
1

Foundations and Applications of Modal Type Theories

Jason Z. S. Hu

McGill University

PhD Defense

Nov. 21st, 2024

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 1



1

Outline

I Motivations

I Type theory: what and why?
I Problem: how to extend type theory with meta-programming?

I Contributions: meta-programming in type theory

I Mint: Quasi-quotation
I DeLaM: Recursion on syntactic objects

I Conclusions

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 1



1

Outline

I Motivations
I Type theory: what and why?

I Problem: how to extend type theory with meta-programming?

I Contributions: meta-programming in type theory

I Mint: Quasi-quotation
I DeLaM: Recursion on syntactic objects

I Conclusions

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 1



1

Outline

I Motivations
I Type theory: what and why?
I Problem: how to extend type theory with meta-programming?

I Contributions: meta-programming in type theory

I Mint: Quasi-quotation
I DeLaM: Recursion on syntactic objects

I Conclusions

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 1



1

Outline

I Motivations
I Type theory: what and why?
I Problem: how to extend type theory with meta-programming?

I Contributions: meta-programming in type theory

I Mint: Quasi-quotation
I DeLaM: Recursion on syntactic objects

I Conclusions

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 1



1

Outline

I Motivations
I Type theory: what and why?
I Problem: how to extend type theory with meta-programming?

I Contributions: meta-programming in type theory
I Mint: Quasi-quotation

I DeLaM: Recursion on syntactic objects

I Conclusions

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 1



1

Outline

I Motivations
I Type theory: what and why?
I Problem: how to extend type theory with meta-programming?

I Contributions: meta-programming in type theory
I Mint: Quasi-quotation
I DeLaM: Recursion on syntactic objects

I Conclusions

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 1



1

Outline

I Motivations
I Type theory: what and why?
I Problem: how to extend type theory with meta-programming?

I Contributions: meta-programming in type theory
I Mint: Quasi-quotation
I DeLaM: Recursion on syntactic objects

I Conclusions

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 1



2

Type Theory: What and Why

I Theoretic foundation of popular proof assistants (Coq, Agda, Lean)

I CompCert, CertikOS
I 4 color theorem, mathlib

I Easy to understand and implement

I Propositions-as-types: same language for programming and proving

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 2



2

Type Theory: What and Why

I Theoretic foundation of popular proof assistants (Coq, Agda, Lean)
I CompCert, CertikOS

I 4 color theorem, mathlib

I Easy to understand and implement

I Propositions-as-types: same language for programming and proving

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 2



2

Type Theory: What and Why

I Theoretic foundation of popular proof assistants (Coq, Agda, Lean)
I CompCert, CertikOS
I 4 color theorem, mathlib

I Easy to understand and implement

I Propositions-as-types: same language for programming and proving

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 2



2

Type Theory: What and Why

I Theoretic foundation of popular proof assistants (Coq, Agda, Lean)
I CompCert, CertikOS
I 4 color theorem, mathlib

I Easy to understand and implement

I Propositions-as-types: same language for programming and proving

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 2



2

Type Theory: What and Why

I Theoretic foundation of popular proof assistants (Coq, Agda, Lean)
I CompCert, CertikOS
I 4 color theorem, mathlib

I Easy to understand and implement

I Propositions-as-types: same language for programming and proving

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 2



3

Programming and Proving in Type Theory

I Type theory is a programming language!

mult : Nat → Nat → Nat

mult m n = ?

I Type theory is also a proving language!

left -id-mult : ∀ (m : Nat) → mult 1 m ≡ m

left -id-mult m = refl

I Type theory knows mult 1 m ≈ mult 0 m + m ≈ 0 + m ≈ m

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 3



3

Programming and Proving in Type Theory

I Type theory is a programming language!

mult : Nat → Nat → Nat

mult zero n = ?

mult (succ m) n = ?

I Type theory is also a proving language!

left -id-mult : ∀ (m : Nat) → mult 1 m ≡ m

left -id-mult m = refl

I Type theory knows mult 1 m ≈ mult 0 m + m ≈ 0 + m ≈ m

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 3



3

Programming and Proving in Type Theory

I Type theory is a programming language!

mult : Nat → Nat → Nat

mult zero n = 0

mult (succ m) n = ?

I Type theory is also a proving language!

left -id-mult : ∀ (m : Nat) → mult 1 m ≡ m

left -id-mult m = refl

I Type theory knows mult 1 m ≈ mult 0 m + m ≈ 0 + m ≈ m

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 3



3

Programming and Proving in Type Theory

I Type theory is a programming language!

mult : Nat → Nat → Nat

mult zero n = 0

mult (succ m) n = ?

I Type theory is also a proving language!

left -id-mult : ∀ (m : Nat) → mult 1 m ≡ m

left -id-mult m = refl

I Type theory knows mult 1 m ≈ mult 0 m + m ≈ 0 + m ≈ m

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 3



3

Programming and Proving in Type Theory

I Type theory is a programming language!

mult : Nat → Nat → Nat

mult zero n = 0

mult (succ m) n = mult m n + n

I Type theory is also a proving language!

left -id-mult : ∀ (m : Nat) → mult 1 m ≡ m

left -id-mult m = refl

I Type theory knows mult 1 m ≈ mult 0 m + m ≈ 0 + m ≈ m

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 3



3

Programming and Proving in Type Theory

I Type theory is a programming language!

mult : Nat → Nat → Nat

mult zero n = 0

mult (succ m) n = mult m n + n

I Type theory is also a proving language!

left -id-mult : ∀ (m : Nat) → mult 1 m ≡ m

left -id-mult m = refl

I Type theory knows mult 1 m ≈ mult 0 m + m ≈ 0 + m ≈ m

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 3



3

Programming and Proving in Type Theory

I Type theory is a programming language!

mult : Nat → Nat → Nat

mult zero n = 0

mult (succ m) n = mult m n + n

I Type theory is also a proving language!

left -id-mult : ∀ (m : Nat) → mult 1 m ≡ m

left -id-mult m = refl

I Type theory knows mult 1 m ≈ mult 0 m + m ≈ 0 + m ≈ m

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 3



4

Spend Less Time on Proving

I Good news: an algorithm to check whether a program has the specified type

I Good news: computer is faster than human

I Bad news: proving in type theory requires every last detail

I Solution: meta-programming, i.e. write programs to generate programs and proofs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 4



4

Spend Less Time on Proving

I Good news: an algorithm to check whether a program has the specified type

I Good news: computer is faster than human

I Bad news: proving in type theory requires every last detail

I Solution: meta-programming, i.e. write programs to generate programs and proofs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 4



4

Spend Less Time on Proving

I Good news: an algorithm to check whether a program has the specified type

I Good news: computer is faster than human

I Bad news: proving in type theory requires every last detail

right -id-mult : ∀ (m : Nat) → mult m 1 ≡ m

right -id-mult m = ?

I Solution: meta-programming, i.e. write programs to generate programs and proofs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 4



4

Spend Less Time on Proving

I Good news: an algorithm to check whether a program has the specified type

I Good news: computer is faster than human

I Bad news: proving in type theory requires every last detail

right -id-mult : ∀ (m : Nat) → mult m 1 ≡ m

right -id-mult zero = refl -- 0 ≡ 0

right -id-mult (succ m) = begin

mult m 1 + 1 =< right -id-mult m >

m + 1 =< +-comm >

1 + m qed

I Solution: meta-programming, i.e. write programs to generate programs and proofs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 4



4

Spend Less Time on Proving

I Good news: an algorithm to check whether a program has the specified type

I Good news: computer is faster than human

I Bad news: proving in type theory requires every last detail

right -id-mult : ∀ (m : Nat) → mult m 1 ≡ m

right -id-mult zero = refl -- 0 ≡ 0

right -id-mult (succ m) = begin

mult m 1 + 1 =< right -id-mult m >

m + 1 =< +-comm >

1 + m qed

I Solution: meta-programming, i.e. write programs to generate programs and proofs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 4



4

Spend Less Time on Proving

I Good news: an algorithm to check whether a program has the specified type

I Good news: computer is faster than human

I Bad news: proving in type theory requires every last detail

right -id-mult : ∀ (m : Nat) → mult m 1 ≡ m

right -id-mult m = crush

I Solution: meta-programming, i.e. write programs to generate programs and proofs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 4



Research question:

can a type theory directly support meta-programming?



6

Spectrum of Meta-programming in Proof Assistants

untyped

dependently typed
(this thesis)

Ltac
reflection

Ltac2 Mtac Mint
DeLaM

Part I:

I Hu and Pientka (2022), A Categorical Normalization Proof for the Modal Lambda-Calculus, MFPS’22

I Hu et al. (2023), Normalization by Evaluation for Modal Dependent Type Theory, JFP

Part II:

I Hu and Pientka (2024), Layered Modal Type Theory: Where Meta-programming Meets Intensional
Analysis, ESOP’24

I Hu and Pientka (2025), A Dependent Type Theory for Meta-programming with Intensional Analysis,
POPL’25

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 6



6

Spectrum of Meta-programming in Proof Assistants

untyped

dependently typed
(this thesis)

Ltac
reflection

Ltac2 Mtac Mint
DeLaM

Part I:

I Hu and Pientka (2022), A Categorical Normalization Proof for the Modal Lambda-Calculus, MFPS’22

I Hu et al. (2023), Normalization by Evaluation for Modal Dependent Type Theory, JFP

Part II:

I Hu and Pientka (2024), Layered Modal Type Theory: Where Meta-programming Meets Intensional
Analysis, ESOP’24

I Hu and Pientka (2025), A Dependent Type Theory for Meta-programming with Intensional Analysis,
POPL’25

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 6



6

Spectrum of Meta-programming in Proof Assistants

untyped

dependently typed
(this thesis)

Ltac
reflection

Ltac2 Mtac Mint
DeLaM

Part I:

I Hu and Pientka (2022), A Categorical Normalization Proof for the Modal Lambda-Calculus, MFPS’22

I Hu et al. (2023), Normalization by Evaluation for Modal Dependent Type Theory, JFP

Part II:

I Hu and Pientka (2024), Layered Modal Type Theory: Where Meta-programming Meets Intensional
Analysis, ESOP’24

I Hu and Pientka (2025), A Dependent Type Theory for Meta-programming with Intensional Analysis,
POPL’25

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 6



6

Spectrum of Meta-programming in Proof Assistants

untyped

dependently typed
(this thesis)

Ltac
reflection

Ltac2 Mtac Mint
DeLaM

Part I:

I Hu and Pientka (2022), A Categorical Normalization Proof for the Modal Lambda-Calculus, MFPS’22

I Hu et al. (2023), Normalization by Evaluation for Modal Dependent Type Theory, JFP

Part II:

I Hu and Pientka (2024), Layered Modal Type Theory: Where Meta-programming Meets Intensional
Analysis, ESOP’24

I Hu and Pientka (2025), A Dependent Type Theory for Meta-programming with Intensional Analysis,
POPL’25

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 6



6

Spectrum of Meta-programming in Proof Assistants

untyped

dependently typed
(this thesis)

Ltac
reflection

Ltac2 Mtac Mint
DeLaM

Part I:

I Hu and Pientka (2022), A Categorical Normalization Proof for the Modal Lambda-Calculus, MFPS’22

I Hu et al. (2023), Normalization by Evaluation for Modal Dependent Type Theory, JFP

Part II:

I Hu and Pientka (2024), Layered Modal Type Theory: Where Meta-programming Meets Intensional
Analysis, ESOP’24

I Hu and Pientka (2025), A Dependent Type Theory for Meta-programming with Intensional Analysis,
POPL’25

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 6



6

Spectrum of Meta-programming in Proof Assistants

untyped

dependently typed
(this thesis)

Ltac
reflection

Ltac2 Mtac Mint
DeLaM

Part I:

I Hu and Pientka (2022), A Categorical Normalization Proof for the Modal Lambda-Calculus, MFPS’22

I Hu et al. (2023), Normalization by Evaluation for Modal Dependent Type Theory, JFP

Part II:

I Hu and Pientka (2024), Layered Modal Type Theory: Where Meta-programming Meets Intensional
Analysis, ESOP’24

I Hu and Pientka (2025), A Dependent Type Theory for Meta-programming with Intensional Analysis,
POPL’25

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 6



Part I

Mint and Quasi-quotation



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality

I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”

Quasi-quotation:
I box t quotes the code of t

I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”

Quasi-quotation:
I box t quotes the code of t

I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”

Quasi-quotation:
I box t quotes the code of t

I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t

I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

mult : Nat → Nat → Nat

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

mult2 : Nat → �(Nat → Nat)

mult2 m = ?

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

mult2 : Nat → �(Nat → Nat)

mult2 zero = ?

mult2 (succ m) = ?

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

mult2 : Nat → �(Nat → Nat)

mult2 zero = box ?

mult2 (succ m) = ?

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

mult2 : Nat → �(Nat → Nat)

mult2 zero = box (λ n. 0)

mult2 (succ m) = ?

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

mult2 : Nat → �(Nat → Nat)

mult2 zero = box (λ n. 0)

mult2 (succ m) = ?

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

mult2 : Nat → �(Nat → Nat)

mult2 zero = box (λ n. 0)

mult2 (succ m) = box (λ n. ? )

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

mult2 : Nat → �(Nat → Nat)

mult2 zero = box (λ n. 0)

mult2 (succ m) = box (λ n. (mult2 m) n + n)

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

mult2 : Nat → �(Nat → Nat)

mult2 zero = box (λ n. 0)

mult2 (succ m) = box (λ n. (unbox 1 (mult2 m)) n + n)

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



8

Quasi-quotation in Mint

I Extend dependent type theory with the � modality
I Mint, Modal INtuitionistic Type theory

I � A reads “code of A”
Quasi-quotation:
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I meta-programming in Mint:

mult2 : Nat → �(Nat → Nat)

mult2 zero = box (λ n. 0)

mult2 (succ m) = box (λ n. (unbox 1 (mult2 m)) n + n)

I Running meta-programs:

unbox 0 (mult2 2) ≈ (λ n. n + n)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 8



9

Proving in Mint

I Mint has dependent types:

it also proves!

I Soundness: evaluating mult2 computes the same as mult

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound m n = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound m n = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = ?

sound (succ m) n = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = ?

sound (succ m) n = ?

LHS:
(unbox 0 (mult2 0)) n ≈ (unbox 0 (box (λ n. 0))) n ≈ (λ n. 0) n ≈ 0

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = ?

sound (succ m) n = ?

LHS:
(unbox 0 (mult2 0)) n ≈ (unbox 0 (box (λ n. 0))) n ≈ (λ n. 0) n ≈ 0

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = ?

sound (succ m) n = ?

LHS:
(unbox 0 (mult2 0)) n ≈ (unbox 0 (box (λ n. 0))) n ≈ (λ n. 0) n ≈ 0

RHS:
mult 0 n ≈ 0

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = refl

sound (succ m) n = ?

LHS:
(unbox 0 (mult2 0)) n ≈ (unbox 0 (box (λ n. 0))) n ≈ (λ n. 0) n ≈ 0

RHS:
mult 0 n ≈ 0

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = refl

sound (succ m) n = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = refl

sound (succ m) n = ?

LHS:
(unbox 0 (mult2 (succ m))) n

≈ (unbox 0 (box (λ n. (unbox 1 (mult2 m)) n + n))) n

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = refl

sound (succ m) n = ?

LHS:
(unbox 0 (mult2 (succ m))) n

≈ (λ n. (unbox 0 (mult2 m)) n + n) n

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = refl

sound (succ m) n = ?

LHS:
(unbox 0 (mult2 (succ m))) n

≈ (unbox 0 (mult2 m)) n + n

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = refl

sound (succ m) n = ?

LHS:
(unbox 0 (mult2 (succ m))) n

≈ (unbox 0 (mult2 m)) n + n

RHS:
mult (succ m) n ≈ mult m n + n

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = refl

sound (succ m) n = ?

LHS:
(unbox 0 (mult2 (succ m))) n

≈ (unbox 0 (mult2 m)) n + n

RHS:
mult (succ m) n ≈ mult m n + n

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = refl

sound (succ m) n = cong (_+ n) ?

LHS:
(unbox 0 (mult2 (succ m))) n

≈ (unbox 0 (mult2 m)) n + n

RHS:
mult (succ m) n ≈ mult m n + n

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = refl

sound (succ m) n = cong (_+ n) ?

LHS:
(unbox 0 (mult2 (succ m))) n

≈ (unbox 0 (mult2 m)) n + n

RHS:
mult (succ m) n ≈ mult m n + n

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



9

Proving in Mint

I Mint has dependent types: it also proves!

I Soundness: evaluating mult2 computes the same as mult

sound : ∀ (m n : Nat) → (unbox 0 (mult2 m)) n ≡ mult m n

sound zero n = refl

sound (succ m) n = cong (_+ n) (sound m n)

LHS:
(unbox 0 (mult2 (succ m))) n

≈ (unbox 0 (mult2 m)) n + n

RHS:
mult (succ m) n ≈ mult m n + n

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 9



10

Applications and Limitations of Mint

I Advantage: Mint models quasi-quotation and can prove correctness of
meta-programs

I We can extract proven-correct meta-programs to MetaML, MetaOCaml, etc.

I Limitation: Mint supports composition only; does not support recursion on
syntactic objects

I We frequently use it when implementing proof heuristics and tactics in proof
assistants!

Can we support recursion on syntactic objects in a type theory?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 10



10

Applications and Limitations of Mint

I Advantage: Mint models quasi-quotation and can prove correctness of
meta-programs
I We can extract proven-correct meta-programs to MetaML, MetaOCaml, etc.

I Limitation: Mint supports composition only; does not support recursion on
syntactic objects

I We frequently use it when implementing proof heuristics and tactics in proof
assistants!

Can we support recursion on syntactic objects in a type theory?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 10



10

Applications and Limitations of Mint

I Advantage: Mint models quasi-quotation and can prove correctness of
meta-programs
I We can extract proven-correct meta-programs to MetaML, MetaOCaml, etc.

I Limitation: Mint supports composition only; does not support recursion on
syntactic objects

I We frequently use it when implementing proof heuristics and tactics in proof
assistants!

Can we support recursion on syntactic objects in a type theory?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 10



10

Applications and Limitations of Mint

I Advantage: Mint models quasi-quotation and can prove correctness of
meta-programs
I We can extract proven-correct meta-programs to MetaML, MetaOCaml, etc.

I Limitation: Mint supports composition only; does not support recursion on
syntactic objects
I We frequently use it when implementing proof heuristics and tactics in proof

assistants!

Can we support recursion on syntactic objects in a type theory?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 10



10

Applications and Limitations of Mint

I Advantage: Mint models quasi-quotation and can prove correctness of
meta-programs
I We can extract proven-correct meta-programs to MetaML, MetaOCaml, etc.

I Limitation: Mint supports composition only; does not support recursion on
syntactic objects
I We frequently use it when implementing proof heuristics and tactics in proof

assistants!

Can we support recursion on syntactic objects in a type theory?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 10



Part II

DeLaM and Recursion on Syntactic Objects



12

Analysis / Recursion on Syntactic Objects

I A proof heuristic often needs to know the shape of the goal

I If the goal is a known truth, then it’s done;
I if the goal is a conjunction, then we need to prove each component;
I etc.

I Mint does not support this kind of analysis!

I In general, we need to do recursion on the syntactic object of the current goal.

I A different type theory is needed.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 12



12

Analysis / Recursion on Syntactic Objects

I A proof heuristic often needs to know the shape of the goal
I If the goal is a known truth, then it’s done;

I if the goal is a conjunction, then we need to prove each component;
I etc.

I Mint does not support this kind of analysis!

I In general, we need to do recursion on the syntactic object of the current goal.

I A different type theory is needed.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 12



12

Analysis / Recursion on Syntactic Objects

I A proof heuristic often needs to know the shape of the goal
I If the goal is a known truth, then it’s done;
I if the goal is a conjunction, then we need to prove each component;

I etc.

I Mint does not support this kind of analysis!

I In general, we need to do recursion on the syntactic object of the current goal.

I A different type theory is needed.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 12



12

Analysis / Recursion on Syntactic Objects

I A proof heuristic often needs to know the shape of the goal
I If the goal is a known truth, then it’s done;
I if the goal is a conjunction, then we need to prove each component;
I etc.

I Mint does not support this kind of analysis!

I In general, we need to do recursion on the syntactic object of the current goal.

I A different type theory is needed.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 12



12

Analysis / Recursion on Syntactic Objects

I A proof heuristic often needs to know the shape of the goal
I If the goal is a known truth, then it’s done;
I if the goal is a conjunction, then we need to prove each component;
I etc.

I Mint does not support this kind of analysis!

I In general, we need to do recursion on the syntactic object of the current goal.

I A different type theory is needed.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 12



12

Analysis / Recursion on Syntactic Objects

I A proof heuristic often needs to know the shape of the goal
I If the goal is a known truth, then it’s done;
I if the goal is a conjunction, then we need to prove each component;
I etc.

I Mint does not support this kind of analysis!

I In general, we need to do recursion on the syntactic object of the current goal.

I A different type theory is needed.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 12



12

Analysis / Recursion on Syntactic Objects

I A proof heuristic often needs to know the shape of the goal
I If the goal is a known truth, then it’s done;
I if the goal is a conjunction, then we need to prove each component;
I etc.

I Mint does not support this kind of analysis!

I In general, we need to do recursion on the syntactic object of the current goal.

I A different type theory is needed.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 12



13

Layers and DeLaM

I DeLaM: Dependent Layered Modal type theory

I extends dependent type theory with layers
I

core lang. meta-lang.

I Meta-language is an extension of core language and is strictly more expressive:

I coherent recursion only on syntactic objects of the core language

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 13



13

Layers and DeLaM

I DeLaM: Dependent Layered Modal type theory
I extends dependent type theory with layers

I

core lang. meta-lang.

I Meta-language is an extension of core language and is strictly more expressive:

I coherent recursion only on syntactic objects of the core language

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 13



13

Layers and DeLaM

I DeLaM: Dependent Layered Modal type theory
I extends dependent type theory with layers
I

core lang. meta-lang.

I Meta-language is an extension of core language and is strictly more expressive:

I coherent recursion only on syntactic objects of the core language

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 13



13

Layers and DeLaM

I DeLaM: Dependent Layered Modal type theory
I extends dependent type theory with layers
I

core lang. meta-lang.

I Meta-language is an extension of core language and is strictly more expressive:

I coherent recursion only on syntactic objects of the core language

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 13



13

Layers and DeLaM

I DeLaM: Dependent Layered Modal type theory
I extends dependent type theory with layers
I

core lang. meta-lang.

I Meta-language is an extension of core language and is strictly more expressive:
I coherent recursion only on syntactic objects of the core language

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 13



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 m = ?

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 m = ?

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = ?

mult3 (succ m) = ?

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = box (x. 0)

mult3 (succ m) = ?

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = box (x. 0)

mult3 (succ m) = ?

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = box (x. 0)

mult3 (succ m) = letbox u ← ? in ?

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = box (x. 0)

mult3 (succ m) = letbox u ← mult3 m in ?

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = box (x. 0)

mult3 (succ m) = letbox u ← mult3 m in ?

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = box (x. 0)

mult3 (succ m) = letbox u ← mult3 m in box (x. u[x/x] + x)

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = box (x. 0)

mult3 (succ m) = letbox u ← mult3 m in box (x. u[x/x] + x)

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = box (x. 0)

mult3 (succ m) = letbox u ← mult3 m in box (x. u[x/x] + x)

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = box (x. 0)

mult3 (succ m) = letbox u ← mult3 m in box (x. u[x/x] + x)

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



14

Meta-programming in DeLaM

I Multiplication in DeLaM:

mult3 : Nat → � (x : Nat ` Nat)

mult3 zero = box (x. 0)

mult3 (succ m) = letbox u ← mult3 m in box (x. u[x/x] + x)

I However, these 0’s are redundant:

mult3 1 ≈ box (x. 0 + x) 6≈ box (x. x)

mult3 2 ≈ box (x. (0 + x) + x) 6≈ box (x. x + x)

I Use letbox to run the generated function:

letbox u ← mult3 2 in u[5/x] ≈ 10

letbox u ← mult3 2 in λ y. u[y/x] ≈ λ y. (0 + y) + y ≈ λ y. y + y

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 14



15

Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp y = ?

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 15



15

Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp (box (0 + b)) = ?

simp (box (a + b)) = ?

simp (box a) = ?

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 15



15

Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp (box (0 + b)) = box (x. b)

simp (box (a + b)) = ?

simp (box a) = ?

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 15



15

Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp (box (0 + b)) = box (x. b)

simp (box (a + b)) = ?

simp (box a) = ?

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 15



15

Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp (box (0 + b)) = box (x. b)

simp (box (a + b)) =

letbox a' ← simp (box (x. a)) in box (x. a' + b)

simp (box a) = ?

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 15



15

Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp (box (0 + b)) = box (x. b)

simp (box (a + b)) =

letbox a' ← simp (box (x. a)) in box (x. a' + b)

simp (box a) = ?

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 15



15

Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp (box (0 + b)) = box (x. b)

simp (box (a + b)) =

letbox a' ← simp (box (x. a)) in box (x. a' + b)

simp (box a) = ?

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 15



15

Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp (box (0 + b)) = box (x. b)

simp (box (a + b)) =

letbox a' ← simp (box (x. a)) in box (x. a' + b)

simp (box a) = box a

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 15



15

Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp (box (0 + b)) = box (x. b)

simp (box (a + b)) =

letbox a' ← simp (box (x. a)) in box (x. a' + b)

simp (box a) = box a

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 15



15

Code Manipulation in DeLaM

I Getting rid of redundant 0:

simp : � (x : Nat ` Nat) → � (x : Nat ` Nat)

simp (box (0 + b)) = box (x. b)

simp (box (a + b)) =

letbox a' ← simp (box (x. a)) in box (x. a' + b)

simp (box a) = box a

I Use simp to simplify 0’s away:

mult4 : Nat → � (x : Nat ` Nat)

mult4 n = simp (mult3 n)

I Finally we have the simplest forms:

mult4 1 ≈ box (x. x)

mult4 2 ≈ box (x. x + x)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 15



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound y m = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound y m = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = ?

simp -sound (box (a + b)) m = ?

simp -sound (box a) m = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = ?

simp -sound (box (a + b)) m = ?

simp -sound (box a) m = ?

LHS: b[m/x]

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = ?

simp -sound (box (a + b)) m = ?

simp -sound (box a) m = ?

LHS: b[m/x]

RHS: 0 + b[m/x] ≈ b[m/x]

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m = ?

simp -sound (box a) m = ?

LHS: b[m/x]

RHS: 0 + b[m/x] ≈ b[m/x]

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m = ?

simp -sound (box a) m = ?

Goal becomes

letbox s' ← simp (box (a + b)) in s'[m/x] ≡ (a + b)[m/x]

Also

simp (box (a + b)) ≈ letbox sa ' ← simp (box a) in box (sa' + b)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m =

letbox sa' ← simp (box a) in ?

simp -sound (box a) m = ?

Goal becomes

letbox s' ← simp (box (a + b)) in s'[m/x] ≡ (a + b)[m/x]

Also

simp (box (a + b)) ≈ letbox sa ' ← simp (box a) in box (sa' + b)

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m =

letbox sa' ← simp (box a) in ?

simp -sound (box a) m = ?

Goal is unblocked

(sa ' + b)[m/x] ≡ (a + b)[m/x]

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m =

letbox sa' ← simp (box a) in ?

simp -sound (box a) m = ?

Goal is unblocked

sa '[m/x] + b [m/x] ≡ a[m/x] + b [m/x]

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m =

letbox sa ' ← simp (box a) in ?

simp -sound (box a) m = ?

Goal is unblocked

sa '[m/x] + b [m/x] ≡ a[m/x] + b [m/x]

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m =

letbox sa ' ← simp (box a) in

cong (_+ b[m/x]) ?

simp -sound (box a) m = ?

Goal is unblocked

sa '[m/x] + b [m/x] ≡ a[m/x] + b [m/x]

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m =

letbox sa ' ← simp (box a) in

cong (_+ b[m/x]) ?

simp -sound (box a) m = ?

Goal is unblocked

sa '[m/x] + b [m/x] ≡ a[m/x] + b [m/x]

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m =

letbox sa ' ← simp (box a) in

cong (_+ b[m/x]) (simp -sound (box a) m)

simp -sound (box a) m = ?

Goal is unblocked

sa '[m/x] + b [m/x] ≡ a[m/x] + b [m/x]

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m =

letbox sa ' ← simp (box a) in

cong (_+ b[m/x]) (simp -sound (box a) m)

simp -sound (box a) m = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



16

Proving in DeLaM

Similar to Mint, we can also prove properties about meta-programs in DeLaM

simp -sound : ∀ (y : � (x : Nat ` Nat)) (m : Nat) →
letbox y' ← y; s' ← simp (box y') in s'[m/x] ≡ y'[m/x]

simp -sound (box (0 + b)) m = refl

simp -sound (box (a + b)) m =

letbox sa ' ← simp (box a) in

cong (_+ b[m/x]) (simp -sound (box a) m)

simp -sound (box a) m = refl

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 16



17

Summary of DeLaM

I Recursion on syntactic objects:
I manipulate terms,
I analyze and prove goals

I Run code ⇒ conflate the proving and meta-programming languages

I DeLaM is a basic setup; need empirical study to understand practical needs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 17



17

Summary of DeLaM

I Recursion on syntactic objects:
I manipulate terms,
I analyze and prove goals

I Run code ⇒ conflate the proving and meta-programming languages

I DeLaM is a basic setup; need empirical study to understand practical needs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 17



17

Summary of DeLaM

I Recursion on syntactic objects:
I manipulate terms,
I analyze and prove goals

I Run code ⇒ conflate the proving and meta-programming languages

I DeLaM is a basic setup; need empirical study to understand practical needs

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 17



To Conclude



19

Conclusions

This PhD thesis explored ways to support meta-programming in type theory.

I Mint supports quasi-quotation but not recursion on syntactic objects

I DeLaM supports recursion on syntactic objects but mandates a less familiar
programming style

I Both type theories are logically consistent and can serve as foundations for proof
assistants!

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 19



19

Conclusions

This PhD thesis explored ways to support meta-programming in type theory.

I Mint supports quasi-quotation but not recursion on syntactic objects

I DeLaM supports recursion on syntactic objects but mandates a less familiar
programming style

I Both type theories are logically consistent and can serve as foundations for proof
assistants!

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 19



19

Conclusions

This PhD thesis explored ways to support meta-programming in type theory.

I Mint supports quasi-quotation but not recursion on syntactic objects

I DeLaM supports recursion on syntactic objects but mandates a less familiar
programming style

I Both type theories are logically consistent and can serve as foundations for proof
assistants!

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 19



19

Conclusions

This PhD thesis explored ways to support meta-programming in type theory.

I Mint supports quasi-quotation but not recursion on syntactic objects

I DeLaM supports recursion on syntactic objects but mandates a less familiar
programming style

I Both type theories are logically consistent and can serve as foundations for proof
assistants!

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 19



Bibliography I

Bibliography

Hu, J. Z. S., Jang, J., and Pientka, B. (2023). Normalization by evaluation for modal dependent type theory. J. Funct. Program., 33.

Hu, J. Z. S. and Pientka, B. (2022). A categorical normalization proof for the modal lambda-calculus. In Hsu, J. and Tasson, C., editors, Proceedings
of the 38th Conference on the Mathematical Foundations of Programming Semantics, MFPS 2022, Cornell University, Ithaca, New York, USA,
with a satellite event at IRIF, Denis Diderot University, Paris, France, and online, July 11-13, 2022, volume 1 of EPTICS. EpiSciences.

Hu, J. Z. S. and Pientka, B. (2024). Layered modal type theory: Where meta-programming meets intensional analysis. In Weirich, S., editor,
Proceedings of the 33rd European Symposium on Programming on Programming Languages and Systems, ESOP 2024, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Part I, volume
14576 of Lecture Notes in Computer Science, pages 52–82. Springer.

Hu, J. Z. S. and Pientka, B. (2025). A dependent type theory for meta-programming with intensional analysis. Proc. ACM Program. Lang., (POPL).
To Appear.



21

Criteria for A Valid Type Theory

I How do we know a type theory works?

I Intuitively, a type theory should be consistent, i.e. not every proposition is
provable.

I Two conclusive properties:

I Normalization: every well-typed program must terminate and compute to a normal
form

I Consistency is a corollary of normalization.
I Decidability of convertibility: decide whether two terms are equivalent
I Computers can always decide whether two terms are the “same”

I Two properties allow to do type-checking, i.e. checking whether a program is a
member of the given type

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 21



21

Criteria for A Valid Type Theory

I How do we know a type theory works?

I Intuitively, a type theory should be consistent, i.e. not every proposition is
provable.

I Two conclusive properties:

I Normalization: every well-typed program must terminate and compute to a normal
form

I Consistency is a corollary of normalization.
I Decidability of convertibility: decide whether two terms are equivalent
I Computers can always decide whether two terms are the “same”

I Two properties allow to do type-checking, i.e. checking whether a program is a
member of the given type

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 21



21

Criteria for A Valid Type Theory

I How do we know a type theory works?

I Intuitively, a type theory should be consistent, i.e. not every proposition is
provable.

I Two conclusive properties:

I Normalization: every well-typed program must terminate and compute to a normal
form

I Consistency is a corollary of normalization.
I Decidability of convertibility: decide whether two terms are equivalent
I Computers can always decide whether two terms are the “same”

I Two properties allow to do type-checking, i.e. checking whether a program is a
member of the given type

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 21



21

Criteria for A Valid Type Theory

I How do we know a type theory works?

I Intuitively, a type theory should be consistent, i.e. not every proposition is
provable.

I Two conclusive properties:
I Normalization: every well-typed program must terminate and compute to a normal

form

I Consistency is a corollary of normalization.
I Decidability of convertibility: decide whether two terms are equivalent
I Computers can always decide whether two terms are the “same”

I Two properties allow to do type-checking, i.e. checking whether a program is a
member of the given type

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 21



21

Criteria for A Valid Type Theory

I How do we know a type theory works?

I Intuitively, a type theory should be consistent, i.e. not every proposition is
provable.

I Two conclusive properties:
I Normalization: every well-typed program must terminate and compute to a normal

form
I Consistency is a corollary of normalization.

I Decidability of convertibility: decide whether two terms are equivalent
I Computers can always decide whether two terms are the “same”

I Two properties allow to do type-checking, i.e. checking whether a program is a
member of the given type

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 21



21

Criteria for A Valid Type Theory

I How do we know a type theory works?

I Intuitively, a type theory should be consistent, i.e. not every proposition is
provable.

I Two conclusive properties:
I Normalization: every well-typed program must terminate and compute to a normal

form
I Consistency is a corollary of normalization.
I Decidability of convertibility: decide whether two terms are equivalent

I Computers can always decide whether two terms are the “same”

I Two properties allow to do type-checking, i.e. checking whether a program is a
member of the given type

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 21



21

Criteria for A Valid Type Theory

I How do we know a type theory works?

I Intuitively, a type theory should be consistent, i.e. not every proposition is
provable.

I Two conclusive properties:
I Normalization: every well-typed program must terminate and compute to a normal

form
I Consistency is a corollary of normalization.
I Decidability of convertibility: decide whether two terms are equivalent
I Computers can always decide whether two terms are the “same”

I Two properties allow to do type-checking, i.e. checking whether a program is a
member of the given type

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 21



21

Criteria for A Valid Type Theory

I How do we know a type theory works?

I Intuitively, a type theory should be consistent, i.e. not every proposition is
provable.

I Two conclusive properties:
I Normalization: every well-typed program must terminate and compute to a normal

form
I Consistency is a corollary of normalization.
I Decidability of convertibility: decide whether two terms are equivalent
I Computers can always decide whether two terms are the “same”

I Two properties allow to do type-checking, i.e. checking whether a program is a
member of the given type

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 21



22

Contributions

Thesis Part I Part II

Type theory Mint DeLaM

Normalization Yes Yes

Decidability of convertibility

Yes Yes

Main feature

quasi-quotation recursion on syntactic objects

Mechanization

Yes No

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 22



22

Contributions

Thesis Part I Part II

Type theory Mint DeLaM

Normalization Yes Yes

Decidability of convertibility Yes Yes

Main feature

quasi-quotation recursion on syntactic objects

Mechanization

Yes No

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 22



22

Contributions

Thesis Part I Part II

Type theory Mint DeLaM

Normalization Yes Yes

Decidability of convertibility Yes Yes

Main feature quasi-quotation recursion on syntactic objects

Mechanization

Yes No

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 22



22

Contributions

Thesis Part I Part II

Type theory Mint DeLaM

Normalization Yes Yes

Decidability of convertibility Yes Yes

Main feature quasi-quotation recursion on syntactic objects

Mechanization Yes No

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 22



23

Components of Type Theory

I In type theory, we study judgments.

I Γ ` t : T term t has type T in context Γ.

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx .t : Π(x : S).T

Γ ` t : Π(x : S).T Γ ` s : S

Γ ` t s : T [s/x ]

A substitution replaces a variable with a term.

I Γ ` t ≈ t ′ : T terms t and t ′ are equivalent.

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx .t) s ≈ t[s/x ] : T [s/x ]

I Equivalence applies to types as well.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 23



23

Components of Type Theory

I In type theory, we study judgments.

I Γ ` t : T term t has type T in context Γ.

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx .t : Π(x : S).T

Γ ` t : Π(x : S).T Γ ` s : S

Γ ` t s : T [s/x ]

A substitution replaces a variable with a term.

I Γ ` t ≈ t ′ : T terms t and t ′ are equivalent.

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx .t) s ≈ t[s/x ] : T [s/x ]

I Equivalence applies to types as well.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 23



23

Components of Type Theory

I In type theory, we study judgments.

I Γ ` t : T term t has type T in context Γ.

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx .t : Π(x : S).T

Γ ` t : Π(x : S).T Γ ` s : S

Γ ` t s : T [s/x ]

A substitution replaces a variable with a term.

I Γ ` t ≈ t ′ : T terms t and t ′ are equivalent.

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx .t) s ≈ t[s/x ] : T [s/x ]

I Equivalence applies to types as well.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 23



23

Components of Type Theory

I In type theory, we study judgments.

I Γ ` t : T term t has type T in context Γ.

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx .t : Π(x : S).T

Γ ` t : Π(x : S).T Γ ` s : S

Γ ` t s : T [s/x ]

A substitution replaces a variable with a term.

I Γ ` t ≈ t ′ : T terms t and t ′ are equivalent.

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx .t) s ≈ t[s/x ] : T [s/x ]

I Equivalence applies to types as well.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 23



23

Components of Type Theory

I In type theory, we study judgments.

I Γ ` t : T term t has type T in context Γ.

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx .t : Π(x : S).T

Γ ` t : Π(x : S).T Γ ` s : S

Γ ` t s : T [s/x ]

A substitution replaces a variable with a term.

I Γ ` t ≈ t ′ : T terms t and t ′ are equivalent.

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx .t) s ≈ t[s/x ] : T [s/x ]

I Equivalence applies to types as well.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 23



23

Components of Type Theory

I In type theory, we study judgments.

I Γ ` t : T term t has type T in context Γ.

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx .t : Π(x : S).T

Γ ` t : Π(x : S).T Γ ` s : S

Γ ` t s : T [s/x ]

A substitution replaces a variable with a term.

I Γ ` t ≈ t ′ : T terms t and t ′ are equivalent.

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx .t) s ≈ t[s/x ] : T [s/x ]

I Equivalence applies to types as well.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 23



23

Components of Type Theory

I In type theory, we study judgments.

I Γ ` t : T term t has type T in context Γ.

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx .t : Π(x : S).T

Γ ` t : Π(x : S).T Γ ` s : S

Γ ` t s : T [s/x ]

A substitution replaces a variable with a term.

I Γ ` t ≈ t ′ : T terms t and t ′ are equivalent.

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx .t) s ≈ t[s/x ] : T [s/x ]

I Equivalence applies to types as well.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 23



23

Components of Type Theory

I In type theory, we study judgments.

I Γ ` t : T term t has type T in context Γ.

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx .t : Π(x : S).T

Γ ` t : Π(x : S).T Γ ` s : S

Γ ` t s : T [s/x ]

A substitution replaces a variable with a term.

I Γ ` t ≈ t ′ : T terms t and t ′ are equivalent.

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx .t) s ≈ t[s/x ] : T [s/x ]

I Equivalence applies to types as well.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 23



23

Components of Type Theory

I In type theory, we study judgments.

I Γ ` t : T term t has type T in context Γ.

x : T ∈ Γ

Γ ` x : T

Γ, x : S ` t : T

Γ ` λx .t : Π(x : S).T

Γ ` t : Π(x : S).T Γ ` s : S

Γ ` t s : T [s/x ]

A substitution replaces a variable with a term.

I Γ ` t ≈ t ′ : T terms t and t ′ are equivalent.

Γ, x : S ` t : T Γ ` s : S

Γ ` (λx .t) s ≈ t[s/x ] : T [s/x ]

I Equivalence applies to types as well.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 23



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g F = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = ?

crush g (box (F 1 ∧ F 2 )) = ?

crush g (box ((x : Nat) → F)) = ?

crush g (box _) = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = nat -eq -solve g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = ?

crush g (box ((x : Nat) → F)) = ?

crush g (box _) = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = nat -eq -solve g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = ?

crush g (box ((x : Nat) → F)) = ?

crush g (box _) = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = nat -eq -solve g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = crush g (box F 1 ) >>=λ (r 1 : � (g ` F 1 )).

crush g (box F 2 ) >>=λ (r 2 : � (g ` F 2 )).

letbox pf 1 ← r 1 ; pf 2 ← r 2 in Some (box (pf 1 , pf 2 ))

crush g (box ((x : Nat) → F)) = ?

crush g (box _) = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = nat -eq -solve g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = crush g (box F 1 ) >>=λ (r 1 : � (g ` F 1 )).

crush g (box F 2 ) >>=λ (r 2 : � (g ` F 2 )).

letbox pf 1 ← r 1 ; pf 2 ← r 2 in Some (box (pf 1 , pf 2 ))

crush g (box ((x : Nat) → F)) = ?

crush g (box _) = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = nat -eq -solve g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = crush g (box F 1 ) >>=λ (r 1 : � (g ` F 1 )).

crush g (box F 2 ) >>=λ (r 2 : � (g ` F 2 )).

letbox pf 1 ← r 1 ; pf 2 ← r 2 in Some (box (pf 1 , pf 2 ))

crush g (box ((x : Nat) → F)) = ?

crush g (box _) = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = nat -eq -solve g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = crush g (box F 1 ) >>=λ (r 1 : � (g ` F 1 )).

crush g (box F 2 ) >>=λ (r 2 : � (g ` F 2 )).

letbox pf 1 ← r 1 ; pf 2 ← r 2 in Some (box (pf 1 , pf 2 ))

crush g (box ((x : Nat) → F)) = ?

crush g (box _) = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = nat -eq -solve g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = crush g (box F 1 ) >>=λ (r 1 : � (g ` F 1 )).

crush g (box F 2 ) >>=λ (r 2 : � (g ` F 2 )).

letbox pf 1 ← r 1 ; pf 2 ← r 2 in Some (box (pf 1 , pf 2 ))

crush g (box ((x : Nat) → F)) = crush (g, x : Nat) (box F) >>=

λ (r : � (g,x : Nat ` F)). letbox pf ← r in Some (box (λ x. pf))

crush g (box _) = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = nat -eq -solve g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = crush g (box F 1 ) >>=λ (r 1 : � (g ` F 1 )).

crush g (box F 2 ) >>=λ (r 2 : � (g ` F 2 )).

letbox pf 1 ← r 1 ; pf 2 ← r 2 in Some (box (pf 1 , pf 2 ))

crush g (box ((x : Nat) → F)) = crush (g, x : Nat) (box F) >>=

λ (r : � (g,x : Nat ` F)). letbox pf ← r in Some (box (λ x. pf))

crush g (box _) = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = nat -eq -solve g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = crush g (box F 1 ) >>=λ (r 1 : � (g ` F 1 )).

crush g (box F 2 ) >>=λ (r 2 : � (g ` F 2 )).

letbox pf 1 ← r 1 ; pf 2 ← r 2 in Some (box (pf 1 , pf 2 ))

crush g (box ((x : Nat) → F)) = crush (g, x : Nat) (box F) >>=

λ (r : � (g,x : Nat ` F)). letbox pf ← r in Some (box (λ x. pf))

crush g (box _) = ?

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



24

Tactics in DeLaM

I Tactics in proof assistants usually analyze the structure of the current goal as a
type.

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

crush g (box (Eq Nat a b)) = nat -eq -solve g (box a) (box b)

crush g (box (F 1 ∧ F 2 )) = crush g (box F 1 ) >>=λ (r 1 : � (g ` F 1 )).

crush g (box F 2 ) >>=λ (r 2 : � (g ` F 2 )).

letbox pf 1 ← r 1 ; pf 2 ← r 2 in Some (box (pf 1 , pf 2 ))

crush g (box ((x : Nat) → F)) = crush (g, x : Nat) (box F) >>=

λ (r : � (g,x : Nat ` F)). letbox pf ← r in Some (box (λ x. pf))

crush g (box _) = None

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 24



25

Invoking Tactics in DeLaM

I Use tactics to avoid tedious proving steps

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

lem : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))

lem =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))))

in letbox u ← pf in u

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 25



25

Invoking Tactics in DeLaM

II Use tactics to avoid tedious proving steps

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

lem : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))

lem =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))))

in letbox u ← pf in u

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 25



25

Invoking Tactics in DeLaM

II Use tactics to avoid tedious proving steps

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

lem : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))

lem =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))))

in letbox u ← pf in u

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 25



25

Invoking Tactics in DeLaM

II Use tactics to avoid tedious proving steps

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

lem : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))

lem =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))))

in letbox u ← pf in u

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 25



25

Invoking Tactics in DeLaM

II Use tactics to avoid tedious proving steps

I crush : (g : Ctx) ⇒ (F : � (g ` @0)) →
letbox F' ← F in Option (� (g ` F'))

lem : (x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))

lem =

let Some pf ← crush ()

(box ((x y : Nat) → Eq Nat (x + y) (y + x) ∧
((z : Nat) → Eq Nat (x + (y + z)) (z + (y + x)))))

in letbox u ← pf in u

Jason Z. S. Hu — Foundations and Applications of Modal Type Theories 25


