
Normalization by Evaluation for Modal Dependent Type Theory

Jason Hu Junyoung Jang Brigitte Pientka

McGill University

JFP First at ICFP 2024

HU, J. Z. S., JANG, J., & PIENTKA, B. (2023). Normalization by evaluation for modal dependent
type theory. Journal of Functional Programming, 33, e7. doi:10.1017/S0956796823000060



2

High-level Ideas

I Combine Martin-Löf type theory (MLTT) and the � modality with different
structures

I extends simply typed λ� by Davies and Pfenning (2001)
I Mint, Modal INtuitionistic Type theory

I In meta-programming, �A reads “code of A”

I box t quotes the code of t
I code splicing and code running are modelled by unboxn t
I Kripke-style formulation

I means to explore meta-programming in dependent type theory

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 2



2

High-level Ideas

I Combine Martin-Löf type theory (MLTT) and the � modality with different
structures
I extends simply typed λ� by Davies and Pfenning (2001)

I Mint, Modal INtuitionistic Type theory

I In meta-programming, �A reads “code of A”

I box t quotes the code of t
I code splicing and code running are modelled by unboxn t
I Kripke-style formulation

I means to explore meta-programming in dependent type theory

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 2



2

High-level Ideas

I Combine Martin-Löf type theory (MLTT) and the � modality with different
structures
I extends simply typed λ� by Davies and Pfenning (2001)
I Mint, Modal INtuitionistic Type theory

I In meta-programming, �A reads “code of A”

I box t quotes the code of t
I code splicing and code running are modelled by unboxn t
I Kripke-style formulation

I means to explore meta-programming in dependent type theory

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 2



2

High-level Ideas

I Combine Martin-Löf type theory (MLTT) and the � modality with different
structures
I extends simply typed λ� by Davies and Pfenning (2001)
I Mint, Modal INtuitionistic Type theory

I In meta-programming, �A reads “code of A”

I box t quotes the code of t
I code splicing and code running are modelled by unboxn t
I Kripke-style formulation

I means to explore meta-programming in dependent type theory

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 2



2

High-level Ideas

I Combine Martin-Löf type theory (MLTT) and the � modality with different
structures
I extends simply typed λ� by Davies and Pfenning (2001)
I Mint, Modal INtuitionistic Type theory

I In meta-programming, �A reads “code of A”
I box t quotes the code of t

I code splicing and code running are modelled by unboxn t
I Kripke-style formulation

I means to explore meta-programming in dependent type theory

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 2



2

High-level Ideas

I Combine Martin-Löf type theory (MLTT) and the � modality with different
structures
I extends simply typed λ� by Davies and Pfenning (2001)
I Mint, Modal INtuitionistic Type theory

I In meta-programming, �A reads “code of A”
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t

I Kripke-style formulation

I means to explore meta-programming in dependent type theory

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 2



2

High-level Ideas

I Combine Martin-Löf type theory (MLTT) and the � modality with different
structures
I extends simply typed λ� by Davies and Pfenning (2001)
I Mint, Modal INtuitionistic Type theory

I In meta-programming, �A reads “code of A”
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t
I Kripke-style formulation

I means to explore meta-programming in dependent type theory

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 2



2

High-level Ideas

I Combine Martin-Löf type theory (MLTT) and the � modality with different
structures
I extends simply typed λ� by Davies and Pfenning (2001)
I Mint, Modal INtuitionistic Type theory

I In meta-programming, �A reads “code of A”
I box t quotes the code of t
I code splicing and code running are modelled by unboxn t
I Kripke-style formulation

I means to explore meta-programming in dependent type theory

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 2



3

Contributions

I Mint, a modal dependent type theory

I extension of MLTT
I full cumulative universes
I � in the Kripke style
I equational theory with explicit substitutions

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC) available online

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 3



3

Contributions

I Mint, a modal dependent type theory
I extension of MLTT

I full cumulative universes
I � in the Kripke style
I equational theory with explicit substitutions

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC) available online

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 3



3

Contributions

I Mint, a modal dependent type theory
I extension of MLTT
I full cumulative universes

I � in the Kripke style
I equational theory with explicit substitutions

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC) available online

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 3



3

Contributions

I Mint, a modal dependent type theory
I extension of MLTT
I full cumulative universes
I � in the Kripke style

I equational theory with explicit substitutions

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC) available online

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 3



3

Contributions

I Mint, a modal dependent type theory
I extension of MLTT
I full cumulative universes
I � in the Kripke style
I equational theory with explicit substitutions

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC) available online

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 3



3

Contributions

I Mint, a modal dependent type theory
I extension of MLTT
I full cumulative universes
I � in the Kripke style
I equational theory with explicit substitutions

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC) available online

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 3



3

Contributions

I Mint, a modal dependent type theory
I extension of MLTT
I full cumulative universes
I � in the Kripke style
I equational theory with explicit substitutions

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC) available online

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 3



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift n = ?

I Soundness: evaluating lift gives the same number back

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = ?

I Soundness: evaluating lift gives the same number back

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = ?

I Soundness: evaluating lift gives the same number back

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ ?)

I Soundness: evaluating lift gives the same number back

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift n = ?

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift n = ?

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift zero = ?

unbox -lift (succ n) = ?

I Base case:

unbox 0 (box zero) ≡ zero

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift zero = ?

unbox -lift (succ n) = ?

I Base case:

zero ≡ zero

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift zero = refl

unbox -lift (succ n) = ?

I Base case:

zero ≡ zero

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift zero = refl

unbox -lift (succ n) = ?

I In the step case:

unbox 0 (box (succ (unbox 1 (lift n)))) ≡ succ n

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift zero = refl

unbox -lift (succ n) = ?

I In the step case:

succ (unbox 0 (lift n)) ≡ succ n

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift zero = refl

unbox -lift (succ n) = cong succ ?

I After congruence,

(unbox 0 (lift n)) ≡ n

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift zero = refl

unbox -lift (succ n) = cong succ ?

I Recursive call gives exactly that

unbox -lift n : (unbox 0 (lift n)) ≡ n

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift zero = refl

unbox -lift (succ n) = cong succ (unbox -lift n)

I Recursive call gives exactly that

unbox -lift n : (unbox 0 (lift n)) ≡ n

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



4

Meta-programs and Their Properties

I lift n lifts into a box; returns box n

lift : Nat → 2 Nat

lift zero = box zero

lift (succ n) = box (succ (unbox 1 (lift n)))

I Soundness: evaluating lift gives the same number back

unbox -lift : (n : Nat) → unbox 0 (lift n) ≡ n

unbox -lift zero = refl

unbox -lift (succ n) = cong succ (unbox -lift n)

I Recursive call gives exactly that

unbox -lift n : (unbox 0 (lift n)) ≡ n

I Mint as a program logic for MetaML

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 4



5

Kripke Style and Kripke Semantics

I A stack of contexts: each context represents a Kripke world

ε; Γ1; · · · ; Γn ` t : T or
−→
Γ ` t : T

I � denotes the next world; move among worlds by its introduction and elimination

I Our formulation extends λ� by Davies and Pfenning (2001)

x : T ∈ Γ
−→
Γ ; Γ ` x : T

−→
Γ ; · ` T : Ty
−→
Γ ` �T : Ty

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Ty

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

[
−→
I ;⇑n]

Modal extension
−→
I ;⇑n is a special substitution which fixes the context stack.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 5



5

Kripke Style and Kripke Semantics

I A stack of contexts: each context represents a Kripke world

ε; Γ1; · · · ; Γn ` t : T or
−→
Γ ` t : T

I � denotes the next world; move among worlds by its introduction and elimination

I Our formulation extends λ� by Davies and Pfenning (2001)

x : T ∈ Γ
−→
Γ ; Γ ` x : T

−→
Γ ; · ` T : Ty
−→
Γ ` �T : Ty

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Ty

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

[
−→
I ;⇑n]

Modal extension
−→
I ;⇑n is a special substitution which fixes the context stack.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 5



5

Kripke Style and Kripke Semantics

I A stack of contexts: each context represents a Kripke world

ε; Γ1; · · · ; Γn ` t : T or
−→
Γ ` t : T

I � denotes the next world; move among worlds by its introduction and elimination

I Our formulation extends λ� by Davies and Pfenning (2001)

x : T ∈ Γ
−→
Γ ; Γ ` x : T

−→
Γ ; · ` T : Ty
−→
Γ ` �T : Ty

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Ty

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

[
−→
I ;⇑n]

Modal extension
−→
I ;⇑n is a special substitution which fixes the context stack.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 5



5

Kripke Style and Kripke Semantics

I A stack of contexts: each context represents a Kripke world

ε; Γ1; · · · ; Γn ` t : T or
−→
Γ ` t : T

I � denotes the next world; move among worlds by its introduction and elimination

I Our formulation extends λ� by Davies and Pfenning (2001)

x : T ∈ Γ
−→
Γ ; Γ ` x : T

−→
Γ ; · ` T : Ty
−→
Γ ` �T : Ty

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Ty

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

[
−→
I ;⇑n]

Modal extension
−→
I ;⇑n is a special substitution which fixes the context stack.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 5



5

Kripke Style and Kripke Semantics

I A stack of contexts: each context represents a Kripke world

ε; Γ1; · · · ; Γn ` t : T or
−→
Γ ` t : T

I � denotes the next world; move among worlds by its introduction and elimination

I Our formulation extends λ� by Davies and Pfenning (2001)

x : T ∈ Γ
−→
Γ ; Γ ` x : T

−→
Γ ; · ` T : Ty
−→
Γ ` �T : Ty

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Ty

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

[
−→
I ;⇑n]

Modal extension
−→
I ;⇑n is a special substitution which fixes the context stack.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 5



5

Kripke Style and Kripke Semantics

I A stack of contexts: each context represents a Kripke world

ε; Γ1; · · · ; Γn ` t : T or
−→
Γ ` t : T

I � denotes the next world; move among worlds by its introduction and elimination

I Our formulation extends λ� by Davies and Pfenning (2001)

x : T ∈ Γ
−→
Γ ; Γ ` x : T

−→
Γ ; · ` T : Ty
−→
Γ ` �T : Ty

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Ty

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

[
−→
I ;⇑n]

Modal extension
−→
I ;⇑n is a special substitution which fixes the context stack.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 5



5

Kripke Style and Kripke Semantics

I A stack of contexts: each context represents a Kripke world

ε; Γ1; · · · ; Γn ` t : T or
−→
Γ ` t : T

I � denotes the next world; move among worlds by its introduction and elimination

I Our formulation extends λ� by Davies and Pfenning (2001)

x : T ∈ Γ
−→
Γ ; Γ ` x : T

−→
Γ ; · ` T : Ty
−→
Γ ` �T : Ty

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Ty

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T

[
−→
I ;⇑n]

Modal extension
−→
I ;⇑n is a special substitution which fixes the context stack.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 5



5

Kripke Style and Kripke Semantics

I A stack of contexts: each context represents a Kripke world

ε; Γ1; · · · ; Γn ` t : T or
−→
Γ ` t : T

I � denotes the next world; move among worlds by its introduction and elimination

I Our formulation extends λ� by Davies and Pfenning (2001)

x : T ∈ Γ
−→
Γ ; Γ ` x : T

−→
Γ ; · ` T : Ty
−→
Γ ` �T : Ty

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Ty

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

Modal extension
−→
I ;⇑n is a special substitution which fixes the context stack.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 5



5

Kripke Style and Kripke Semantics

I A stack of contexts: each context represents a Kripke world

ε; Γ1; · · · ; Γn ` t : T or
−→
Γ ` t : T

I � denotes the next world; move among worlds by its introduction and elimination

I Our formulation extends λ� by Davies and Pfenning (2001)

x : T ∈ Γ
−→
Γ ; Γ ` x : T

−→
Γ ; · ` T : Ty
−→
Γ ` �T : Ty

−→
Γ ; · ` t : T

−→
Γ ` box t : �T

−→
Γ ; · ` T : Ty

−→
Γ ` t : �T |

−→
∆ | = n

−→
Γ ;
−→
∆ ` unboxn t : T [

−→
I ;⇑n]

Modal extension
−→
I ;⇑n is a special substitution which fixes the context stack.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 5



6

Handling Context Stack with Substitutions

I A modal extension adds contexts to the domain stack (n could be 0)
−→
Γ ` −→σ :

−→
∆ |

−→
Γ ′| = n

(
−→
Γ ;
−→
Γ ′) ` (−→σ ;⇑n) : (

−→
∆; ·)

I Important to get the β rule right

−→
Γ ; · ` T : Tyi

−→
Γ ; · ` t : T |

−→
Γ ′| = n

−→
Γ ;
−→
Γ ′ ` unboxn (box t) ≈ t[

−→
I ;⇑n] : T [

−→
I ;⇑n]

I �T is η expandable
−→
Γ ` t : �T

−→
Γ ` t ≈ box (unbox1 t) : �T

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 6



6

Handling Context Stack with Substitutions

I A modal extension adds contexts to the domain stack (n could be 0)
−→
Γ ` −→σ :

−→
∆ |

−→
Γ ′| = n

(
−→
Γ ;
−→
Γ ′) ` (−→σ ;⇑n) : (

−→
∆; ·)

I Important to get the β rule right

−→
Γ ; · ` T : Tyi

−→
Γ ; · ` t : T |

−→
Γ ′| = n

−→
Γ ;
−→
Γ ′ ` unboxn (box t) ≈ t[

−→
I ;⇑n] : T [

−→
I ;⇑n]

I �T is η expandable
−→
Γ ` t : �T

−→
Γ ` t ≈ box (unbox1 t) : �T

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 6



6

Handling Context Stack with Substitutions

I A modal extension adds contexts to the domain stack (n could be 0)
−→
Γ ` −→σ :

−→
∆ |

−→
Γ ′| = n

(
−→
Γ ;
−→
Γ ′) ` (−→σ ;⇑n) : (

−→
∆; ·)

I Important to get the β rule right

−→
Γ ; · ` T : Tyi

−→
Γ ; · ` t : T |

−→
Γ ′| = n

−→
Γ ;
−→
Γ ′ ` unboxn (box t) ≈ t[

−→
I ;⇑n] : T [

−→
I ;⇑n]

I �T is η expandable
−→
Γ ` t : �T

−→
Γ ` t ≈ box (unbox1 t) : �T

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 6



7

Normalization by Evaluation

I Based on an untyped domain model (Abel, 2013)

I We give an explicit normalization algorithm to β-η normal forms
I Two steps:

1. evaluation: evaluate a well-typed term into a domain value and eliminate all β
redexes

2. readback: read from a domain value back to a normal form and perform
type-directed η expansion during the process.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 7



7

Normalization by Evaluation

I Based on an untyped domain model (Abel, 2013)

I We give an explicit normalization algorithm to β-η normal forms

I Two steps:

1. evaluation: evaluate a well-typed term into a domain value and eliminate all β
redexes

2. readback: read from a domain value back to a normal form and perform
type-directed η expansion during the process.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 7



7

Normalization by Evaluation

I Based on an untyped domain model (Abel, 2013)

I We give an explicit normalization algorithm to β-η normal forms
I Two steps:

1. evaluation: evaluate a well-typed term into a domain value and eliminate all β
redexes

2. readback: read from a domain value back to a normal form and perform
type-directed η expansion during the process.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 7



7

Normalization by Evaluation

I Based on an untyped domain model (Abel, 2013)

I We give an explicit normalization algorithm to β-η normal forms
I Two steps:

1. evaluation: evaluate a well-typed term into a domain value and eliminate all β
redexes

2. readback: read from a domain value back to a normal form and perform
type-directed η expansion during the process.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 7



7

Normalization by Evaluation

I Based on an untyped domain model (Abel, 2013)

I We give an explicit normalization algorithm to β-η normal forms
I Two steps:

1. evaluation: evaluate a well-typed term into a domain value and eliminate all β
redexes

2. readback: read from a domain value back to a normal form and perform
type-directed η expansion during the process.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 7



8

Completeness and Soundness

I Completeness: equivalent terms have equal normal forms.

I Soundness: well-typed terms are equivalent to their normal forms.

I Deciding whether t and t ′ of type T are equivalent: just compare normal forms of
t and t ′

I The normalization algorithm and its completeness and soundness theorems are
mechanized in Agda (∼ 11k LoC)

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 8



8

Completeness and Soundness

I Completeness: equivalent terms have equal normal forms.

I Soundness: well-typed terms are equivalent to their normal forms.

I Deciding whether t and t ′ of type T are equivalent: just compare normal forms of
t and t ′

I The normalization algorithm and its completeness and soundness theorems are
mechanized in Agda (∼ 11k LoC)

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 8



8

Completeness and Soundness

I Completeness: equivalent terms have equal normal forms.

I Soundness: well-typed terms are equivalent to their normal forms.

I Deciding whether t and t ′ of type T are equivalent: just compare normal forms of
t and t ′

I The normalization algorithm and its completeness and soundness theorems are
mechanized in Agda (∼ 11k LoC)

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 8



8

Completeness and Soundness

I Completeness: equivalent terms have equal normal forms.

I Soundness: well-typed terms are equivalent to their normal forms.

I Deciding whether t and t ′ of type T are equivalent: just compare normal forms of
t and t ′

I The normalization algorithm and its completeness and soundness theorems are
mechanized in Agda (∼ 11k LoC)

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 8



9

Limitations and Big Picture

I Mint models meta-programming and serves as a program logic for MetaML

I Mint does not support intensional analysis (recursion on the structure of code)

I A different flavor: layered modal type theory: simple types (Hu and Pientka,
2024b); dependent types (Hu and Pientka, 2024a)

I Modal type theories have solutions in different flavors

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 9



9

Limitations and Big Picture

I Mint models meta-programming and serves as a program logic for MetaML

I Mint does not support intensional analysis (recursion on the structure of code)

I A different flavor: layered modal type theory: simple types (Hu and Pientka,
2024b); dependent types (Hu and Pientka, 2024a)

I Modal type theories have solutions in different flavors

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 9



9

Limitations and Big Picture

I Mint models meta-programming and serves as a program logic for MetaML

I Mint does not support intensional analysis (recursion on the structure of code)

I A different flavor: layered modal type theory: simple types (Hu and Pientka,
2024b); dependent types (Hu and Pientka, 2024a)

I Modal type theories have solutions in different flavors

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 9



9

Limitations and Big Picture

I Mint models meta-programming and serves as a program logic for MetaML

I Mint does not support intensional analysis (recursion on the structure of code)

I A different flavor: layered modal type theory: simple types (Hu and Pientka,
2024b); dependent types (Hu and Pientka, 2024a)

I Modal type theories have solutions in different flavors

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 9



10

Takeaways

I Mint, extending MLTT with � and explicit substitutions, equipped with an
equational theory

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC), available at
https://doi.org/10.5281/zenodo.13363186

zhong.s.hu at mail.mcgill.ca

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 10

https://doi.org/10.5281/zenodo.13363186


10

Takeaways

I Mint, extending MLTT with � and explicit substitutions, equipped with an
equational theory

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC), available at
https://doi.org/10.5281/zenodo.13363186

zhong.s.hu at mail.mcgill.ca

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 10

https://doi.org/10.5281/zenodo.13363186


10

Takeaways

I Mint, extending MLTT with � and explicit substitutions, equipped with an
equational theory

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC), available at
https://doi.org/10.5281/zenodo.13363186

zhong.s.hu at mail.mcgill.ca

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 10

https://doi.org/10.5281/zenodo.13363186


10

Takeaways

I Mint, extending MLTT with � and explicit substitutions, equipped with an
equational theory

I A complete and sound normalization-by-evaluation (NbE) algorithm based on an
untyped domain

I A full mechanization in Agda (∼ 11k LoC), available at
https://doi.org/10.5281/zenodo.13363186

zhong.s.hu at mail.mcgill.ca

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 10

https://doi.org/10.5281/zenodo.13363186


Bibliography I

Bibliography

Abel, A. (2013). Normalization by evaluation: dependent types and impredicativity. Habilitation thesis, Ludwig-Maximilians-Universität München.

Davies, R. and Pfenning, F. (2001). A modal analysis of staged computation. Journal of the ACM, 48(3):555–604.

Hu, J. Z. S. and Pientka, B. (2024a). Delam: A dependent layered modal type theory for meta-programming. CoRR, abs/2404.17065.

Hu, J. Z. S. and Pientka, B. (2024b). Layered modal type theory - where meta-programming meets intensional analysis. In Weirich, S., editor,
Programming Languages and Systems - 33rd European Symposium on Programming, ESOP 2024, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part I, volume
14576 of Lecture Notes in Computer Science, pages 52–82. Springer.



12

Other Theorems

Theorem (Completeness)

If
−→
Γ ` t ≈ t ′ : T, then nbeT~Γ(t) = nbeT~Γ(t ′).

Theorem (Soundness)

If
−→
Γ ` t : T, then

−→
Γ ` t ≈ nbeT~Γ(t) : T.

Theorem (Consistency)

There is no closed term of type Π(x : Tyi ).x.

Jason Hu, Junyoung Jang, Brigitte Pientka — Normalization by Evaluation for Modal Dependent Type Theory 12


