{-# OPTIONS --without-K --safe #-}
module Mint.Semantics.Evaluation where
open import Lib
open import Mint.Semantics.Domain
infix 4 _∙_↘_ unbox∙_,_↘_ rec∙_,_,_,_,_↘_ ⟦_⟧_↘_ ⟦_⟧s_↘_
mutual
data _∙_↘_ : D → D → D → Set where
Λ∙ : ⟦ t ⟧ ρ ↦ a ↘ b →
Λ t ρ ∙ a ↘ b
$∙ : ∀ A c →
⟦ T ⟧ ρ ↦ a ↘ B →
↑ (Π A T ρ) c ∙ a ↘ ↑ B (c $ ↓ A a)
data unbox∙_,_↘_ : ℕ → D → D → Set where
box↘ : ∀ n →
unbox∙ n , box a ↘ a [ ins vone n ]
unbox∙ : ∀ n →
unbox∙ n , ↑ (□ A) c ↘ ↑ (A [ ins vone n ]) (unbox n c)
data rec∙_,_,_,_,_↘_ : Typ → D → Exp → Envs → D → D → Set where
ze↘ : rec∙ T , a , t , ρ , ze ↘ a
su↘ : rec∙ T , a , t , ρ , b ↘ b′ →
⟦ t ⟧ ρ ↦ b ↦ b′ ↘ a′ →
rec∙ T , a , t , ρ , su b ↘ a′
rec∙ : ⟦ T ⟧ ρ ↦ ↑ N c ↘ A →
rec∙ T , a , t , ρ , ↑ N c ↘ ↑ A (rec T a t ρ c)
data ⟦_⟧_↘_ : Exp → Envs → D → Set where
⟦N⟧ : ⟦ N ⟧ ρ ↘ N
⟦Π⟧ : ⟦ S ⟧ ρ ↘ A →
⟦ Π S T ⟧ ρ ↘ Π A T ρ
⟦Se⟧ : ∀ i →
⟦ Se i ⟧ ρ ↘ U i
⟦□⟧ : ⟦ T ⟧ ext ρ 1 ↘ A →
⟦ □ T ⟧ ρ ↘ □ A
⟦v⟧ : ∀ n →
⟦ v n ⟧ ρ ↘ lookup ρ n
⟦ze⟧ : ⟦ ze ⟧ ρ ↘ ze
⟦su⟧ : ⟦ t ⟧ ρ ↘ a →
⟦ su t ⟧ ρ ↘ su a
⟦rec⟧ : ⟦ s ⟧ ρ ↘ a →
⟦ t ⟧ ρ ↘ b →
rec∙ T , a , r , ρ , b ↘ a′ →
⟦ rec T s r t ⟧ ρ ↘ a′
⟦Λ⟧ : ∀ t →
⟦ Λ t ⟧ ρ ↘ Λ t ρ
⟦$⟧ : ⟦ r ⟧ ρ ↘ f →
⟦ s ⟧ ρ ↘ a →
f ∙ a ↘ b →
⟦ r $ s ⟧ ρ ↘ b
⟦box⟧ : ⟦ t ⟧ ext ρ 1 ↘ a →
⟦ box t ⟧ ρ ↘ box a
⟦unbox⟧ : ∀ n →
⟦ t ⟧ ρ ∥ n ↘ a →
unbox∙ O ρ n , a ↘ b →
⟦ unbox n t ⟧ ρ ↘ b
⟦[]⟧ : ⟦ σ ⟧s ρ ↘ ρ′ →
⟦ t ⟧ ρ′ ↘ a →
⟦ t [ σ ] ⟧ ρ ↘ a
data ⟦_⟧s_↘_ : Substs → Envs → Envs → Set where
⟦I⟧ : ⟦ I ⟧s ρ ↘ ρ
⟦wk⟧ : ⟦ wk ⟧s ρ ↘ drop ρ
⟦,⟧ : ⟦ σ ⟧s ρ ↘ ρ′ →
⟦ t ⟧ ρ ↘ a →
⟦ σ , t ⟧s ρ ↘ ρ′ ↦ a
⟦;⟧ : ∀ {n} →
⟦ σ ⟧s ρ ∥ n ↘ ρ′ →
⟦ σ ; n ⟧s ρ ↘ ext ρ′ (O ρ n)
⟦∘⟧ : ⟦ τ ⟧s ρ ↘ ρ′ →
⟦ σ ⟧s ρ′ ↘ ρ″ →
⟦ σ ∘ τ ⟧s ρ ↘ ρ″
pattern ⟦q⟧ ↘σ = ⟦,⟧ (⟦∘⟧ ⟦wk⟧ ↘σ) (⟦v⟧ 0)
pattern ⟦[|ze]⟧ ↘T = ⟦[]⟧ (⟦,⟧ ⟦I⟧ ⟦ze⟧) ↘T
pattern ⟦[[wk∘wk],su[v1]]⟧ ↘T = ⟦[]⟧ (⟦,⟧ (⟦∘⟧ ⟦wk⟧ ⟦wk⟧) (⟦su⟧ (⟦v⟧ 1))) ↘T
mutual
ap-det : f ∙ a ↘ b → f ∙ a ↘ b′ → b ≡ b′
ap-det (Λ∙ ↘b) (Λ∙ ↘b′) = ⟦⟧-det ↘b ↘b′
ap-det ($∙ A c ↘B) ($∙ .A .c ↘B′)
rewrite ⟦⟧-det ↘B ↘B′ = refl
unbox-det : ∀ {n} → unbox∙ n , a ↘ b → unbox∙ n , a ↘ b′ → b ≡ b′
unbox-det (box↘ _) (box↘ _) = refl
unbox-det (unbox∙ _) (unbox∙ _) = refl
rec-det : rec∙ T , a , r , ρ , b ↘ a′ → rec∙ T , a , r , ρ , b ↘ b′ → a′ ≡ b′
rec-det ze↘ ze↘ = refl
rec-det (su↘ ↘a′ ↘a″) (su↘ ↘b′ ↘b″)
rewrite rec-det ↘a′ ↘b′
| ⟦⟧-det ↘a″ ↘b″ = refl
rec-det (rec∙ ↘A) (rec∙ ↘A′)
rewrite ⟦⟧-det ↘A ↘A′ = refl
⟦⟧-det : ⟦ t ⟧ ρ ↘ a → ⟦ t ⟧ ρ ↘ b → a ≡ b
⟦⟧-det ⟦N⟧ ⟦N⟧ = refl
⟦⟧-det (⟦Π⟧ ↘a) (⟦Π⟧ ↘b)
rewrite ⟦⟧-det ↘a ↘b = refl
⟦⟧-det (⟦Se⟧ i) (⟦Se⟧ .i) = refl
⟦⟧-det (⟦□⟧ ↘a) (⟦□⟧ ↘b)
rewrite ⟦⟧-det ↘a ↘b = refl
⟦⟧-det ⟦ze⟧ ⟦ze⟧ = refl
⟦⟧-det (⟦su⟧ ↘a) (⟦su⟧ ↘b)
rewrite ⟦⟧-det ↘a ↘b = refl
⟦⟧-det (⟦rec⟧ ↘a ↘b rec↘) (⟦rec⟧ ↘a′ ↘b′ rec↘′)
rewrite ⟦⟧-det ↘a ↘a′
| ⟦⟧-det ↘b ↘b′
| rec-det rec↘ rec↘′ = refl
⟦⟧-det (⟦v⟧ n) (⟦v⟧ .n) = refl
⟦⟧-det (⟦Λ⟧ t) (⟦Λ⟧ .t) = refl
⟦⟧-det (⟦$⟧ ↘f ↘a ↘b) (⟦$⟧ ↘f′ ↘a′ ↘b′)
rewrite ⟦⟧-det ↘f ↘f′
| ⟦⟧-det ↘a ↘a′
| ap-det ↘b ↘b′ = refl
⟦⟧-det (⟦box⟧ ↘a) (⟦box⟧ ↘b)
rewrite ⟦⟧-det ↘a ↘b = refl
⟦⟧-det (⟦unbox⟧ n ↘a ↘a′) (⟦unbox⟧ .n ↘b ↘b′)
rewrite ⟦⟧-det ↘a ↘b
| unbox-det ↘a′ ↘b′ = refl
⟦⟧-det (⟦[]⟧ ↘ρ′ ↘a) (⟦[]⟧ ↘ρ″ ↘b)
rewrite ⟦⟧s-det ↘ρ′ ↘ρ″
| ⟦⟧-det ↘a ↘b = refl
⟦⟧s-det : ⟦ σ ⟧s ρ ↘ ρ′ → ⟦ σ ⟧s ρ ↘ ρ″ → ρ′ ≡ ρ″
⟦⟧s-det ⟦I⟧ ⟦I⟧ = refl
⟦⟧s-det ⟦wk⟧ ⟦wk⟧ = refl
⟦⟧s-det (⟦,⟧ ↘ρ′ ↘a) (⟦,⟧ ↘ρ″ ↘b)
rewrite ⟦⟧s-det ↘ρ′ ↘ρ″
| ⟦⟧-det ↘a ↘b = refl
⟦⟧s-det (⟦;⟧ ↘ρ′) (⟦;⟧ ↘ρ″)
rewrite ⟦⟧s-det ↘ρ′ ↘ρ″ = refl
⟦⟧s-det (⟦∘⟧ ↘ρ′ ↘ρ″) (⟦∘⟧ ↘ρ‴ ↘ρ⁗)
rewrite ⟦⟧s-det ↘ρ′ ↘ρ‴
| ⟦⟧s-det ↘ρ″ ↘ρ⁗ = refl