{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wno-overlapping-patterns #-}
module MAlonzo.Code.Algebra.Properties.Group where
import MAlonzo.RTE (coe, erased, AgdaAny, addInt, subInt, mulInt,
quotInt, remInt, geqInt, ltInt, eqInt, add64, sub64, mul64, quot64,
rem64, lt64, eq64, word64FromNat, word64ToNat)
import qualified MAlonzo.RTE
import qualified Data.Text
import qualified MAlonzo.Code.Agda.Builtin.Sigma
import qualified MAlonzo.Code.Agda.Primitive
import qualified MAlonzo.Code.Algebra.Bundles
import qualified MAlonzo.Code.Algebra.Structures
import qualified MAlonzo.Code.Function.Base
import qualified MAlonzo.Code.Relation.Binary.Bundles
import qualified MAlonzo.Code.Relation.Binary.Reasoning.Base.Single
import qualified MAlonzo.Code.Relation.Binary.Reasoning.Setoid
import qualified MAlonzo.Code.Relation.Binary.Structures
d_Cancellative_122 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
(AgdaAny -> AgdaAny -> AgdaAny) -> ()
d_Cancellative_122 = erased
d_Identity_136 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> (AgdaAny -> AgdaAny -> AgdaAny) -> ()
d_Identity_136 = erased
d_LeftCancellative_144 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
(AgdaAny -> AgdaAny -> AgdaAny) -> ()
d_LeftCancellative_144 = erased
d_RightCancellative_162 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
(AgdaAny -> AgdaAny -> AgdaAny) -> ()
d_RightCancellative_162 = erased
d_ε'8315''185''8776'ε_208 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 -> AgdaAny
d_ε'8315''185''8776'ε_208 ~v0 ~v1 v2
= du_ε'8315''185''8776'ε_208 v2
du_ε'8315''185''8776'ε_208 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 -> AgdaAny
du_ε'8315''185''8776'ε_208 v0
= coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v1 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v2 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v1) in
let v3
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v2) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v3)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v1 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v2 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v1) in
let v3
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v2) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v3)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v1 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v2 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v1) in
let v3
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v2) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v3)))))
(coe MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(coe
MAlonzo.Code.Algebra.Structures.du_inverse'737'_714
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))))
(coe
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
(MAlonzo.Code.Algebra.Structures.d_isEquivalence_106
(coe
MAlonzo.Code.Algebra.Structures.d_isMagma_214
(coe
MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(let v1 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
coe
MAlonzo.Code.Algebra.Structures.du_identity'691'_412
(MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))))))
d_left'45'helper_214 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny
d_left'45'helper_214 ~v0 ~v1 v2 v3 v4
= du_left'45'helper_214 v2 v3 v4
du_left'45'helper_214 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny
du_left'45'helper_214 v0 v1 v2
= coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))
v1
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)))
(coe
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
(MAlonzo.Code.Algebra.Structures.d_isEquivalence_106
(coe
MAlonzo.Code.Algebra.Structures.d_isMagma_214
(coe
MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)))
(coe
MAlonzo.Code.Algebra.Structures.d_assoc_216
(MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))
v1 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))))
(let v3
= MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) in
let v4
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v3) in
coe
MAlonzo.Code.Algebra.Structures.du_'8729''45'cong'737'_124
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v4))
(coe v1) (coe MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
(MAlonzo.Code.Algebra.Structures.d_isEquivalence_106
(coe
MAlonzo.Code.Algebra.Structures.d_isMagma_214
(coe
MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Algebra.Structures.du_inverse'691'_716
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) v2))))
(coe
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
(MAlonzo.Code.Algebra.Structures.d_isEquivalence_106
(coe
MAlonzo.Code.Algebra.Structures.d_isMagma_214
(coe
MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
v1
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
coe
MAlonzo.Code.Algebra.Structures.du_identity'691'_412
(MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3)) v1)))
d_right'45'helper_224 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny
d_right'45'helper_224 ~v0 ~v1 v2 v3 v4
= du_right'45'helper_224 v2 v3 v4
du_right'45'helper_224 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny
du_right'45'helper_224 v0 v1 v2
= coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))
v2
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)) v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)) v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1) v1)
v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1) v1)
v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)))
(coe
MAlonzo.Code.Algebra.Structures.d_assoc_216
(MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1) v1
v2))
(let v3
= MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) in
let v4
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v3) in
coe
MAlonzo.Code.Algebra.Structures.du_'8729''45'cong'691'_128
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v4))
(coe v2) (coe MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1) v1)
(coe
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
(MAlonzo.Code.Algebra.Structures.d_isEquivalence_106
(coe
MAlonzo.Code.Algebra.Structures.d_isMagma_214
(coe
MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1) v1)
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Algebra.Structures.du_inverse'737'_714
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) v1))))
(coe
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
(MAlonzo.Code.Algebra.Structures.d_isEquivalence_106
(coe
MAlonzo.Code.Algebra.Structures.d_isMagma_214
(coe
MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)) v2)
v2
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
coe
MAlonzo.Code.Algebra.Structures.du_identity'737'_410
(MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3)) v2)))
d_'8729''45'cancel'737'_230 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8729''45'cancel'737'_230 ~v0 ~v1 v2 v3 v4 v5 v6
= du_'8729''45'cancel'737'_230 v2 v3 v4 v5 v6
du_'8729''45'cancel'737'_230 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8729''45'cancel'737'_230 v0 v1 v2 v3 v4
= coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v5 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v6 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v5) in
let v7
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v6) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v7)))
v2
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2))
v3
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v5 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v6 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v5) in
let v7
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v6) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v7)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v3))
v3
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776''728'_66
(let v5 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v6 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v5) in
let v7
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v6) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v7)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v3))
(coe v3) (coe v3)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v5 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v6 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v5) in
let v7
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v6) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v7)))))
(coe v3))
(coe du_right'45'helper_224 (coe v0) (coe v1) (coe v3)))
(let v5 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v6 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v5) in
let v7
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v6) in
coe
MAlonzo.Code.Algebra.Structures.du_'8729''45'cong'737'_124
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v7))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v3)
(coe v4)))
(coe du_right'45'helper_224 (coe v0) (coe v1) (coe v2)))
d_'8729''45'cancel'691'_240 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8729''45'cancel'691'_240 ~v0 ~v1 v2 v3 v4 v5 v6
= du_'8729''45'cancel'691'_240 v2 v3 v4 v5 v6
du_'8729''45'cancel'691'_240 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8729''45'cancel'691'_240 v0 v1 v2 v3 v4
= coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v5 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v6 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v5) in
let v7
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v6) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v7)))
v2
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
v3
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v5 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v6 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v5) in
let v7
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v6) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v7)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v3 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
v3
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776''728'_66
(let v5 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v6 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v5) in
let v7
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v6) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v7)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v3 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe v3) (coe v3)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v5 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v6 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v5) in
let v7
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v6) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v7)))))
(coe v3))
(coe du_left'45'helper_214 (coe v0) (coe v3) (coe v1)))
(let v5 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v6 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v5) in
let v7
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v6) in
coe
MAlonzo.Code.Algebra.Structures.du_'8729''45'cong'691'_128
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v7))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v3 v1)
(coe v4)))
(coe du_left'45'helper_214 (coe v0) (coe v2) (coe v1)))
d_'8729''45'cancel_250 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8729''45'cancel_250 ~v0 ~v1 v2 = du_'8729''45'cancel_250 v2
du_'8729''45'cancel_250 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8729''45'cancel_250 v0
= coe
MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32
(coe du_'8729''45'cancel'737'_230 (coe v0))
(coe du_'8729''45'cancel'691'_240 (coe v0))
d_'8315''185''45'involutive_254 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 -> AgdaAny -> AgdaAny
d_'8315''185''45'involutive_254 ~v0 ~v1 v2 v3
= du_'8315''185''45'involutive_254 v2 v3
du_'8315''185''45'involutive_254 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 -> AgdaAny -> AgdaAny
du_'8315''185''45'involutive_254 v0 v1
= coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776''728'_66
(let v2 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v3 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v2) in
let v4
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v3) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v4)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(coe v1)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776''728'_66
(let v2 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v3 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v2) in
let v4
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v3) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v4)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1) v1))
(coe v1)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776''728'_66
(let v2 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v3 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v2) in
let v4
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v3) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v4)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1) v1))
(coe v1) (coe v1)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v2 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v3 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v2) in
let v4
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v3) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v4)))))
(coe v1))
(coe
du_right'45'helper_224 (coe v0)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe v1)))
(let v2
= MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) in
let v3
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v2) in
coe
MAlonzo.Code.Algebra.Structures.du_'8729''45'cong'737'_124
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v3))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1) v1)
(coe MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Algebra.Structures.du_inverse'737'_714
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) v1)))
(let v2 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
coe
MAlonzo.Code.Algebra.Structures.du_identity'691'_412
(MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))))
d_'8315''185''45'injective_262 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8315''185''45'injective_262 ~v0 ~v1 v2 v3 v4 v5
= du_'8315''185''45'injective_262 v2 v3 v4 v5
du_'8315''185''45'injective_262 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8315''185''45'injective_262 v0 v1 v2 v3
= coe
du_'8729''45'cancel'691'_240 (coe v0)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe v1) (coe v2)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776''728'_66
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
(coe MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776''728'_66
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)))
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_'8729''45'cong'737'_124
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6))
(coe v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe v3)))
(coe
MAlonzo.Code.Algebra.Structures.du_inverse'691'_716
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) v2))
(coe
MAlonzo.Code.Algebra.Structures.du_inverse'691'_716
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) v1)))
d_'8315''185''45'anti'45'homo'45''8729'_274 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny
d_'8315''185''45'anti'45'homo'45''8729'_274 ~v0 ~v1 v2 v3 v4
= du_'8315''185''45'anti'45'homo'45''8729'_274 v2 v3 v4
du_'8315''185''45'anti'45'homo'45''8729'_274 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny
du_'8315''185''45'anti'45'homo'45''8729'_274 v0 v1 v2
= coe
du_'8729''45'cancel'737'_230 (coe v0)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776''728'_66
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))
(coe MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5)))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))))
(coe
MAlonzo.Code.Algebra.Structures.d_assoc_216
(MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)))
(let v3 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v4 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v3) in
let v5
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v4) in
coe
MAlonzo.Code.Algebra.Structures.du_'8729''45'cong'691'_128
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v5))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe v1)
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe du_left'45'helper_214 (coe v0) (coe v1) (coe v2))))
(coe
MAlonzo.Code.Algebra.Structures.du_inverse'691'_716
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) v1))
(coe
MAlonzo.Code.Algebra.Structures.du_inverse'691'_716
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2))))
d_identity'737''45'unique_284 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_identity'737''45'unique_284 ~v0 ~v1 v2 v3 v4 v5
= du_identity'737''45'unique_284 v2 v3 v4 v5
du_identity'737''45'unique_284 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_identity'737''45'unique_284 v0 v1 v2 v3
= coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
v1
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v2
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))))
(coe MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(coe
MAlonzo.Code.Algebra.Structures.du_inverse'691'_716
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) v2))
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_'8729''45'cong'691'_128
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe v2) (coe v3)))
(coe du_left'45'helper_214 (coe v0) (coe v1) (coe v2)))
d_identity'691''45'unique_296 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_identity'691''45'unique_296 ~v0 ~v1 v2 v3 v4 v5
= du_identity'691''45'unique_296 v2 v3 v4 v5
du_identity'691''45'unique_296 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_identity'691''45'unique_296 v0 v1 v2 v3
= coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
v2
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1) v1)
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1) v1)
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))))
(coe MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)))
(coe
MAlonzo.Code.Algebra.Structures.du_inverse'737'_714
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)) v1))
(coe
MAlonzo.Code.Function.Base.du__'10216'_'10217'__238
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(MAlonzo.Code.Algebra.Structures.d_isEquivalence_106
(coe
MAlonzo.Code.Algebra.Structures.d_isMagma_214
(coe
MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Structures.d_'8729''45'cong_108
(MAlonzo.Code.Algebra.Structures.d_isMagma_214
(coe
MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0)))))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2) v1)
(coe v3)))
(coe du_right'45'helper_224 (coe v0) (coe v1) (coe v2)))
d_identity'45'unique_306 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14 -> AgdaAny
d_identity'45'unique_306 ~v0 ~v1 v2 v3 v4
= du_identity'45'unique_306 v2 v3 v4
du_identity'45'unique_306 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14 -> AgdaAny
du_identity'45'unique_306 v0 v1 v2
= coe
du_identity'737''45'unique_284 (coe v0) (coe v1) (coe v1)
(coe MAlonzo.Code.Agda.Builtin.Sigma.d_snd_30 v2 v1)
d_inverse'737''45'unique_316 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_inverse'737''45'unique_316 ~v0 ~v1 v2 v3 v4 v5
= du_inverse'737''45'unique_316 v2 v3 v4 v5
du_inverse'737''45'unique_316 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_inverse'737''45'unique_316 v0 v1 v2 v3
= coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
v1
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0
(MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
coe
MAlonzo.Code.Algebra.Structures.du_identity'737'_410
(MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)))
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_'8729''45'cong'691'_128
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe MAlonzo.Code.Algebra.Bundles.d__'8729'__1084 v0 v1 v2)
(coe MAlonzo.Code.Algebra.Bundles.d_ε_1086 (coe v0)) (coe v3)))
(coe du_left'45'helper_214 (coe v0) (coe v1) (coe v2)))
d_inverse'691''45'unique_328 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_inverse'691''45'unique_328 ~v0 ~v1 v2 v3 v4 v5
= du_inverse'691''45'unique_328 v2 v3 v4 v5
du_inverse'691''45'unique_328 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_inverse'691''45'unique_328 v0 v1 v2 v3
= coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.d_begin__40
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
v2
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Setoid.du_step'45''8776'_58
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1)
(coe
MAlonzo.Code.Relation.Binary.Reasoning.Base.Single.du__'8718'_86
(coe
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
(coe
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60
(let v4 = MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0) in
let v5 = MAlonzo.Code.Algebra.Structures.d_isMonoid_666 (coe v4) in
let v6
= MAlonzo.Code.Algebra.Structures.d_isSemigroup_380 (coe v5) in
coe
MAlonzo.Code.Algebra.Structures.du_setoid_122
(coe MAlonzo.Code.Algebra.Structures.d_isMagma_214 (coe v6)))))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v1))
(coe
MAlonzo.Code.Algebra.Structures.d_'8315''185''45'cong_670
(MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2) v1
(coe
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
(MAlonzo.Code.Algebra.Structures.d_isEquivalence_106
(coe
MAlonzo.Code.Algebra.Structures.d_isMagma_214
(coe
MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))))
v1 (coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2)
(coe
du_inverse'737''45'unique_316 (coe v0) (coe v1) (coe v2)
(coe v3)))))
(coe
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
(MAlonzo.Code.Algebra.Structures.d_isEquivalence_106
(coe
MAlonzo.Code.Algebra.Structures.d_isMagma_214
(coe
MAlonzo.Code.Algebra.Structures.d_isSemigroup_380
(coe
MAlonzo.Code.Algebra.Structures.d_isMonoid_666
(coe MAlonzo.Code.Algebra.Bundles.d_isGroup_1090 (coe v0))))))
(coe
MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0
(coe MAlonzo.Code.Algebra.Bundles.d__'8315''185'_1088 v0 v2))
v2 (coe du_'8315''185''45'involutive_254 (coe v0) (coe v2))))
d_left'45'identity'45'unique_336 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_left'45'identity'45'unique_336 ~v0 ~v1 v2
= du_left'45'identity'45'unique_336 v2
du_left'45'identity'45'unique_336 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_left'45'identity'45'unique_336 v0
= coe du_identity'737''45'unique_284 (coe v0)
d_right'45'identity'45'unique_338 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_right'45'identity'45'unique_338 ~v0 ~v1 v2
= du_right'45'identity'45'unique_338 v2
du_right'45'identity'45'unique_338 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_right'45'identity'45'unique_338 v0
= coe du_identity'691''45'unique_296 (coe v0)
d_left'45'inverse'45'unique_340 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_left'45'inverse'45'unique_340 ~v0 ~v1 v2
= du_left'45'inverse'45'unique_340 v2
du_left'45'inverse'45'unique_340 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_left'45'inverse'45'unique_340 v0
= coe du_inverse'737''45'unique_316 (coe v0)
d_right'45'inverse'45'unique_342 ::
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Agda.Primitive.T_Level_14 ->
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_right'45'inverse'45'unique_342 ~v0 ~v1 v2
= du_right'45'inverse'45'unique_342 v2
du_right'45'inverse'45'unique_342 ::
MAlonzo.Code.Algebra.Bundles.T_Group_1062 ->
AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_right'45'inverse'45'unique_342 v0
= coe du_inverse'691''45'unique_328 (coe v0)