------------------------------------------------------------------------ -- The Agda standard library -- -- Non-empty lists: base type and operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.NonEmpty.Base where open import Level using (Level) open import Data.Bool.Base using (Bool; false; true; not; T) open import Data.List.Base as List using (List; []; _∷_) open import Data.Maybe.Base using (Maybe ; nothing; just) open import Data.Nat.Base as ℕ open import Data.Product as Prod using (∃; _×_; proj₁; proj₂; _,_; -,_) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂) open import Data.These.Base as These using (These; this; that; these) open import Data.Vec.Base as Vec using (Vec; []; _∷_) open import Function.Base open import Relation.Binary.PropositionalEquality.Core using (_≢_) private variable a b c : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Non-empty lists infixr 5 _∷_ record List⁺ (A : Set a) : Set a where constructor _∷_ field head : A tail : List A open List⁺ public -- Basic combinators uncons : List⁺ A → A × List A uncons (hd ∷ tl) = hd , tl [_] : A → List⁺ A [ x ] = x ∷ [] infixr 5 _∷⁺_ _∷⁺_ : A → List⁺ A → List⁺ A x ∷⁺ y ∷ xs = x ∷ y ∷ xs length : List⁺ A → ℕ length (x ∷ xs) = suc (List.length xs) ------------------------------------------------------------------------ -- Conversion toList : List⁺ A → List A toList (x ∷ xs) = x ∷ xs fromList : List A → Maybe (List⁺ A) fromList [] = nothing fromList (x ∷ xs) = just (x ∷ xs) fromVec : ∀ {n} → Vec A (suc n) → List⁺ A fromVec (x ∷ xs) = x ∷ Vec.toList xs toVec : (xs : List⁺ A) → Vec A (length xs) toVec (x ∷ xs) = x ∷ Vec.fromList xs lift : (∀ {m} → Vec A (suc m) → ∃ λ n → Vec B (suc n)) → List⁺ A → List⁺ B lift f xs = fromVec (proj₂ (f (toVec xs))) ------------------------------------------------------------------------ -- Other operations map : (A → B) → List⁺ A → List⁺ B map f (x ∷ xs) = (f x ∷ List.map f xs) replicate : ∀ n → n ≢ 0 → A → List⁺ A replicate n n≢0 a = a ∷ List.replicate (pred n) a -- when dropping more than the size of the length of the list, the last element remains drop+ : ℕ → List⁺ A → List⁺ A drop+ zero xs = xs drop+ (suc n) (x ∷ []) = x ∷ [] drop+ (suc n) (x ∷ y ∷ xs) = drop+ n (y ∷ xs) -- Right fold. Note that s is only applied to the last element (see -- the examples below). foldr : (A → B → B) → (A → B) → List⁺ A → B foldr {A = A} {B = B} c s (x ∷ xs) = foldr′ x xs where foldr′ : A → List A → B foldr′ x [] = s x foldr′ x (y ∷ xs) = c x (foldr′ y xs) -- Right fold. foldr₁ : (A → A → A) → List⁺ A → A foldr₁ f = foldr f id -- Left fold. Note that s is only applied to the first element (see -- the examples below). foldl : (B → A → B) → (A → B) → List⁺ A → B foldl c s (x ∷ xs) = List.foldl c (s x) xs -- Left fold. foldl₁ : (A → A → A) → List⁺ A → A foldl₁ f = foldl f id -- Append (several variants). infixr 5 _⁺++⁺_ _++⁺_ _⁺++_ _⁺++⁺_ : List⁺ A → List⁺ A → List⁺ A (x ∷ xs) ⁺++⁺ (y ∷ ys) = x ∷ (xs List.++ y ∷ ys) _⁺++_ : List⁺ A → List A → List⁺ A (x ∷ xs) ⁺++ ys = x ∷ (xs List.++ ys) _++⁺_ : List A → List⁺ A → List⁺ A xs ++⁺ ys = List.foldr _∷⁺_ ys xs concat : List⁺ (List⁺ A) → List⁺ A concat (xs ∷ xss) = xs ⁺++ List.concat (List.map toList xss) concatMap : (A → List⁺ B) → List⁺ A → List⁺ B concatMap f = concat ∘′ map f -- Reverse reverse : List⁺ A → List⁺ A reverse = lift (-,_ ∘′ Vec.reverse) -- Align and Zip alignWith : (These A B → C) → List⁺ A → List⁺ B → List⁺ C alignWith f (a ∷ as) (b ∷ bs) = f (these a b) ∷ List.alignWith f as bs zipWith : (A → B → C) → List⁺ A → List⁺ B → List⁺ C zipWith f (a ∷ as) (b ∷ bs) = f a b ∷ List.zipWith f as bs unalignWith : (A → These B C) → List⁺ A → These (List⁺ B) (List⁺ C) unalignWith f = foldr (These.alignWith mcons mcons ∘′ f) (These.map [_] [_] ∘′ f) where mcons : ∀ {e} {E : Set e} → These E (List⁺ E) → List⁺ E mcons = These.fold [_] id _∷⁺_ unzipWith : (A → B × C) → List⁺ A → List⁺ B × List⁺ C unzipWith f (a ∷ as) = Prod.zip _∷_ _∷_ (f a) (List.unzipWith f as) align : List⁺ A → List⁺ B → List⁺ (These A B) align = alignWith id zip : List⁺ A → List⁺ B → List⁺ (A × B) zip = zipWith _,_ unalign : List⁺ (These A B) → These (List⁺ A) (List⁺ B) unalign = unalignWith id unzip : List⁺ (A × B) → List⁺ A × List⁺ B unzip = unzipWith id -- Snoc. infixl 5 _∷ʳ_ _⁺∷ʳ_ _∷ʳ_ : List A → A → List⁺ A [] ∷ʳ y = [ y ] (x ∷ xs) ∷ʳ y = x ∷ (xs List.∷ʳ y) _⁺∷ʳ_ : List⁺ A → A → List⁺ A xs ⁺∷ʳ x = toList xs ∷ʳ x -- A snoc-view of non-empty lists. infixl 5 _∷ʳ′_ data SnocView {A : Set a} : List⁺ A → Set a where _∷ʳ′_ : (xs : List A) (x : A) → SnocView (xs ∷ʳ x) snocView : (xs : List⁺ A) → SnocView xs snocView (x ∷ xs) with List.initLast xs snocView (x ∷ .[]) | [] = [] ∷ʳ′ x snocView (x ∷ .(xs List.∷ʳ y)) | xs List.∷ʳ′ y = (x ∷ xs) ∷ʳ′ y -- The last element in the list. last : List⁺ A → A last xs with snocView xs last .(ys ∷ʳ y) | ys ∷ʳ′ y = y