′; Γ, x : T

−→
Γ ` −→σ :

−→
∆

`
−→
Γ ;
−→
Γ ′ |

−→
Γ ′| = n

−→
Γ ;
−→
Γ ′ ` −→σ ;⇑n:

−→
∆; ·

−→
Γ ′ ` −→σ :

−→
Γ ′′

−→
Γ `
−→
δ :
−→
Γ ′

−→
Γ ` −→σ ◦

−→
δ :
−→
Γ ′′

−→
Γ ` −→σ :

−→
∆

`
−→
∆ ≈

−→
∆ ′

−→
Γ ` −→σ :

−→
∆ ′

−→
Γ ` −→σ ≈

−→
δ :
−→
∆ −→σ and

−→
δ are equivalent in K-substituting terms in

−→
∆ into ones

in
−→
Γ .

The congruence rules:

`
−→
Γ

−→
Γ `
−→
I ≈

−→
I :
−→
Γ

`
−→
Γ ; Γ, x : T

−→
Γ ; Γ, x : T ` wk ≈ wk :

−→
Γ ; Γ

−→
Γ ` −→σ ≈ −→σ ′ :

−→
Γ ′; Γ

−→
Γ ′; Γ ` T : Tyi

−→
Γ ` t ≈ t′ : T [−→σ]

−→
Γ ` −→σ , t ≈ −→σ , t′ :

−→
Γ ′; Γ, x : T

−→
Γ ` −→σ ≈ −→σ ′ :

−→
∆

`
−→
Γ ;
−→
Γ ′ |

−→
Γ ′| = n

−→
Γ ;
−→
Γ ′ ` −→σ ;⇑n≈ −→σ ′;⇑n:

−→
∆; ·

−→
Γ ′ ` −→σ ≈ −→σ ′ :

−→
Γ ′′

−→
Γ `
−→
δ ≈

−→
δ ′ :
−→
Γ ′

−→
Γ ` −→σ ◦

−→
δ ≈ −→σ ′ ◦

−→
δ ′ :
−→
Γ ′′

The categorical rules:

−→
Γ ` −→σ :

−→
∆

−→
Γ ` −→σ ◦

−→
I ≈ −→σ :

−→
∆

−→
Γ ` −→σ :

−→
∆

−→
Γ `
−→
I ◦ −→σ ≈ −→σ :

−→
∆

−→
Γ ′′ ` −→σ ′′ :

−→
Γ ′′′

−→
Γ ′ ` −→σ ′ :

−→
Γ ′′

−→
Γ ` −→σ :

−→
Γ ′

−→
Γ ` (−→σ ′′ ◦ −→σ ′) ◦ −→σ ≈ −→σ ′′ ◦ (−→σ ′ ◦ −→σ) :

−→
Γ ′′′

236

Other rules:

−→
Γ ` −→σ ≈ −→σ ′ :

−→
∆

−→
Γ ` −→σ ′ ≈ −→σ :

−→
∆

−→
Γ ` −→σ ≈ −→σ ′ :

−→
∆

−→
Γ ` −→σ ′ ≈ −→σ ′′ :

−→
∆

−→
Γ ` −→σ ≈ −→σ ′′ :

−→
∆

−→
Γ ′ ` −→σ :

−→
Γ ′′; Γ

−→
Γ ′; Γ ` T : Tyi

−→
Γ ′ ` t : T [−→σ]

−→
Γ `
−→
δ :
−→
Γ ′

−→
Γ ` (−→σ , t) ◦

−→
δ ≈ (−→σ ◦

−→
δ), t[

−→
δ] :
−→
Γ ′′; Γ, x : T

−→
Γ ` −→σ :

−→
∆

−→
∆ ` T : Tyi

−→
Γ ` t : T [−→σ]

−→
Γ ` wk ◦ (−→σ , t) ≈ −→σ :

−→
∆

−→
Γ ` −→σ :

−→
Γ ′

−→
Γ ′′ `

−→
δ :
−→
Γ ;
−→
∆

|
−→
∆ | = n `

−→
Γ ;
−→
∆

−→
Γ ′′ ` (−→σ ;⇑n) ◦

−→
δ ≈ (−→σ ◦

−→
δ | n);⇑O(

−→
δ ,n):

−→
Γ ′; ·

−→
Γ ` −→σ :

−→
∆; · |

−→
∆ | > 0

−→
Γ ` −→σ ≈ −→σ | 1;⇑O(−→σ ,1):

−→
∆; ·

−→
Γ ′ ` −→σ :

−→
Γ ; Γ, x : T

−→
Γ ′ ` −→σ ≈ (wk ◦ −→σ), x[−→σ] :

−→
Γ ; (Γ, x : T)

−→
Γ ` −→σ ≈ −→σ ′ :

−→
∆ `

−→
∆ ≈

−→
∆ ′

−→
Γ ` −→σ ≈ −→σ ′ :

−→
∆ ′

To define the variable rule for the typing judgment, the lookup judgment x : T ∈
−→
Γ is

defined as:

x : T [wk] ∈
−→
Γ ; Γ, x : T

x : T ∈
−→
Γ ; Γ

x : T [wk] ∈
−→
Γ ; Γ, y : S

In the first rule, the de Bruijn index of x is 0. In the second rule, the de Bruijn index

of x is increased by 1 in the conclusion.

237

−→
Γ ` t : T Term t has type T in context stack

−→
Γ .

`
−→
Γ ; Γ x : T ∈

−→
Γ ; Γ

−→
Γ ; Γ ` x : T

−→
Γ ` t : T

−→
Γ ` T ≈ T ′ : Tyi

−→
Γ ` t : T ′

−→
∆ ` t : T

−→
Γ ` −→σ :

−→
∆

−→
Γ ` t[−→σ] : T [−→σ]

−→
Γ ; Γ ` S : Tyi

−→
Γ ; Γ, x : S ` T : Tyi

−→
Γ ; Γ ` Π(x : S).T : Tyi

−→
Γ ; Γ ` S : Tyi−→

Γ ; Γ, x : S ` t : T
−→
Γ ; Γ ` λx.t : Π(x : S).T

−→
Γ ; Γ ` S : Tyi

−→
Γ ; Γ, x : S ` T : Tyi−→

Γ ; Γ ` t : Π(x : S).T
−→
Γ ; Γ ` s : S

−→
Γ ; Γ ` t s : T [

−→
I , s]

`
−→
Γ

−→
Γ ` Nat : Tyi

`
−→
Γ

−→
Γ ` zero : Nat

−→
Γ ` t : Nat

−→
Γ ` succ t : Nat

−→
Γ ; Γ, x : Nat `M : Tyi

−→
Γ ; Γ ` s : M [

−→
I , zero]

−→
Γ ; Γ, x : Nat, y : M ` s′ : M [(wk ◦ wk), succ v1]

−→
Γ ; Γ ` t : Nat

−→
Γ ; Γ ` elimNat (x.M) s (x, y.s′) t : M [

−→
I , t]

`
−→
Γ

−→
Γ ` Tyi : Ty1+i

−→
Γ ` T : Tyi
−→
Γ ` T : Ty1+i

−→
Γ ; · ` T : Tyi
−→
Γ ` �T : Tyi

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Tyi

−→
Γ ` t : �T `

−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

−→
Γ ` t ≈ s : T Terms t and s of type T are equivalent in context stack

−→
Γ .

The congruence rules:

`
−→
Γ ; Γ x : T ∈

−→
Γ ; Γ

−→
Γ ; Γ ` x ≈ x : T

−→
Γ ; Γ ` S : Tyi−→

Γ ; Γ ` S ≈ S ′ : Tyi
−→
Γ ; Γ, x : S ` T ≈ T ′ : Tyi

−→
Γ ; Γ ` Π(x : S).T ≈ Π(x : S ′).T ′ : Tyi

−→
∆ ` t ≈ t′ : T

−→
Γ ` −→σ ≈ −→σ ′ :

−→
∆

−→
Γ ` t[−→σ] ≈ t′[−→σ ′] : T [−→σ]

−→
Γ ; Γ ` S : Tyi

−→
Γ ; Γ, x : S ` t ≈ t′ : T

−→
Γ ; Γ ` λx.t ≈ λx.t′ : Π(x : S).T

238

−→
Γ ; Γ ` S : Tyi−→

Γ ; Γ, x : S ` T : Tyi
−→
Γ ; Γ ` t ≈ t′ : Π(x : S).T

−→
Γ ; Γ ` s ≈ s′ : S

−→
Γ ; Γ ` t s ≈ t′ s′ : T [

−→
I , s]

`
−→
Γ

−→
Γ ` zero ≈ zero : Nat

−→
Γ ` t ≈ t′ : Nat

−→
Γ ` succ t ≈ succ t′ : Nat

−→
Γ ; Γ, x : Nat `M ≈M ′ : Tyi

−→
Γ ; Γ ` s1 ≈ s′1 : M [

−→
I , zero]

−→
Γ ; Γ, x : Nat, y : M ` s2 ≈ s′2 : M [(wk ◦ wk), succ v1]

−→
Γ ; Γ ` t ≈ t′ : Nat

−→
Γ ; Γ ` elimNat (x.M) s1 (x, y.s2) t ≈ elimNat (x.M ′) s′1 (x, y.s′2) t′ : M [

−→
I , t]

−→
Γ ; · ` T ≈ T ′ : Tyi
−→
Γ ` �T ≈ �T ′ : Tyi

−→
Γ ; · ` t ≈ t′ : T

−→
Γ ` box t ≈ box t′ : �T

−→
Γ ; · ` T : Tyi

−→
Γ ` t ≈ t′ : �T `

−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t ≈ unboxn t

′ : T [
−→
I ;⇑n]

The β and η rules:

−→
Γ ; Γ ` S : Tyi

−→
Γ ; Γ, x : S ` T : Tyi−→

Γ ; Γ, x : S ` t : T
−→
Γ ; Γ ` s : S

−→
Γ ; Γ ` (λx.t) s ≈ t[

−→
I , s] : T [

−→
I , s]

−→
Γ ; Γ ` S : Tyi

−→
Γ ; Γ, x : S ` T : Tyi−→

Γ ; Γ ` t : Π(x : S).T
−→
Γ ; Γ ` t ≈ λx.(t[wk] x) : Π(x : S).T

−→
Γ ; Γ, x : Nat `M : Tyi−→

Γ ; Γ ` s : M [
−→
I , zero]

−→
Γ ; Γ, x : Nat, y : M ` s′ : M [(wk ◦ wk), succ v1]

−→
Γ ; Γ ` elimNat (x.M) s (x, y.s′) zero ≈ s : M [

−→
I , zero]

−→
Γ ; Γ, x : Nat `M : Tyi

−→
Γ ; Γ ` s : M [

−→
I , zero]

−→
Γ ; Γ, x : Nat, y : M ` s′ : M [(wk ◦ wk), succ v1]
−→
Γ ; Γ ` t : Nat t′ = elimNat (x.M) s (x, y.s′) t

−→
Γ ; Γ ` elimNat (x.M) s (x, y.s′) (succ t) ≈ s′[

−→
I , t, t′] : M [

−→
I , succ t]

−→
Γ ; · ` T : Tyi

−→
Γ ; · ` t : T

`
−→
Γ ;
−→
∆ |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn (box t) ≈ t[

−→
I ;⇑n] : T [

−→
I ;⇑n]

−→
Γ ; · ` T : Tyi

−→
Γ ` t : �T

−→
Γ ` t ≈ box (unbox1 t) : �T

239

General K-substitution rules:

−→
Γ ` t : T

−→
Γ ` t[

−→
I] ≈ t : T

−→
Γ ′ ` −→σ :

−→
Γ ′′

−→
Γ `
−→
δ :
−→
Γ ′

−→
Γ ′′ ` t : T

−→
Γ ` t[−→σ ◦

−→
δ] ≈ t[−→σ][

−→
δ] : T [−→σ ◦

−→
δ]

The variable rules, where

• in the first rule, the de Bruijn index of x on the right hand side is increased by 1;

• in the second rule, the de Bruijn index of x is 0;

• in the third rule, the de Bruijn index of x on the left hand side is increased by 1;

`
−→
Γ ; Γ, y : T x : T ′ ∈

−→
Γ ; Γ

−→
Γ ; Γ ` x[wk] ≈ x : T ′[wk]

−→
Γ ` −→σ :

−→
∆; ∆

−→
∆; ∆ ` T : Tyi

−→
Γ ` t : T [−→σ]

−→
Γ ` x[−→σ , t] ≈ t : T [−→σ]

−→
Γ ` −→σ :

−→
∆; ∆

−→
∆; ∆ ` T ′ : Tyi

−→
Γ ` t : T ′[−→σ] x : T ∈

−→
∆; ∆

−→
Γ ` x[−→σ , t] ≈ x[−→σ] : T [−→σ]

The Π rules:

To describe how K-substitutions are propagated under different constructs, the

following construct q weakens a K-substitution:

qT (−→σ) := (−→σ ◦ wk), x

where the de Bruijn index of x is 0 and the subscript T is needed for the following

typing rule:

−→
Γ ; Γ ` −→σ :

−→
∆; ∆

−→
∆; ∆ ` T : Tyi

−→
Γ ; Γ, x : T [−→σ] ` qT (−→σ) :

−→
∆; ∆, x : T

This subscript is often omitted when it can be inferred from the surrounding textual

context.

240

−→
Γ ; Γ ` −→σ :

−→
∆; ∆

−→
∆; ∆ ` S : Tyi

−→
∆; ∆, x : S ` T : Tyi

−→
Γ ; Γ ` (Π(x : S).T)[−→σ] ≈ Π(x : S[−→σ]).(T [q(−→σ)]) : Tyi

−→
Γ ; Γ ` −→σ :

−→
∆; ∆

−→
∆; ∆, x : S ` t : T

−→
Γ ; Γ ` (λx.t)[−→σ] ≈ λx.(t[q(−→σ)]) : (Π(x : S).T)[−→σ]

−→
∆; ∆ ` S : Tyi−→

∆; ∆, x : S ` T : Tyi
−→
Γ ` −→σ :

−→
∆; ∆

−→
∆; ∆ ` s : Π(x : S).T

−→
∆; ∆ ` t : S

−→
Γ ` s t[−→σ] ≈ (s[−→σ]) (t[−→σ]) : T [−→σ , t[−→σ]]

The Nat rules:

−→
Γ ` −→σ :

−→
∆

−→
Γ ` Nat[−→σ] ≈ Nat : Tyi

−→
Γ ` −→σ :

−→
∆

−→
Γ ` zero[−→σ] ≈ zero : Nat

−→
Γ ` −→σ :

−→
∆

−→
∆ ` t : Nat

−→
Γ ` succ t[−→σ] ≈ succ (t[−→σ]) : Nat

−→
Γ ` −→σ :

−→
∆; ∆

−→
∆; ∆, x : Nat `M : Tyi−→

∆; ∆ ` s : M [
−→
I , zero]

−→
∆; ∆, x : Nat, y : M ` s′ : M [(wk ◦ wk), succ v1]

−→
∆; ∆ ` t : Nat t′ = elimNat (x.M [q(−→σ)]) (s[−→σ]) (x, y.s′[q(q(−→σ))]) (t[−→σ])

−→
Γ ` (elimNat (x.M) s (x, y.s′) t)[−→σ] ≈ t′ : M [−→σ , t[−→σ]]

The � rules:

−→
∆; · ` T : Tyi

−→
Γ ` −→σ :

−→
∆

−→
Γ ` �T [−→σ] ≈ �(T [−→σ ;⇑1]) : Tyi

−→
∆; · ` t : T

−→
Γ ` −→σ :

−→
∆

−→
Γ ` box t[−→σ] ≈ box (t[−→σ ;⇑1]) : �T [−→σ]

−→
∆; · ` T : Tyi

−→
∆ ` t : �T |

−→
∆ ′| = n

−→
Γ ` −→σ :

−→
∆;
−→
∆ ′

−→
Γ ` unboxn t[−→σ] ≈ unboxO(−→σ ,n) (t[−→σ | n]) : T [−→σ | n;⇑O(−→σ ,n)]

241

The Ty rule:

−→
Γ ` −→σ :

−→
∆

−→
Γ ` Tyi[

−→σ] ≈ Tyi : Ty1+i

Other rules:

−→
Γ ` t ≈ t′ : T
−→
Γ ` t′ ≈ t : T

−→
Γ ` t ≈ t′ : T

−→
Γ ` t′ ≈ t′′ : T

−→
Γ ` t ≈ t′′ : T

−→
Γ ` t ≈ t′ : T

−→
Γ ` T ≈ T ′ : Tyi

−→
Γ ` t ≈ t′ : T ′

−→
Γ ` T ≈ T ′ : Tyi
−→
Γ ` T ≈ T ′ : Ty1+i

242

C
Substitutions for Layered Modal

Type Theory

In this appendix, I define the operations on regular and meta-substitutions for Chap-

ter 4. First, I define the application of regular substitutions on terms and their compo-

sition:

x[δ] := δ(x) (lookup of x in δ)

uδ
′
[δ] := uδ

′◦δ

zero[δ] := zero

succ t[δ] := succ (t[δ])

λx.t[δ] := λx.(t[δ, x/x])

t s[δ] := (t[δ]) (s[δ])

box t[δ] := box t

letbox u � s in t[δ] := letbox u � s[δ] in (t[δ])

match t with
−→
b [δ] := match t[δ] with (

−→
b [δ])

Λg.t[δ] := Λg.(t[δ])

243

t $ Γ[δ] := (t[δ]) $ Γ

varx ⇒ t[δ] := varx ⇒ (t[δ])

genvarg,T ⇒ t[δ] := genvarg,T ⇒ (t[δ])

zero⇒ t[δ] := zero⇒ (t[δ])

succ ?u⇒ t[δ] := succ ?u⇒ (t[δ])

λx.?u⇒ t[δ] := λx.?u⇒ (t[δ])

?u ?u′ ⇒ t[δ] :=?u ?u′ ⇒ (t[δ])

wk ◦ δ := wk

· ◦ δ := ·
(δ′, t/x) ◦ δ := (δ′ ◦ δ), t[δ]/x

Regular substitutions do not propagate under box.

The following generalizes the weakening regular substitution wk to some arbitrary

codomain regular context:

wk· := ·
wkg := wk

wkΓ,x:T := wkΓ, x/x

This generalization satisfies:

Lemma C.1 (Typing of regular weakening). If Ψ `i ∆,Γ, then Ψ; ∆,Γ `i wk∆ : ∆.

The special case is id∆, which also fixes the domain regular context, so that the

weakening substitution is in fact an identity substitution. I often omit the subscript as

it does not cause any ambiguity.

The following defines the well-formedness of meta-substitutions:

` Ψ

Ψ ` · : ·

Ψ ` σ : Φ Ψ `0 Γ Ψ `0 T Ψ; Γ[σ] `0 t : T [σ]

Ψ ` σ, t/u : Φ, u : (Γ ` T)

Ψ ` σ : Φ Ψ `0 Γ

Ψ ` σ,Γ/g : Φ, g : Ctx

Meta-substitutions may be applied to types and regular contexts due to context

244

variables. In particular, a substitution of a context variable replaces it with a concrete

regular context.

Nat[σ] := Nat

S −→ T [σ] := (S[σ]) −→ (T [σ])

�(Γ ` T)[σ] := �(Γ[σ] ` T [σ])

(g : Ctx)⇒ T [σ] := (g : Ctx)⇒ (T [σ, g/g])

·[σ] := ·
g[σ] := σ(g) (lookup g in σ)

Γ, x : T [σ] := (Γ[σ]), x : (T [σ])

As a side note, α-renaming needs to occur when replacing regular contexts. When

doing ∆[Γ/g] and variables in Γ clash with those in ∆, those in Γ are renamed properly

and keep the names in ∆ unchanged.

Similarly, I define the applications of meta-substitutions to terms and regular sub-

stitutions. Note that applying a meta-substitution may cause an application of regular

substitutions. Unlike regular substitutions, meta-substitutions do propagate under box.

x[σ] := x

uδ[σ] := σ(u)[δ[σ]] (lookup of u in σ)

zero[σ] := zero

succ t[σ] := succ (t[σ])

λx.t[σ] := λx.(t[σ])

t s[σ] := (t[σ]) (s[σ])

box t[σ] := box (t[σ])

letbox u � s in t[σ] := letbox u � s[σ] in (t[q(σ)])

match t with
−→
b [σ] := match t[σ] with (

−→
b [σ])

Λg.t[σ] := Λg.(t[σ, g/g])

t $ Γ[σ] := (t[σ]) $ (Γ[σ])

varx ⇒ t[σ] := varx ⇒ (t[σ])

zero⇒ t[σ] := zero⇒ (t[σ])

succ ?u⇒ t[σ] := succ ?u⇒ (t[q(σ)])

λx.?u⇒ t[σ] := λx.?u⇒ (t[q(σ)])

245

?u ?u′ ⇒ t[σ] := ?u ?u′ ⇒ (t[q(q(σ))])

wk[σ] := wkσ(g) (g is the context variable in the codomain context)

·[σ] := ·
(δ, t/x)[σ] := (δ[σ]), t[σ]/x

where q(σ) := σ, uid/u.

Finally, I should handle the meta-substitution action for branches
−→
b with care. The

idea here is to see if there exists a special branch for generated variables. If so, then

by the typing rules, this branch must be expanded into multiple branches for regular

variables.

−→
b [σ] := {b[σ] for all b ∈

−→
b } (if genvarg,T ⇒ t is not in

−→
b)

−→
b [σ] := {b[σ] for all b ∈

−→
b and is not genvarg,T ⇒ t, (otherwise, then σ(g) = Γ)

varx ⇒ (t[σ]) for all x : T ∈ Γ,

genvarg′,T ⇒ (t[σ]) if Γ = g′,Γ′}

In the first case, if there does not exist genvarg,T ⇒ t at all, then it means that

the current pattern matching is handling code from a concrete regular context with no

context variable. It then suffices to just propagate σ to all branches within.

In the second case, genvarg,T ⇒ t does exist, so σ is first acted on all other branches.

Then the branch for generated variables should be instantiated to multiple branches for

regular variables. If g is bound to Γ in σ, then for each x : T ∈ Γ, a branch varx ⇒ (t[σ])

is generated. At last, if Γ itself contains another context variable, then a new branch

for generated variables should be generated in place of the original one. On the other

hand, if Γ contains no context variable, then this new branch is entirely unnecessary

and thus removed from the output.

246

D
Adding Recursor for Natural

Numbers

Adding a recursor for natural numbers to layered modal type theory is a standard

practice. The recursor has the following syntax:

recT s (x, y.s′) t

In this term, T is the motive and t is the scrutinee. There are two cases for this recursor.

The base case where t computes to zero is handled by s. The step case is handled by

s′, where x is the predecessor and y is the recursive call.

247

In addition, there are the following rules:

Ψ; Γ `i s : T Ψ; Γ, x : Nat, y : T `i s′ : T Ψ; Γ `i t : Nat

Ψ; Γ `i recT s (x, y.s′) t : T

Ψ; Γ `1 s : T Ψ; Γ, x : Nat, y : T `i s′ : T Ψ; Γ `1 t : Nat

Ψ; Γ `1 recT s (x, y.s′) zero ≈ s : T

Ψ; Γ `1 s : T Ψ; Γ, x : Nat, y : T `i s′ : T Ψ; Γ `1 t : Nat

Ψ; Γ `1 recT s (x, y.s′) succ t ≈ s′[t/x, recT s (x, y.s′) t/y] : T

and the following branch:

Ψ, u : (∆ ` T), u′ : (∆, x : Nat, y : T ` T), u′′ : (∆ ` Nat); Γ `1 t : T ′

Ψ; Γ `1 recT ?u (x, y.?u′) ?u′′ ⇒ t : ∆ ` T ⇒ T ′

The following rule extends the β rule of pattern matching on code with the case of

the recursor:

Ψ; Γ `0 s : T Ψ; Γ, x : Nat, y : T `0 s
′ : T Ψ; Γ `1 t

′ : Nat

Ψ; Γ `1

−→
b : ∆ ` T ⇒ T ′

−→
b (recT s (x, y.s′) t′) = recT ?u (x, y.?u′) ?u′′ ⇒ t

Ψ; Γ `1 match box (recT s (x, y.s′) t′) with
−→
b ≈ t[s/u, s′/u′, t′/u′′] : T ′

Since the recursor is a elimination principle, it could have any return type, so

Ψ; Γ `1

−→
b : ∆ ` T ⇒ T ′ must be extended with a case for the recursor for each

coverage rule.

The one-step weak-head reduction is extended with the β rules above. The neutral

forms are extended with one extra for stuck recursors: recT s (x, y.s′) v.

248

E
Conversion Checking for Neutral

Pattern Matching

This appendix complements the missing rules in Sec. 4.10.

Ψ `1 T
′ Ψ; Γ `1 v ←→ v′ : �(∆ ` T) Ψ; Γ `1

−→
b ⇐̂⇒

−→
b ′ : ∆ ` T ⇒ T ′

Ψ; Γ `1 match v with
−→
b ←→ match v′ with

−→
b ′ : T ′

Ψ `0 g,∆ Ψ; Γ `1 t ⇐̂⇒ t′ : T ′

Ψ; Γ `1 genvarg,T ⇒ t ⇐̂⇒ genvarg,T ⇒ t′ : g,∆ ` T ⇒ T ′

Ψ `0 ∆ x : T ∈ ∆ Ψ; Γ `1 t ⇐̂⇒ t′ : T ′

Ψ; Γ `1 varx ⇒ t ⇐̂⇒ varx ⇒ t′ : ∆ ` T ⇒ T ′

Ψ `0 ∆ Ψ; Γ `1 t ⇐̂⇒ t′ : T ′

Ψ; Γ `1 zero⇒ t ⇐̂⇒ zero⇒ t′ : ∆ ` Nat⇒ T ′

249

Ψ, u : (∆ ` Nat); Γ `1 t ⇐̂⇒ t′ : T ′

Ψ; Γ `1 succ ?u⇒ t ⇐̂⇒ succ ?u⇒ t′ : ∆ ` Nat⇒ T ′

Ψ, u : (∆, x : S ` T); Γ `1 t ⇐̂⇒ t′ : T ′

Ψ; Γ `1 λx.?u⇒ t ⇐̂⇒ λx.?u⇒ t′ : ∆ ` S −→ T ⇒ T ′

∀ Ψ `0 S . Ψ, u : (∆ ` S −→ T), u′ : (∆ ` S); Γ `1 t ⇐̂⇒ t′ : T ′

Ψ; Γ `1?u ?u′ ⇒ t ⇐̂⇒ ?u ?u′ ⇒ t′ : ∆ ` T ⇒ T ′

250

F
Well-formedness and Reductions of

Branches

In this section, I list all the well-formedness conditions for branches. The discussion in

this appendix complements Sec. 5.3.6. Recall that the well-formedness of the motives

are:

L, ` | Ψ, uΓ : Ctx; Γ, xT : �(uΓ `c @ `) @ 0 `m MTyp @ l1

L, ` | Ψ, uΓ : Ctx, uT : (uΓ `d @ `); Γ, xt : �(uΓ `c uidT @ `) @ 0 `m MTrm @ l2

251

F.1 Branches for Types

F.1.1 Type of Universes

The typing rule is

L | Ψ `⇑(i) Γ

L | Ψ; Γ `i Tyl @ 1 + l

The branch in the recursion principle tTy is

L, ` | Ψ, uΓ : Ctx; Γ `m tTy : MTyp[1 + `/`, uΓ/uΓ, box Ty`/xT] @ l1

The reduction rule is

eliml1,l2
−→
M
−→
b (box Tyl : �(Γ `c @ l)) tNat[l/`,Γ/uΓ]

The rest of the appendix will follow this pattern to give all well-formedness condi-

tions and reduction rules.

F.1.2 Type of Natural Numbers

The typing rule is

L | Ψ `⇑(i) Γ

L | Ψ; Γ `i Nat@ 0

The branch in the recursion principle tNat is

L | Ψ, uΓ : Ctx; Γ `m tNat : MTyp[0/`, uΓ/uΓ, box Nat/xT] @ l1

The reduction rule is

eliml1,l2
−→
M
−→
b (box Nat : �(Γ `c @ 0)) tNat[Γ/uΓ]

252

F.1.3 Π Types

The typing rule is

L | Ψ; Γ `i S @ l L | Ψ; Γ, x : S @ l `i T @ l′

L | Ψ; Γ `i Πl,l′(x : S).T @ l t l′

The rule for the branch tΠ is

L, `, `′

| Ψ, uΓ : Ctx, uS : (uΓ `c @ `), uT : (uΓ, x : uidS @ ` `c @ `′)

(meta-assumptions to model the typing rule)

; Γ, xS : MTyp[`/`, uΓ/uΓ, box u
id
S/xT] @ l1

, xT : MTyp[`
′/`, (uΓ, x : uidS @ `)/uΓ, box u

id
T /xT] @ l1

(regular assumptions to for the recursive calls)

`m tΠ : MTyp[` t `′/`, uΓ/uΓ, box (Π`,`′(x : uidS).uidT)/xT] @ l1

The reduction rule is

eliml1,l2
−→
M
−→
b (box (Πl,l′(x : S).T) : �(Γ `c @ l t l′))

 tΠ[l/`, l′/`,Γ/uΓ, S/uS, T/uT ,

eliml1,l2
−→
M
−→
b (box S : �(Γ `c @ l))/xS,

eliml1,l2
−→
M
−→
b (box T : �(Γ, x : S @ l `c @ l′))/xT]

F.1.4 Decoder El

The typing rule is

L | Ψ; Γ `i t : Tyl @ 1 + l

L | Ψ; Γ `i Ell t@ l

The rule for the branch tEl is

L, `

| Ψ, uΓ : Ctx, ut : (uΓ `c Ty`@ 1 + `)

; Γ, xt : MTrm[1 + `/`, uΓ/uΓ, Ty`/uT , box u
id
t /xt] @ l2

`m tEl : MTyp[`/`, uΓ/uΓ, box (El` uidt)/xT] @ l1

253

The reduction rule is

eliml1,l2
−→
M
−→
b (box (Ell t) : �(Γ `c @ l))

 tEl[l/`,Γ/uΓ, t/ut,

eliml1,l2
−→
M
−→
b (box t : �(Γ `c Tyl @ 1 + l))/xt]

Note that to substitute xt, the recursor for code of terms is invoked, so both recursors

for code of types and terms are indeed mutual.

F.2 Branches for Terms

F.2.1 Variables

The typing rule is

L | Ψ `⇑(i) Γ x : T @ l ∈ Γ

L | Ψ; Γ `i x : T @ l

The rule for the branch tx is

L, `

| Ψ, uΓ : Ctx, uT : (uΓ `d @ `), ux : (uΓ `v uidT @ `)

; Γ

`m tx : MTrm[`/`, uΓ/uΓ, u
id
T /uT , box u

id
x /xt] @ l2

In this case, there are two new kinds of assumptions in the meta-context. Firstly,

uT denotes the type of the variable. It is at layer d, because it is obtained externally,

and it is not code. Since it is not at layer c, it cannot be recursed on, so the regular

context Γ has no additional assumption. Secondly, the assumption ux is at layer v.

This is the only place where the layer v is actually used. The layer v corresponds to a

sub-language merely with variables and is lower than c. Therefore, by lifting, code at

layer v can be lifted to c. I use layer v here for the fact that ux represents code for a

variable. If hypothetically I use layer c instead, then ux can literally be substituted for

arbitrary code, which is not an intended behavior.

The reduction rule is

eliml1,l2
−→
M
−→
b (box x : �(Γ `c W @ l)) tx[l/`,Γ/uΓ, x/ux]

254

Note here ux is replaced by x, which is a variable. Also the type is W , i.e. a WHNF,

because I choose to first reduce the type of the crutinee to a WHNF first.

F.2.2 Encoding of Universes

In this case, let us consider the encoding of universes as a term. The typing rule is

L | Ψ `⇑(i) Γ

L | Ψ; Γ `i Tyl : Ty1+l @ 2 + l

The branch in the recursion principle t′Ty is

L, ` | Ψ, uΓ : Ctx; Γ `m t′Ty : MTrm[2 + `/`, uΓ/uΓ, Ty1+`/uT , box Ty`/xt] @ l2

I use 2 + ` to replace ` from MTrm, because this is the universe level for Ty1+`, which is

the type of Ty`. Therefore, the universe level goes up by 2.

The reduction rule is

eliml1,l2
−→
M
−→
b (box Tyl : �(Γ `c Ty1+l @ 2 + l)) t′Ty[l/`,Γ/uΓ]

F.2.3 Encoding of Natural Numbers

The typing rule is

L | Ψ `⇑(i) Γ

L | Ψ; Γ `i Nat : Ty0 @ 1

The branch in the recursion principle t′Nat is

L | Ψ, uΓ : Ctx; Γ `m t′Nat : MTrm[1/`, uΓ/uΓ, Ty0/uT , box Nat/xt] @ l2

The reduction rule is

eliml1,l2
−→
M
−→
b (box Nat : �(Γ `c Ty0 @ 1)) t′Nat[Γ/uΓ]

255

F.2.4 Encoding of Π Types

The typing rule is

L | Ψ; Γ `i s : Tyl @ 1 + l L | Ψ; Γ, x : Ell s@ l `i t : Tyl′ @ 1 + l′

L | Ψ; Γ `i Πl,l′(x : s).t : Tyltl′ @ 1 + (l t l′)

The rule for the branch t′Π is

L, `, `′

| Ψ, uΓ : Ctx, us : (uΓ `c Ty`@ 1 + `), ut : (uΓ, x : El` uids @ ` `c Ty`′ @ 1 + `′)

; Γ, xs : MTrm[1 + `/`, uΓ/uΓ, Ty`/uT , box u
id
s /xT] @ l2

, xt : MTrm[1 + `′/`, (uΓ, x : El` uids @ `)/uΓ, Ty1+`′/uT , box u
id
t /xt] @ l2

`m t′Π : MTrm[1 + (` t `′)/`, uΓ/uΓ, Ty`t`′/uT , box (Π`,`′(x : uids).uidt)/xt] @ l2

The reduction rule is

eliml1,l2
−→
M
−→
b (box (Πl,l′(x : s).t) : �(Γ `c Tyltl′ @ 1 + (l t l′)))

 t′Π[l/`, l′/`,Γ/uΓ, s/us, t/ut,

eliml1,l2
−→
M
−→
b (box s : �(Γ `c Tyl @ 1 + l))/xs,

eliml1,l2
−→
M
−→
b (box t : �(Γ, x : Ell s@ l `c Tyl′ @ 1 + l′))/xt]

F.2.5 Zero Case

The typing rule is

L | Ψ `⇑(i) Γ

L | Ψ; Γ `i zero : Nat@ 0

The rule for the branch tzero is

L | Ψ, uΓ : Ctx; Γ `m tzero : MTrm[0/`, uΓ/uΓ, Nat/uT , box zero/xt] @ l2

The reduction rule is

eliml1,l2
−→
M
−→
b (box zero : �(Γ `c Nat@ 0)) tzero[Γ/uΓ]

256

F.2.6 Successor Case

The typing rule is

L | Ψ; Γ `i t : Nat@ 0

L | Ψ; Γ `i succ t : Nat@ 0

The rule for the branch tsucc is

L | Ψ, uΓ : Ctx, ut : (uΓ `c Nat@ 0)

; Γ, xt : MTrm[0/`, uΓ/uΓ, Nat/uT , box u
id
t /xt] @ l2

`m tsucc : MTrm[0/`, uΓ/uΓ, Nat/uT , box (succ uidt)/xt] @ l2

The reduction rule is

eliml1,l2
−→
M
−→
b (box (succ t) : �(Γ `c Nat@ 0))

 tsucc[Γ/uΓ, t/ut, elim
l1,l2
−→
M
−→
b (box t : �(Γ `c Nat@ 0))/xt]

F.2.7 Function Abstractions

The typing rule is

L | Ψ; Γ `i S @ l L | Ψ; Γ, x : S @ l `i t : T @ l′

L | Ψ; Γ `i λl,l
′
(x : S).t : Πl,l′(x : S).T @ l t l′

The rule for the branch tλ is

L, `, `′

| Ψ, uΓ : Ctx

, uS : (uΓ `c @ `)

, uT : (uΓ, x : uidS @ ` `d @ `′)

, ut : (uΓ, x : uidS @ ` `c uidT @ `′)

; Γ, xS : MTyp[`/`, uΓ/uΓ, box u
id
S/xT] @ l1

, xt : MTrm[`′/`, (uΓ, x : uidS @ `)/uΓ, u
id
T /uT , box u

id
t /xt] @ l2

`m tλ : MTrm[` t `′/`, uΓ/uΓ,Π
`,`′(x : uidS).uidT /uT , box (λ`,`

′
(x : uidS).uidt)/xt] @ l2

In the meta-context, other than uS and ut which represent corresponding sub-

257

structures, I also have uT which represents the return type of the function in an extended

regular context. Looking at the typing rule, however, the return type T is not ascribed

and is not a sub-structure. Therefore, uT lives at layer d and there is not a recursive

call for it, i.e. no xT in the regular context. If in the core syntax, I choose to ascribe T

as part of the syntax of λ, then I can change this layer from d to c and add a recursive

call in the regular assumption. This is a flexibility that I can take; however, in this

thesis, I simply choose not to include T as a sub-structure.

The reduction rule is

eliml1,l2
−→
M
−→
b (box (λl,l

′
(x : S).t) : �(Γ `c Πl,l′(x : S).T @ l t l′))

 tΠ[l/`, l′/`,Γ/uΓ, S/uS, T/uT , t/ut,

eliml1,l2
−→
M
−→
b (box S : �(Γ `c @ l))/xS,

eliml1,l2
−→
M
−→
b (box t : �(Γ, x : S @ l `c T @ l′))/xt]

258

G
Semantic Judgments for Code

The semantic judgment for code of types is defined as

L | Ψ; Γ �d≥d Tyl @ 1 + l

L | Ψ; Γ �dc Tyl @ 1 + l

L | Ψ; Γ �d≥d Nat@ 0

L | Ψ; Γ �dc Nat@ 0

L | Ψ; Γ �dc t : Tyl @ 1 + l

L | Ψ; Γ �d≥d Ell t@ l

L | Ψ; Γ �dc Ell t@ l

L | Ψ; Γ �dc S @ l L | Ψ; Γ, x : S @ l �dc T @ l′ L | Ψ; Γ �d≥d Πl,l′(x : S).T @ l t l′

L | Ψ; Γ �dc Πl,l′(x : S).T @ l t l′

u : (∆ `c @ l) ∈ Ψ L | Ψ; Γ �dc δ : ∆ L | Ψ; Γ �d≥d u
δ

@ l

L | Ψ; Γ �dc u
δ

@ l

When I define the semantic judgments for code, I am also concerned about the

semantics at layer v. Indeed, the semantics for code of variables at layer v is just

a special case of the semantic judgments for code. When I define these judgments,

I actually parameterize both L | Ψ; Γ �di T @ l and L | Ψ; Γ �di t : T @ l , where i ∈
{v,c}, so when i = v, I also give the semantics for code of variables.

259

The semantic judgment for code of regular substitutions is

L | Ψ; Γ �d≥d · : ·

L | Ψ; Γ �di · : ·

L | Ψ;u,Γ �d≥d wk : u

L | Ψ;u,Γ �di wk : u

L | Ψ; Γ �di δ : ∆

L | Ψ; Γ �di t : T [δ] @ l

L | Ψ; Γ �d≥d δ, t/x : ∆, x : T @ l

L | Ψ; Γ �di δ, t/x : ∆, x : T @ l

Finally, I give the semantic judgment for code of terms. The following two rules are

the only cases where v is a possible value for i:

x : T @ l ∈ Γ

L | Ψ; Γ �d≥d T
′ ≈ T @ l

L | Ψ; Γ �d≥d x : T ′@ l

L | Ψ; Γ �di x : T ′@ l

u : (∆ `i′ T @ l) ∈ Ψ i′ ≤ i L | Ψ; Γ �di δ : ∆

L | Ψ; Γ �d≥d T
′ ≈ T [δ] @ l

L | Ψ; Γ �d≥d u
δ : T ′@ l

L | Ψ; Γ �di u
δ : T ′@ l

All other rules only take i = c, as they are variables:

L | Ψ; Γ �d≥d T ≈ Ty1+l @ 2 + l

L | Ψ; Γ �d≥d Tyl : T @ 2 + l

L | Ψ; Γ �dc Tyl : T @ 2 + l

L | Ψ; Γ �d≥d T ≈ Ty0 @ 1

L | Ψ; Γ �d≥d Nat : T @ 1

L | Ψ; Γ �dc Nat : T @ 1

L | Ψ; Γ �d≥d T ≈ Nat@ 0

L | Ψ; Γ �d≥d zero : T @ 0

L | Ψ; Γ �dc zero : T @ 0

L | Ψ; Γ �dc t : Nat@ 0

L | Ψ; Γ �d≥d T ≈ Nat@ 0 L | Ψ; Γ �d≥d succ t : T @ 0

L | Ψ; Γ �dc succ t : T @ 0

L | Ψ; Γ �dc s : Tyl @ 1 + l L | Ψ; Γ, x : Ell S @ l �dc t : Tyl′ @ 1 + l′

L | Ψ; Γ �d≥d T ≈ Tyltl′ @ 1 + (l t l′) L | Ψ; Γ �d≥d Πl,l′(x : s).t : T @ 1 + (l t l′)

L | Ψ; Γ �dc Πl,l′(x : s).t : Tyltl′ @ 1 + (l t l′)

L | Ψ; Γ �dc S @ l L | Ψ; Γ, x : S @ l �dc t : T @ l′

L | Ψ; Γ �d≥d T
′ ≈ Πl,l′(x : S).T @ l t l′ L | Ψ; Γ �d≥d λ

l,l′(x : S).t : T ′@ l t l′

L | Ψ; Γ �dc λ
l,l′(x : S).t : T ′@ l t l′

260

L | Ψ; Γ �dc S @ l L | Ψ; Γ, x : S @ l �dc T @ l′

L | Ψ; Γ �dc t : Πl,l′(x : S).T @ l t l′ L | Ψ; Γ �dc s : S @ l

L | Ψ; Γ �d≥d T
′ ≈ T [s/x] @ l′ L | Ψ; Γ �d≥d (t : Πl,l′(x : S).T) s : T ′@ l′

L | Ψ; Γ �dc (t : Πl,l′(x : S).T) s : T ′@ l′

261

	Abstract
	Abrégé
	Contributions
	Publications
	Acknowledgements
	Introduction
	Simply Typed -calculus as Type Theory
	Methodology
	Contributions
	Conventions

	I Kripke-style Modal Type Theories
	Kripke-style Modal -Calculus
	Syntax of
	Modal Transformations
	Explicit K-substitutions
	Truncation and Truncation Offset
	Untyped Domain Model
	Untyped Modal Transformations (UMoTs)
	Evaluation
	Readback Functions
	PER Model And Completeness
	Restricted Weakenings
	Gluing Model And Soundness
	Summary

	Mint: A Kripke-style Modal Dependent Type Theory
	Introducing Mint by Examples
	Laws in S4
	Lifting of Natural Numbers
	Generating N-ary Sum
	Soundness of N-ary Sum

	Definition of Mint
	Scaling Untyped Domain Model
	Evaluation and Readback
	PER Model
	Properties for PERs
	U Irrelevance
	U and El are PERs
	Monotonicity
	Cumulativity and Lowering
	Realizability

	Semantic Judgments And Completeness
	Gluing Model
	Properties of Gluing Model
	Monotonicity
	Realizability
	Cumulativity and Lowering

	Fundamental Theorems and Soundness
	Summary

	II Layered Modal Type Theories
	A Layered Modal Type Theory for Intensional Analysis
	Example Programs in 2-layered Modal Type Theory
	A Layered Multiplication Function
	Contextual Types for Open Code
	Pattern Matching for Intensional Analysis

	Syntax And Well-formedness
	Pattern Matching on Code
	Syntactic Properties
	Weak-head Reduction
	Generic Equivalence
	Reducibility Predicates at Layer 0
	Semantic Pattern Matching And Reducibility Predicates at Layer 1
	Semantic Judgments And Fundamental Theorems
	Convertibility Checking
	Comparison with Homogeneous and Heterogeneous Styles
	Summary

	DeLaM: Dependent Layered Modal Type Theory
	DeLaM by Examples
	Recursion on Code Objects Describing MLTT Terms
	Recursion on Code Objects Describing MLTT Types

	Syntax of DeLaM
	Explicit Universe Polymorphism
	Variables, Contexts and Substitutions
	Non-cumulative Tarski-Style Universes and Types
	Dissecting Types and Terms of DeLaM

	Syntactic Judgments in DeLaM
	Well-Formed Regular and Meta-Context
	Types and Terms
	Static Code and Lifting Lemma
	Universe, Regular and Meta-Substitutions
	Weak-Head Reductions
	Recursion on Code

	Kripke Logical Relations
	Generic Equivalences
	Logical Relations for Types and Terms in MLTT
	Properties of Logical Relations
	Semantics for MLTT and Code
	Logical Relations for Meta-Contexts andMeta-Substitutions
	Logical Relations for Layer M
	Semantic Judgments and Fundamental Theorems

	Consequences of Fundamental Theorems
	First Instantiation: Syntactic Equivalence
	Conversion Checking
	Second Instantiation: Conversion Checking Algorithm

	Summary

	III Discussions and Conclusions
	Related Work And Discussions
	Modal Type Theories
	Normalization for Type Theories
	Mechanization of Normalization for Type Theories
	Modalities, Meta-programming and Intensional Analysis
	Future Work
	Russell-Style Universes in DeLaM
	NbE for DeLaM
	Mechanization of DeLaM
	Other Extensions for DeLaM

	An Outline of Implementing DeLaM

	Conclusions

	Bibliography
	Appendices
	Missing Typing Rules for chap:krip
	Full Set of Rules for Mint
	Substitutions for Layered Modal Type Theory
	Adding Recursor for Natural Numbers
	Conversion Checking for Neutral Pattern Matching
	Well-formedness and Reductions of Branches
	Branches for Types
	Type of Universes
	Type of Natural Numbers
	 Types
	Decoder El

	Branches for Terms
	Variables
	Encoding of Universes
	Encoding of Natural Numbers
	Encoding of Types
	Zero Case
	Successor Case
	Function Abstractions

	Semantic Judgments for Code

