------------------------------------------------------------------------ -- The Agda standard library -- -- Bundles for types of functions ------------------------------------------------------------------------ -- The contents of this file should usually be accessed from `Function`. -- Note that these bundles differ from those found elsewhere in other -- library hierarchies as they take Setoids as parameters. This is -- because a function is of no use without knowing what its domain and -- codomain is, as well which equalities are being considered over them. -- One consequence of this is that they are not built from the -- definitions found in `Function.Structures` as is usually the case in -- other library hierarchies, as this would duplicate the equality -- axioms. {-# OPTIONS --without-K --safe #-} module Function.Bundles where open import Function.Base using (_∘_) import Function.Definitions as FunctionDefinitions import Function.Structures as FunctionStructures open import Level using (Level; _⊔_; suc) open import Data.Product using (_,_; proj₁; proj₂) open import Relation.Binary hiding (_⇔_) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open Setoid using (isEquivalence) private variable a b ℓ₁ ℓ₂ : Level ------------------------------------------------------------------------ -- Setoid bundles ------------------------------------------------------------------------ module _ (From : Setoid a ℓ₁) (To : Setoid b ℓ₂) where open Setoid From using () renaming (Carrier to A; _≈_ to _≈₁_) open Setoid To using () renaming (Carrier to B; _≈_ to _≈₂_) open FunctionDefinitions _≈₁_ _≈₂_ open FunctionStructures _≈₁_ _≈₂_ ------------------------------------------------------------------------ -- Bundles with one element -- Called `Func` rather than `Function` in order to avoid clashing -- with the top-level module. record Func : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B cong : f Preserves _≈₁_ ⟶ _≈₂_ isCongruent : IsCongruent f isCongruent = record { cong = cong ; isEquivalence₁ = isEquivalence From ; isEquivalence₂ = isEquivalence To } open IsCongruent isCongruent public using (module Eq₁; module Eq₂) record Injection : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B cong : f Preserves _≈₁_ ⟶ _≈₂_ injective : Injective f function : Func function = record { f = f ; cong = cong } open Func function public hiding (f; cong) isInjection : IsInjection f isInjection = record { isCongruent = isCongruent ; injective = injective } record Surjection : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B cong : f Preserves _≈₁_ ⟶ _≈₂_ surjective : Surjective f f⁻ : B → A f⁻ = proj₁ ∘ surjective isCongruent : IsCongruent f isCongruent = record { cong = cong ; isEquivalence₁ = isEquivalence From ; isEquivalence₂ = isEquivalence To } open IsCongruent isCongruent public using (module Eq₁; module Eq₂) isSurjection : IsSurjection f isSurjection = record { isCongruent = isCongruent ; surjective = surjective } record Bijection : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B cong : f Preserves _≈₁_ ⟶ _≈₂_ bijective : Bijective f injective : Injective f injective = proj₁ bijective surjective : Surjective f surjective = proj₂ bijective injection : Injection injection = record { cong = cong ; injective = injective } surjection : Surjection surjection = record { cong = cong ; surjective = surjective } open Injection injection public using (isInjection) open Surjection surjection public using (isSurjection; f⁻) isBijection : IsBijection f isBijection = record { isInjection = isInjection ; surjective = surjective } open IsBijection isBijection public using (module Eq₁; module Eq₂) ------------------------------------------------------------------------ -- Bundles with two elements record Equivalence : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B g : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : g Preserves _≈₂_ ⟶ _≈₁_ record LeftInverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B g : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : g Preserves _≈₂_ ⟶ _≈₁_ inverseˡ : Inverseˡ f g isCongruent : IsCongruent f isCongruent = record { cong = cong₁ ; isEquivalence₁ = isEquivalence From ; isEquivalence₂ = isEquivalence To } open IsCongruent isCongruent public using (module Eq₁; module Eq₂) isLeftInverse : IsLeftInverse f g isLeftInverse = record { isCongruent = isCongruent ; cong₂ = cong₂ ; inverseˡ = inverseˡ } equivalence : Equivalence equivalence = record { cong₁ = cong₁ ; cong₂ = cong₂ } record RightInverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B g : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : g Preserves _≈₂_ ⟶ _≈₁_ inverseʳ : Inverseʳ f g isCongruent : IsCongruent f isCongruent = record { cong = cong₁ ; isEquivalence₁ = isEquivalence From ; isEquivalence₂ = isEquivalence To } isRightInverse : IsRightInverse f g isRightInverse = record { isCongruent = isCongruent ; cong₂ = cong₂ ; inverseʳ = inverseʳ } equivalence : Equivalence equivalence = record { cong₁ = cong₁ ; cong₂ = cong₂ } record Inverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B f⁻¹ : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : f⁻¹ Preserves _≈₂_ ⟶ _≈₁_ inverse : Inverseᵇ f f⁻¹ inverseˡ : Inverseˡ f f⁻¹ inverseˡ = proj₁ inverse inverseʳ : Inverseʳ f f⁻¹ inverseʳ = proj₂ inverse leftInverse : LeftInverse leftInverse = record { cong₁ = cong₁ ; cong₂ = cong₂ ; inverseˡ = inverseˡ } rightInverse : RightInverse rightInverse = record { cong₁ = cong₁ ; cong₂ = cong₂ ; inverseʳ = inverseʳ } open LeftInverse leftInverse public using (isLeftInverse) open RightInverse rightInverse public using (isRightInverse) isInverse : IsInverse f f⁻¹ isInverse = record { isLeftInverse = isLeftInverse ; inverseʳ = inverseʳ } open IsInverse isInverse public using (module Eq₁; module Eq₂) ------------------------------------------------------------------------ -- Bundles with three elements record BiEquivalence : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B g₁ : B → A g₂ : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : g₁ Preserves _≈₂_ ⟶ _≈₁_ cong₃ : g₂ Preserves _≈₂_ ⟶ _≈₁_ record BiInverse : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f : A → B g₁ : B → A g₂ : B → A cong₁ : f Preserves _≈₁_ ⟶ _≈₂_ cong₂ : g₁ Preserves _≈₂_ ⟶ _≈₁_ cong₃ : g₂ Preserves _≈₂_ ⟶ _≈₁_ inverseˡ : Inverseˡ f g₁ inverseʳ : Inverseʳ f g₂ f-isCongruent : IsCongruent f f-isCongruent = record { cong = cong₁ ; isEquivalence₁ = isEquivalence From ; isEquivalence₂ = isEquivalence To } isBiInverse : IsBiInverse f g₁ g₂ isBiInverse = record { f-isCongruent = f-isCongruent ; cong₂ = cong₂ ; inverseˡ = inverseˡ ; cong₃ = cong₃ ; inverseʳ = inverseʳ } biEquivalence : BiEquivalence biEquivalence = record { cong₁ = cong₁ ; cong₂ = cong₂ ; cong₃ = cong₃ } ------------------------------------------------------------------------ -- Bundles specialised for propositional equality ------------------------------------------------------------------------ infix 3 _⟶_ _↣_ _↠_ _⤖_ _⇔_ _↩_ _↪_ _↩↪_ _↔_ _⟶_ : Set a → Set b → Set _ A ⟶ B = Func (≡.setoid A) (≡.setoid B) _↣_ : Set a → Set b → Set _ A ↣ B = Injection (≡.setoid A) (≡.setoid B) _↠_ : Set a → Set b → Set _ A ↠ B = Surjection (≡.setoid A) (≡.setoid B) _⤖_ : Set a → Set b → Set _ A ⤖ B = Bijection (≡.setoid A) (≡.setoid B) _⇔_ : Set a → Set b → Set _ A ⇔ B = Equivalence (≡.setoid A) (≡.setoid B) _↩_ : Set a → Set b → Set _ A ↩ B = LeftInverse (≡.setoid A) (≡.setoid B) _↪_ : Set a → Set b → Set _ A ↪ B = RightInverse (≡.setoid A) (≡.setoid B) _↩↪_ : Set a → Set b → Set _ A ↩↪ B = BiInverse (≡.setoid A) (≡.setoid B) _↔_ : Set a → Set b → Set _ A ↔ B = Inverse (≡.setoid A) (≡.setoid B) -- We now define some constructors for the above that -- automatically provide the required congruency proofs. module _ {A : Set a} {B : Set b} where open FunctionDefinitions {A = A} {B} _≡_ _≡_ mk⟶ : (A → B) → A ⟶ B mk⟶ f = record { f = f ; cong = ≡.cong f } mk↣ : ∀ {f : A → B} → Injective f → A ↣ B mk↣ {f} inj = record { f = f ; cong = ≡.cong f ; injective = inj } mk↠ : ∀ {f : A → B} → Surjective f → A ↠ B mk↠ {f} surj = record { f = f ; cong = ≡.cong f ; surjective = surj } mk⤖ : ∀ {f : A → B} → Bijective f → A ⤖ B mk⤖ {f} bij = record { f = f ; cong = ≡.cong f ; bijective = bij } mk⇔ : ∀ (f : A → B) (g : B → A) → A ⇔ B mk⇔ f g = record { f = f ; g = g ; cong₁ = ≡.cong f ; cong₂ = ≡.cong g } mk↩ : ∀ {f : A → B} {g : B → A} → Inverseˡ f g → A ↩ B mk↩ {f} {g} invˡ = record { f = f ; g = g ; cong₁ = ≡.cong f ; cong₂ = ≡.cong g ; inverseˡ = invˡ } mk↪ : ∀ {f : A → B} {g : B → A} → Inverseʳ f g → A ↪ B mk↪ {f} {g} invʳ = record { f = f ; g = g ; cong₁ = ≡.cong f ; cong₂ = ≡.cong g ; inverseʳ = invʳ } mk↩↪ : ∀ {f : A → B} {g₁ : B → A} {g₂ : B → A} → Inverseˡ f g₁ → Inverseʳ f g₂ → A ↩↪ B mk↩↪ {f} {g₁} {g₂} invˡ invʳ = record { f = f ; g₁ = g₁ ; g₂ = g₂ ; cong₁ = ≡.cong f ; cong₂ = ≡.cong g₁ ; cong₃ = ≡.cong g₂ ; inverseˡ = invˡ ; inverseʳ = invʳ } mk↔ : ∀ {f : A → B} {f⁻¹ : B → A} → Inverseᵇ f f⁻¹ → A ↔ B mk↔ {f} {f⁻¹} inv = record { f = f ; f⁻¹ = f⁻¹ ; cong₁ = ≡.cong f ; cong₂ = ≡.cong f⁻¹ ; inverse = inv } -- Sometimes the implicit arguments above cannot be inferred mk↔′ : ∀ (f : A → B) (f⁻¹ : B → A) → Inverseˡ f f⁻¹ → Inverseʳ f f⁻¹ → A ↔ B mk↔′ f f⁻¹ invˡ invʳ = mk↔ {f = f} {f⁻¹ = f⁻¹} (invˡ , invʳ)