------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed monads ------------------------------------------------------------------------ -- Note that currently the monad laws are not included here. {-# OPTIONS --without-K --safe #-} module Category.Monad.Indexed where open import Category.Applicative.Indexed open import Function open import Level private variable a b c i f : Level A : Set a B : Set b C : Set c I : Set i record RawIMonad {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where infixl 1 _>>=_ _>>_ _>=>_ infixr 1 _=<<_ _<=<_ field return : ∀ {i} → A → M i i A _>>=_ : ∀ {i j k} → M i j A → (A → M j k B) → M i k B _>>_ : ∀ {i j k} → M i j A → M j k B → M i k B m₁ >> m₂ = m₁ >>= λ _ → m₂ _=<<_ : ∀ {i j k} → (A → M j k B) → M i j A → M i k B f =<< c = c >>= f _>=>_ : ∀ {i j k} → (A → M i j B) → (B → M j k C) → (A → M i k C) f >=> g = _=<<_ g ∘ f _<=<_ : ∀ {i j k} → (B → M j k C) → (A → M i j B) → (A → M i k C) g <=< f = f >=> g join : ∀ {i j k} → M i j (M j k A) → M i k A join m = m >>= id rawIApplicative : RawIApplicative M rawIApplicative = record { pure = return ; _⊛_ = λ f x → f >>= λ f′ → x >>= λ x′ → return (f′ x′) } open RawIApplicative rawIApplicative public RawIMonadT : {I : Set i} (T : IFun I f → IFun I f) → Set (i ⊔ suc f) RawIMonadT T = ∀ {M} → RawIMonad M → RawIMonad (T M) record RawIMonadZero {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where field monad : RawIMonad M applicativeZero : RawIApplicativeZero M open RawIMonad monad public open RawIApplicativeZero applicativeZero using (∅) public record RawIMonadPlus {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where field monad : RawIMonad M alternative : RawIAlternative M open RawIMonad monad public open RawIAlternative alternative using (∅; _∣_) public monadZero : RawIMonadZero M monadZero = record { monad = monad ; applicativeZero = RawIAlternative.applicativeZero alternative }