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Type Theory: What and Why

I Theoretic foundation of popular proof assistants (Coq, Agda, Lean)

I CompCert, CertikOS
I 4 color theorem, mathlib

I Easy to understand and implement

I Propositions-as-types: same language for programming and proving
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Programming and Proving in Type Theory

I Type theory is a programming language!

mult : Nat → Nat → Nat

mult m n = ?

I Type theory is also a proving language!

left -id-mult : ∀ (m : Nat) → mult 1 m ≡ m

left -id-mult m = refl

I Type theory knows mult 1 m ≈ mult 0 m + m ≈ 0 + m ≈ m
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Spend Less Time on Proving

I Good news: an algorithm to check whether a program has the specified type

I Good news: computer is faster than human

I Bad news: proving in type theory requires every last detail

I Solution: meta-programming, i.e. write programs to generate programs and proofs
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Research question:

can a type theory directly support meta-programming?



6

Spectrum of Meta-programming in Proof Assistants

untyped

dependently typed
(this thesis)

Ltac
reflection

Ltac2 Mtac Mint
DeLaM

Part I:

I Hu and Pientka (2022), A Categorical Normalization Proof for the Modal Lambda-Calculus, MFPS’22

I Hu et al. (2023), Normalization by Evaluation for Modal Dependent Type Theory, JFP

Part II:

I Hu and Pientka (2024), Layered Modal Type Theory: Where Meta-programming Meets Intensional
Analysis, ESOP’24

I Hu and Pientka (2025), A Dependent Type Theory for Meta-programming with Intensional Analysis,
POPL’25
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Part I

Mint and Quasi-quotation
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Quasi-quotation in Mint

I Extend dependent type theory with the � modality

I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”

Quasi-quotation:
I box t quotes the code of t

I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)
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Proving in Mint

I Mint has dependent types:

it also proves!

I Soundness: evaluating mult2 computes the same as mult
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Applications and Limitations of Mint

I Advantage: Mint models quasi-quotation and can prove correctness of
meta-programs

I We can extract proven-correct meta-programs to MetaML, MetaOCaml, etc.

I Limitation: Mint supports composition only; does not support recursion on
syntactic objects

I We frequently use it when implementing proof heuristics and tactics in proof
assistants!

Can we support recursion on syntactic objects in a type theory?
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Part II

DeLaM and Recursion on Syntactic Objects
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Analysis / Recursion on Syntactic Objects

I A proof heuristic often needs to know the shape of the goal

I If the goal is a known truth, then it’s done;
I if the goal is a conjunction, then we need to prove each component;
I etc.

I Mint does not support this kind of analysis!

I In general, we need to do recursion on the syntactic object of the current goal.

I A different type theory is needed.
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Layers and DeLaM

I DeLaM: Dependent Layered Modal type theory

I extends dependent type theory with layers
I

core lang. meta-lang.

I Meta-language is an extension of core language and is strictly more expressive:

I coherent recursion only on syntactic objects of the core language
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Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 m = ?

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y
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Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp y = ?

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)
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Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound y m = ?
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Summary of DeLaM

I Recursion on syntactic objects:
I manipulate terms,
I analyze and prove goals

I Run code ⇒ conflate the proving and meta-programming languages

I DeLaM is a basic setup; need empirical study to understand practical needs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 17



17

Summary of DeLaM

I Recursion on syntactic objects:
I manipulate terms,
I analyze and prove goals

I Run code ⇒ conflate the proving and meta-programming languages

I DeLaM is a basic setup; need empirical study to understand practical needs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 17



17

Summary of DeLaM

I Recursion on syntactic objects:
I manipulate terms,
I analyze and prove goals

I Run code ⇒ conflate the proving and meta-programming languages

I DeLaM is a basic setup; need empirical study to understand practical needs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 17



To Conclude



19

Conclusions

This PhD thesis explored ways to support meta-programming in type theory.

I Mint supports quasi-quotation but not recursion on syntactic objects

I DeLaM supports recursion on syntactic objects but mandates a less familiar
programming style

I Both type theories are logically consistent and can serve as foundations for proof
assistants!
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Criteria for A Valid Type Theory

I How do we know a type theory works?

I Intuitively, a type theory should be consistent, i.e. not every proposition is
provable.

I Two conclusive properties:

I Normalization: every well-typed program must terminate and compute to a normal
form

I Consistency is a corollary of normalization.
I Decidability of convertibility: decide whether two terms are equivalent
I Computers can always decide whether two terms are the “same”

I Two properties allow to do type-checking, i.e. checking whether a program is a
member of the given type
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Contributions

Thesis Part I Part II

Type theory Mint DeLaM

Normalization Yes Yes

Decidability of convertibility

Yes Yes

Main feature

quasi-quotation recursion on syntactic objects

Mechanization

Yes No
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Components of Type Theory

I In type theory, we study judgments.

I Γ ` t : T term t has type T in context Γ.

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx .t : Π(x : S).T

Γ ` t : Π(x : S).T Γ ` s : S

Γ ` t s : T [s/x ]

A substitution replaces a variable with a term.

I Γ ` t ≈ t ′ : T terms t and t ′ are equivalent.

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx .t) s ≈ t[s/x ] : T [s/x ]

I Equivalence applies to types as well.
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Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.
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Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
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Invoking Tactics in DeLaM

I Use tactics to avoid tedious proving steps

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

lem : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))

lem =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))))

in letbox u ← pf in u

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 25



25

Invoking Tactics in DeLaM

II Use tactics to avoid tedious proving steps

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

lem : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))

lem =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))))

in letbox u ← pf in u

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 25



25

Invoking Tactics in DeLaM

II Use tactics to avoid tedious proving steps

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

lem : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))

lem =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))))

in letbox u ← pf in u

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 25



25

Invoking Tactics in DeLaM

II Use tactics to avoid tedious proving steps

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

lem : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))

lem =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))))

in letbox u ← pf in u

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 25



25

Invoking Tactics in DeLaM

II Use tactics to avoid tedious proving steps

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

lem : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))

lem =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))))

in letbox u ← pf in u

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 25


