------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties of lattices
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra.Lattice.Bundles
import Algebra.Lattice.Properties.Semilattice as SemilatticeProperties
open import Relation.Binary
import Relation.Binary.Lattice as R
open import Function.Base
open import Data.Product using (_,_; swap)

module Algebra.Lattice.Properties.Lattice
  {l₁ l₂} (L : Lattice l₁ l₂) where

open Lattice L
open import Algebra.Definitions _≈_
open import Algebra.Structures _≈_
open import Algebra.Lattice.Structures _≈_
open import Relation.Binary.Reasoning.Setoid setoid

------------------------------------------------------------------------
-- _∧_ is a semilattice

∧-idem : Idempotent _∧_
∧-idem x = begin
  x  x            ≈˘⟨ ∧-congˡ (∨-absorbs-∧ _ _) 
  x  (x  x  x)  ≈⟨  ∧-absorbs-∨ _ _ 
  x                

∧-isMagma : IsMagma _∧_
∧-isMagma = record
  { isEquivalence = isEquivalence
  ; ∙-cong        = ∧-cong
  }

∧-isSemigroup : IsSemigroup _∧_
∧-isSemigroup = record
  { isMagma = ∧-isMagma
  ; assoc   = ∧-assoc
  }

∧-isBand : IsBand _∧_
∧-isBand = record
  { isSemigroup = ∧-isSemigroup
  ; idem        = ∧-idem
  }

∧-isSemilattice : IsSemilattice _∧_
∧-isSemilattice = record
  { isBand = ∧-isBand
  ; comm   = ∧-comm
  }

∧-semilattice : Semilattice l₁ l₂
∧-semilattice = record
  { isSemilattice = ∧-isSemilattice
  }

open SemilatticeProperties ∧-semilattice public
  using
  ( ∧-isOrderTheoreticMeetSemilattice
  ; ∧-isOrderTheoreticJoinSemilattice
  ; ∧-orderTheoreticMeetSemilattice
  ; ∧-orderTheoreticJoinSemilattice
  )

------------------------------------------------------------------------
-- _∨_ is a semilattice

∨-idem : Idempotent _∨_
∨-idem x = begin
  x  x      ≈˘⟨ ∨-congˡ (∧-idem _) 
  x  x  x  ≈⟨  ∨-absorbs-∧ _ _ 
  x          

∨-isMagma : IsMagma _∨_
∨-isMagma = record
  { isEquivalence = isEquivalence
  ; ∙-cong        = ∨-cong
  }

∨-isSemigroup : IsSemigroup _∨_
∨-isSemigroup = record
  { isMagma = ∨-isMagma
  ; assoc   = ∨-assoc
  }

∨-isBand : IsBand _∨_
∨-isBand = record
  { isSemigroup = ∨-isSemigroup
  ; idem        = ∨-idem
  }

∨-isSemilattice : IsSemilattice _∨_
∨-isSemilattice = record
  { isBand = ∨-isBand
  ; comm   = ∨-comm
  }

∨-semilattice : Semilattice l₁ l₂
∨-semilattice = record
  { isSemilattice = ∨-isSemilattice
  }

open SemilatticeProperties ∨-semilattice public
  using ()
  renaming
  ( ∧-isOrderTheoreticMeetSemilattice to ∨-isOrderTheoreticMeetSemilattice
  ; ∧-isOrderTheoreticJoinSemilattice to ∨-isOrderTheoreticJoinSemilattice
  ; ∧-orderTheoreticMeetSemilattice   to ∨-orderTheoreticMeetSemilattice
  ; ∧-orderTheoreticJoinSemilattice   to ∨-orderTheoreticJoinSemilattice
  )

------------------------------------------------------------------------
-- The dual construction is also a lattice.

∧-∨-isLattice : IsLattice _∧_ _∨_
∧-∨-isLattice = record
  { isEquivalence = isEquivalence
  ; ∨-comm        = ∧-comm
  ; ∨-assoc       = ∧-assoc
  ; ∨-cong        = ∧-cong
  ; ∧-comm        = ∨-comm
  ; ∧-assoc       = ∨-assoc
  ; ∧-cong        = ∨-cong
  ; absorptive    = swap absorptive
  }

∧-∨-lattice : Lattice _ _
∧-∨-lattice = record
  { isLattice = ∧-∨-isLattice
  }

------------------------------------------------------------------------
-- Every algebraic lattice can be turned into an order-theoretic one.

open SemilatticeProperties ∧-semilattice public using (poset)
open Poset poset using (_≤_; isPartialOrder)

∨-∧-isOrderTheoreticLattice : R.IsLattice _≈_ _≤_ _∨_ _∧_
∨-∧-isOrderTheoreticLattice = record
  { isPartialOrder = isPartialOrder
  ; supremum       = supremum
  ; infimum        = infimum
  }
  where
  open R.MeetSemilattice ∧-orderTheoreticMeetSemilattice using (infimum)
  open R.JoinSemilattice ∨-orderTheoreticJoinSemilattice using (x≤x∨y; y≤x∨y; ∨-least)
    renaming (_≤_ to _≤′_)

  -- An alternative but equivalent interpretation of the order _≤_.

  sound :  {x y}  x ≤′ y  x  y
  sound {x} {y} y≈y∨x = sym $ begin
    x  y        ≈⟨ ∧-congˡ y≈y∨x 
    x  (y  x)  ≈⟨ ∧-congˡ (∨-comm y x) 
    x  (x  y)  ≈⟨ ∧-absorbs-∨ x y 
    x            

  complete :  {x y}  x  y  x ≤′ y
  complete {x} {y} x≈x∧y = sym $ begin
    y  x        ≈⟨ ∨-congˡ x≈x∧y 
    y  (x  y)  ≈⟨ ∨-congˡ (∧-comm x y) 
    y  (y  x)  ≈⟨ ∨-absorbs-∧ y x 
    y            

  supremum : R.Supremum _≤_ _∨_
  supremum x y =
     sound (x≤x∨y x y) ,
     sound (y≤x∨y x y) ,
     λ z x≤z y≤z  sound (∨-least (complete x≤z) (complete y≤z))

∨-∧-orderTheoreticLattice : R.Lattice _ _ _
∨-∧-orderTheoreticLattice = record
  { isLattice = ∨-∧-isOrderTheoreticLattice
  }