------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- `Algebra.Lattice.Properties.Lattice` instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra.Lattice.Bundles open import Relation.Binary open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; module Equivalence) open import Data.Product using (_,_; swap) module Algebra.Properties.Lattice {l₁ l₂} (L : Lattice l₁ l₂) where open import Algebra.Lattice.Properties.Lattice L public {-# WARNING_ON_IMPORT "Algebra.Properties.Lattice was deprecated in v2.0. Use Algebra.Lattice.Properties.Lattice instead." #-} ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. open Lattice L -- Version 1.1 ∧-idempotent = ∧-idem {-# WARNING_ON_USAGE ∧-idempotent "Warning: ∧-idempotent was deprecated in v1.1. Please use ∧-idem instead." #-} ∨-idempotent = ∨-idem {-# WARNING_ON_USAGE ∨-idempotent "Warning: ∨-idempotent was deprecated in v1.1. Please use ∨-idem instead." #-} isOrderTheoreticLattice = ∨-∧-isOrderTheoreticLattice {-# WARNING_ON_USAGE isOrderTheoreticLattice "Warning: isOrderTheoreticLattice was deprecated in v1.1. Please use ∨-∧-isOrderTheoreticLattice instead." #-} orderTheoreticLattice = ∨-∧-orderTheoreticLattice {-# WARNING_ON_USAGE orderTheoreticLattice "Warning: orderTheoreticLattice was deprecated in v1.1. Please use ∨-∧-orderTheoreticLattice instead." #-} -- Version 1.4 replace-equality : {_≈′_ : Rel Carrier l₂} → (∀ {x y} → x ≈ y ⇔ (x ≈′ y)) → Lattice _ _ replace-equality {_≈′_} ≈⇔≈′ = record { isLattice = record { isEquivalence = record { refl = to ⟨$⟩ refl ; sym = λ x≈y → to ⟨$⟩ sym (from ⟨$⟩ x≈y) ; trans = λ x≈y y≈z → to ⟨$⟩ trans (from ⟨$⟩ x≈y) (from ⟨$⟩ y≈z) } ; ∨-comm = λ x y → to ⟨$⟩ ∨-comm x y ; ∨-assoc = λ x y z → to ⟨$⟩ ∨-assoc x y z ; ∨-cong = λ x≈y u≈v → to ⟨$⟩ ∨-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v) ; ∧-comm = λ x y → to ⟨$⟩ ∧-comm x y ; ∧-assoc = λ x y z → to ⟨$⟩ ∧-assoc x y z ; ∧-cong = λ x≈y u≈v → to ⟨$⟩ ∧-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v) ; absorptive = (λ x y → to ⟨$⟩ ∨-absorbs-∧ x y) , (λ x y → to ⟨$⟩ ∧-absorbs-∨ x y) } } where open module E {x y} = Equivalence (≈⇔≈′ {x} {y}) {-# WARNING_ON_USAGE replace-equality "Warning: replace-equality was deprecated in v1.4. Please use isLattice from `Algebra.Construct.Subst.Equality` instead." #-}