------------------------------------------------------------------------ -- The Agda standard library -- -- Morphisms between algebraic structures ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Core module Algebra.Morphism.Structures where open import Algebra.Core open import Algebra.Bundles import Algebra.Morphism.Definitions as MorphismDefinitions open import Level using (Level; _⊔_) import Function.Definitions as FunctionDefinitions open import Relation.Binary.Morphism.Structures private variable a b ℓ₁ ℓ₂ : Level ------------------------------------------------------------------------ -- Morphisms over magma-like structures ------------------------------------------------------------------------ module MagmaMorphisms (M₁ : RawMagma a ℓ₁) (M₂ : RawMagma b ℓ₂) where open RawMagma M₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_) open RawMagma M₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_) open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ record IsMagmaHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isRelHomomorphism : IsRelHomomorphism _≈₁_ _≈₂_ ⟦_⟧ homo : Homomorphic₂ ⟦_⟧ _∙_ _◦_ open IsRelHomomorphism isRelHomomorphism public renaming (cong to ⟦⟧-cong) record IsMagmaMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMagmaHomomorphism : IsMagmaHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsMagmaHomomorphism isMagmaHomomorphism public isRelMonomorphism : IsRelMonomorphism _≈₁_ _≈₂_ ⟦_⟧ isRelMonomorphism = record { isHomomorphism = isRelHomomorphism ; injective = injective } record IsMagmaIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isMagmaMonomorphism : IsMagmaMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsMagmaMonomorphism isMagmaMonomorphism public isRelIsomorphism : IsRelIsomorphism _≈₁_ _≈₂_ ⟦_⟧ isRelIsomorphism = record { isMonomorphism = isRelMonomorphism ; surjective = surjective } ------------------------------------------------------------------------ -- Morphisms over monoid-like structures ------------------------------------------------------------------------ module MonoidMorphisms (M₁ : RawMonoid a ℓ₁) (M₂ : RawMonoid b ℓ₂) where open RawMonoid M₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_; ε to ε₁) open RawMonoid M₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_; ε to ε₂) open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ open MagmaMorphisms (RawMonoid.rawMagma M₁) (RawMonoid.rawMagma M₂) record IsMonoidHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMagmaHomomorphism : IsMagmaHomomorphism ⟦_⟧ ε-homo : Homomorphic₀ ⟦_⟧ ε₁ ε₂ open IsMagmaHomomorphism isMagmaHomomorphism public record IsMonoidMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMonoidHomomorphism : IsMonoidHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsMonoidHomomorphism isMonoidHomomorphism public isMagmaMonomorphism : IsMagmaMonomorphism ⟦_⟧ isMagmaMonomorphism = record { isMagmaHomomorphism = isMagmaHomomorphism ; injective = injective } open IsMagmaMonomorphism isMagmaMonomorphism public using (isRelMonomorphism) record IsMonoidIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isMonoidMonomorphism : IsMonoidMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsMonoidMonomorphism isMonoidMonomorphism public isMagmaIsomorphism : IsMagmaIsomorphism ⟦_⟧ isMagmaIsomorphism = record { isMagmaMonomorphism = isMagmaMonomorphism ; surjective = surjective } open IsMagmaIsomorphism isMagmaIsomorphism public using (isRelIsomorphism) ------------------------------------------------------------------------ -- Morphisms over group-like structures ------------------------------------------------------------------------ module GroupMorphisms (G₁ : RawGroup a ℓ₁) (G₂ : RawGroup b ℓ₂) where open RawGroup G₁ renaming (Carrier to A; _≈_ to _≈₁_; _∙_ to _∙_; _⁻¹ to _⁻¹₁; ε to ε₁) open RawGroup G₂ renaming (Carrier to B; _≈_ to _≈₂_; _∙_ to _◦_; _⁻¹ to _⁻¹₂; ε to ε₂) open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ open MagmaMorphisms (RawGroup.rawMagma G₁) (RawGroup.rawMagma G₂) open MonoidMorphisms (RawGroup.rawMonoid G₁) (RawGroup.rawMonoid G₂) record IsGroupHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMonoidHomomorphism : IsMonoidHomomorphism ⟦_⟧ ⁻¹-homo : Homomorphic₁ ⟦_⟧ _⁻¹₁ _⁻¹₂ open IsMonoidHomomorphism isMonoidHomomorphism public record IsGroupMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isGroupHomomorphism : IsGroupHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsGroupHomomorphism isGroupHomomorphism public renaming (homo to ∙-homo) isMonoidMonomorphism : IsMonoidMonomorphism ⟦_⟧ isMonoidMonomorphism = record { isMonoidHomomorphism = isMonoidHomomorphism ; injective = injective } open IsMonoidMonomorphism isMonoidMonomorphism public using (isRelMonomorphism; isMagmaMonomorphism) record IsGroupIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isGroupMonomorphism : IsGroupMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsGroupMonomorphism isGroupMonomorphism public isMonoidIsomorphism : IsMonoidIsomorphism ⟦_⟧ isMonoidIsomorphism = record { isMonoidMonomorphism = isMonoidMonomorphism ; surjective = surjective } open IsMonoidIsomorphism isMonoidIsomorphism public using (isRelIsomorphism; isMagmaIsomorphism) ------------------------------------------------------------------------ -- Morphisms over near-semiring-like structures ------------------------------------------------------------------------ module NearSemiringMorphisms (R₁ : RawNearSemiring a ℓ₁) (R₂ : RawNearSemiring b ℓ₂) where open RawNearSemiring R₁ renaming ( Carrier to A; _≈_ to _≈₁_ ; +-rawMonoid to +-rawMonoid₁ ; _*_ to _*₁_ ; *-rawMagma to *-rawMagma₁) open RawNearSemiring R₂ renaming ( Carrier to B; _≈_ to _≈₂_ ; +-rawMonoid to +-rawMonoid₂ ; _*_ to _*₂_ ; *-rawMagma to *-rawMagma₂) private module + = MonoidMorphisms +-rawMonoid₁ +-rawMonoid₂ module * = MagmaMorphisms *-rawMagma₁ *-rawMagma₂ open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ record IsNearSemiringHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field +-isMonoidHomomorphism : +.IsMonoidHomomorphism ⟦_⟧ *-homo : Homomorphic₂ ⟦_⟧ _*₁_ _*₂_ open +.IsMonoidHomomorphism +-isMonoidHomomorphism public renaming (homo to +-homo; ε-homo to 0#-homo; isMagmaHomomorphism to +-isMagmaHomomorphism) *-isMagmaHomomorphism : *.IsMagmaHomomorphism ⟦_⟧ *-isMagmaHomomorphism = record { isRelHomomorphism = isRelHomomorphism ; homo = *-homo } record IsNearSemiringMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isNearSemiringHomomorphism : IsNearSemiringHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsNearSemiringHomomorphism isNearSemiringHomomorphism public +-isMonoidMonomorphism : +.IsMonoidMonomorphism ⟦_⟧ +-isMonoidMonomorphism = record { isMonoidHomomorphism = +-isMonoidHomomorphism ; injective = injective } open +.IsMonoidMonomorphism +-isMonoidMonomorphism public using (isRelMonomorphism) renaming (isMagmaMonomorphism to +-isMagmaMonomorphsm) *-isMagmaMonomorphism : *.IsMagmaMonomorphism ⟦_⟧ *-isMagmaMonomorphism = record { isMagmaHomomorphism = *-isMagmaHomomorphism ; injective = injective } record IsNearSemiringIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isNearSemiringMonomorphism : IsNearSemiringMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsNearSemiringMonomorphism isNearSemiringMonomorphism public +-isMonoidIsomorphism : +.IsMonoidIsomorphism ⟦_⟧ +-isMonoidIsomorphism = record { isMonoidMonomorphism = +-isMonoidMonomorphism ; surjective = surjective } open +.IsMonoidIsomorphism +-isMonoidIsomorphism public using (isRelIsomorphism) renaming (isMagmaIsomorphism to +-isMagmaIsomorphism) *-isMagmaIsomorphism : *.IsMagmaIsomorphism ⟦_⟧ *-isMagmaIsomorphism = record { isMagmaMonomorphism = *-isMagmaMonomorphism ; surjective = surjective } ------------------------------------------------------------------------ -- Morphisms over semiring-like structures ------------------------------------------------------------------------ module SemiringMorphisms (R₁ : RawSemiring a ℓ₁) (R₂ : RawSemiring b ℓ₂) where open RawSemiring R₁ renaming ( Carrier to A; _≈_ to _≈₁_ ; 1# to 1#₁ ; rawNearSemiring to rawNearSemiring₁ ; *-rawMonoid to *-rawMonoid₁) open RawSemiring R₂ renaming ( Carrier to B; _≈_ to _≈₂_ ; 1# to 1#₂ ; rawNearSemiring to rawNearSemiring₂ ; *-rawMonoid to *-rawMonoid₂) private module * = MonoidMorphisms *-rawMonoid₁ *-rawMonoid₂ open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ open NearSemiringMorphisms rawNearSemiring₁ rawNearSemiring₂ record IsSemiringHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isNearSemiringHomomorphism : IsNearSemiringHomomorphism ⟦_⟧ 1#-homo : Homomorphic₀ ⟦_⟧ 1#₁ 1#₂ open IsNearSemiringHomomorphism isNearSemiringHomomorphism public *-isMonoidHomomorphism : *.IsMonoidHomomorphism ⟦_⟧ *-isMonoidHomomorphism = record { isMagmaHomomorphism = *-isMagmaHomomorphism ; ε-homo = 1#-homo } record IsSemiringMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isSemiringHomomorphism : IsSemiringHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsSemiringHomomorphism isSemiringHomomorphism public isNearSemiringMonomorphism : IsNearSemiringMonomorphism ⟦_⟧ isNearSemiringMonomorphism = record { isNearSemiringHomomorphism = isNearSemiringHomomorphism ; injective = injective } open IsNearSemiringMonomorphism isNearSemiringMonomorphism public using (+-isMonoidMonomorphism; *-isMagmaMonomorphism) *-isMonoidMonomorphism : *.IsMonoidMonomorphism ⟦_⟧ *-isMonoidMonomorphism = record { isMonoidHomomorphism = *-isMonoidHomomorphism ; injective = injective } record IsSemiringIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isSemiringMonomorphism : IsSemiringMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsSemiringMonomorphism isSemiringMonomorphism public isNearSemiringIsomorphism : IsNearSemiringIsomorphism ⟦_⟧ isNearSemiringIsomorphism = record { isNearSemiringMonomorphism = isNearSemiringMonomorphism ; surjective = surjective } open IsNearSemiringIsomorphism isNearSemiringIsomorphism public using (+-isMonoidIsomorphism; *-isMagmaIsomorphism) *-isMonoidIsomorphism : *.IsMonoidIsomorphism ⟦_⟧ *-isMonoidIsomorphism = record { isMonoidMonomorphism = *-isMonoidMonomorphism ; surjective = surjective } ------------------------------------------------------------------------ -- Morphisms over ringWithoutOne-like structures ------------------------------------------------------------------------ module RingWithoutOneMorphisms (R₁ : RawRingWithoutOne a ℓ₁) (R₂ : RawRingWithoutOne b ℓ₂) where open RawRingWithoutOne R₁ renaming ( Carrier to A; _≈_ to _≈₁_ ; _*_ to _*₁_ ; *-rawMagma to *-rawMagma₁ ; +-rawGroup to +-rawGroup₁) open RawRingWithoutOne R₂ renaming ( Carrier to B; _≈_ to _≈₂_ ; _*_ to _*₂_ ; *-rawMagma to *-rawMagma₂ ; +-rawGroup to +-rawGroup₂) private module + = GroupMorphisms +-rawGroup₁ +-rawGroup₂ module * = MagmaMorphisms *-rawMagma₁ *-rawMagma₂ open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ record IsRingWithoutOneHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field +-isGroupHomomorphism : +.IsGroupHomomorphism ⟦_⟧ *-homo : Homomorphic₂ ⟦_⟧ _*₁_ _*₂_ open +.IsGroupHomomorphism +-isGroupHomomorphism public renaming (homo to +-homo; ε-homo to 0#-homo; isMagmaHomomorphism to +-isMagmaHomomorphism) *-isMagmaHomomorphism : *.IsMagmaHomomorphism ⟦_⟧ *-isMagmaHomomorphism = record { isRelHomomorphism = isRelHomomorphism ; homo = *-homo } record IsRingWithoutOneMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isRingWithoutOneHomomorphism : IsRingWithoutOneHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsRingWithoutOneHomomorphism isRingWithoutOneHomomorphism public +-isGroupMonomorphism : +.IsGroupMonomorphism ⟦_⟧ +-isGroupMonomorphism = record { isGroupHomomorphism = +-isGroupHomomorphism ; injective = injective } open +.IsGroupMonomorphism +-isGroupMonomorphism public using (isRelMonomorphism) renaming (isMagmaMonomorphism to +-isMagmaMonomorphsm; isMonoidMonomorphism to +-isMonoidMonomorphism) *-isMagmaMonomorphism : *.IsMagmaMonomorphism ⟦_⟧ *-isMagmaMonomorphism = record { isMagmaHomomorphism = *-isMagmaHomomorphism ; injective = injective } record IsRingWithoutOneIsoMorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isRingWithoutOneMonomorphism : IsRingWithoutOneMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsRingWithoutOneMonomorphism isRingWithoutOneMonomorphism public +-isGroupIsomorphism : +.IsGroupIsomorphism ⟦_⟧ +-isGroupIsomorphism = record { isGroupMonomorphism = +-isGroupMonomorphism ; surjective = surjective } open +.IsGroupIsomorphism +-isGroupIsomorphism public using (isRelIsomorphism) renaming (isMagmaIsomorphism to +-isMagmaIsomorphism; isMonoidIsomorphism to +-isMonoidIsomorphism) *-isMagmaIsomorphism : *.IsMagmaIsomorphism ⟦_⟧ *-isMagmaIsomorphism = record { isMagmaMonomorphism = *-isMagmaMonomorphism ; surjective = surjective } ------------------------------------------------------------------------ -- Morphisms over ring-like structures ------------------------------------------------------------------------ module RingMorphisms (R₁ : RawRing a ℓ₁) (R₂ : RawRing b ℓ₂) where open RawRing R₁ renaming ( Carrier to A; _≈_ to _≈₁_ ; -_ to -₁_ ; rawSemiring to rawSemiring₁ ; *-rawMonoid to *-rawMonoid₁ ; +-rawGroup to +-rawGroup₁) open RawRing R₂ renaming ( Carrier to B; _≈_ to _≈₂_ ; -_ to -₂_ ; rawSemiring to rawSemiring₂ ; *-rawMonoid to *-rawMonoid₂ ; +-rawGroup to +-rawGroup₂) module + = GroupMorphisms +-rawGroup₁ +-rawGroup₂ module * = MonoidMorphisms *-rawMonoid₁ *-rawMonoid₂ open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ open SemiringMorphisms rawSemiring₁ rawSemiring₂ record IsRingHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isSemiringHomomorphism : IsSemiringHomomorphism ⟦_⟧ -‿homo : Homomorphic₁ ⟦_⟧ -₁_ -₂_ open IsSemiringHomomorphism isSemiringHomomorphism public +-isGroupHomomorphism : +.IsGroupHomomorphism ⟦_⟧ +-isGroupHomomorphism = record { isMonoidHomomorphism = +-isMonoidHomomorphism ; ⁻¹-homo = -‿homo } record IsRingMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isRingHomomorphism : IsRingHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsRingHomomorphism isRingHomomorphism public isSemiringMonomorphism : IsSemiringMonomorphism ⟦_⟧ isSemiringMonomorphism = record { isSemiringHomomorphism = isSemiringHomomorphism ; injective = injective } +-isGroupMonomorphism : +.IsGroupMonomorphism ⟦_⟧ +-isGroupMonomorphism = record { isGroupHomomorphism = +-isGroupHomomorphism ; injective = injective } open +.IsGroupMonomorphism +-isGroupMonomorphism using (isRelMonomorphism) renaming ( isMagmaMonomorphism to +-isMagmaMonomorphism ; isMonoidMonomorphism to +-isMonoidMonomorphism ) *-isMonoidMonomorphism : *.IsMonoidMonomorphism ⟦_⟧ *-isMonoidMonomorphism = record { isMonoidHomomorphism = *-isMonoidHomomorphism ; injective = injective } open *.IsMonoidMonomorphism *-isMonoidMonomorphism public using () renaming (isMagmaMonomorphism to *-isMagmaMonomorphism) record IsRingIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isRingMonomorphism : IsRingMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsRingMonomorphism isRingMonomorphism public isSemiringIsomorphism : IsSemiringIsomorphism ⟦_⟧ isSemiringIsomorphism = record { isSemiringMonomorphism = isSemiringMonomorphism ; surjective = surjective } +-isGroupIsomorphism : +.IsGroupIsomorphism ⟦_⟧ +-isGroupIsomorphism = record { isGroupMonomorphism = +-isGroupMonomorphism ; surjective = surjective } open +.IsGroupIsomorphism +-isGroupIsomorphism using (isRelIsomorphism) renaming ( isMagmaIsomorphism to +-isMagmaIsomorphism ; isMonoidIsomorphism to +-isMonoidIsomorphisn ) *-isMonoidIsomorphism : *.IsMonoidIsomorphism ⟦_⟧ *-isMonoidIsomorphism = record { isMonoidMonomorphism = *-isMonoidMonomorphism ; surjective = surjective } open *.IsMonoidIsomorphism *-isMonoidIsomorphism public using () renaming (isMagmaIsomorphism to *-isMagmaIsomorphisn) ------------------------------------------------------------------------ -- Morphisms over quasigroup-like structures ------------------------------------------------------------------------ module QuasigroupMorphisms (Q₁ : RawQuasigroup a ℓ₁) (Q₂ : RawQuasigroup b ℓ₂) where open RawQuasigroup Q₁ renaming (Carrier to A; ∙-rawMagma to ∙-rawMagma₁; \\-rawMagma to \\-rawMagma₁; //-rawMagma to //-rawMagma₁; _≈_ to _≈₁_; _∙_ to _∙₁_; _\\_ to _\\₁_; _//_ to _//₁_) open RawQuasigroup Q₂ renaming (Carrier to B; ∙-rawMagma to ∙-rawMagma₂; \\-rawMagma to \\-rawMagma₂; //-rawMagma to //-rawMagma₂; _≈_ to _≈₂_; _∙_ to _∙₂_; _\\_ to _\\₂_; _//_ to _//₂_) module ∙ = MagmaMorphisms ∙-rawMagma₁ ∙-rawMagma₂ module \\ = MagmaMorphisms \\-rawMagma₁ \\-rawMagma₂ module // = MagmaMorphisms //-rawMagma₁ //-rawMagma₂ open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ record IsQuasigroupHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isRelHomomorphism : IsRelHomomorphism _≈₁_ _≈₂_ ⟦_⟧ ∙-homo : Homomorphic₂ ⟦_⟧ _∙₁_ _∙₂_ \\-homo : Homomorphic₂ ⟦_⟧ _\\₁_ _\\₂_ //-homo : Homomorphic₂ ⟦_⟧ _//₁_ _//₂_ open IsRelHomomorphism isRelHomomorphism public renaming (cong to ⟦⟧-cong) ∙-isMagmaHomomorphism : ∙.IsMagmaHomomorphism ⟦_⟧ ∙-isMagmaHomomorphism = record { isRelHomomorphism = isRelHomomorphism ; homo = ∙-homo } \\-isMagmaHomomorphism : \\.IsMagmaHomomorphism ⟦_⟧ \\-isMagmaHomomorphism = record { isRelHomomorphism = isRelHomomorphism ; homo = \\-homo } //-isMagmaHomomorphism : //.IsMagmaHomomorphism ⟦_⟧ //-isMagmaHomomorphism = record { isRelHomomorphism = isRelHomomorphism ; homo = //-homo } record IsQuasigroupMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isQuasigroupHomomorphism : IsQuasigroupHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsQuasigroupHomomorphism isQuasigroupHomomorphism public ∙-isMagmaMonomorphism : ∙.IsMagmaMonomorphism ⟦_⟧ ∙-isMagmaMonomorphism = record { isMagmaHomomorphism = ∙-isMagmaHomomorphism ; injective = injective } \\-isMagmaMonomorphism : \\.IsMagmaMonomorphism ⟦_⟧ \\-isMagmaMonomorphism = record { isMagmaHomomorphism = \\-isMagmaHomomorphism ; injective = injective } //-isMagmaMonomorphism : //.IsMagmaMonomorphism ⟦_⟧ //-isMagmaMonomorphism = record { isMagmaHomomorphism = //-isMagmaHomomorphism ; injective = injective } open //.IsMagmaMonomorphism //-isMagmaMonomorphism public using (isRelMonomorphism) record IsQuasigroupIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isQuasigroupMonomorphism : IsQuasigroupMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsQuasigroupMonomorphism isQuasigroupMonomorphism public ∙-isMagmaIsomorphism : ∙.IsMagmaIsomorphism ⟦_⟧ ∙-isMagmaIsomorphism = record { isMagmaMonomorphism = ∙-isMagmaMonomorphism ; surjective = surjective } \\-isMagmaIsomorphism : \\.IsMagmaIsomorphism ⟦_⟧ \\-isMagmaIsomorphism = record { isMagmaMonomorphism = \\-isMagmaMonomorphism ; surjective = surjective } //-isMagmaIsomorphism : //.IsMagmaIsomorphism ⟦_⟧ //-isMagmaIsomorphism = record { isMagmaMonomorphism = //-isMagmaMonomorphism ; surjective = surjective } open //.IsMagmaIsomorphism //-isMagmaIsomorphism public using (isRelIsomorphism) ------------------------------------------------------------------------ -- Morphisms over loop-like structures ------------------------------------------------------------------------ module LoopMorphisms (L₁ : RawLoop a ℓ₁) (L₂ : RawLoop b ℓ₂) where open RawLoop L₁ renaming (Carrier to A; ∙-rawMagma to ∙-rawMagma₁; \\-rawMagma to \\-rawMagma₁; //-rawMagma to //-rawMagma₁; _≈_ to _≈₁_; _∙_ to _∙₁_; _\\_ to _\\₁_; _//_ to _//₁_; ε to ε₁) open RawLoop L₂ renaming (Carrier to B; ∙-rawMagma to ∙-rawMagma₂; \\-rawMagma to \\-rawMagma₂; //-rawMagma to //-rawMagma₂; _≈_ to _≈₂_; _∙_ to _∙₂_; _\\_ to _\\₂_; _//_ to _//₂_ ; ε to ε₂) open MorphismDefinitions A B _≈₂_ open FunctionDefinitions _≈₁_ _≈₂_ open QuasigroupMorphisms (RawLoop.rawQuasigroup L₁) (RawLoop.rawQuasigroup L₂) record IsLoopHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isQuasigroupHomomorphism : IsQuasigroupHomomorphism ⟦_⟧ ε-homo : Homomorphic₀ ⟦_⟧ ε₁ ε₂ open IsQuasigroupHomomorphism isQuasigroupHomomorphism public record IsLoopMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isLoopHomomorphism : IsLoopHomomorphism ⟦_⟧ injective : Injective ⟦_⟧ open IsLoopHomomorphism isLoopHomomorphism public record IsLoopIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isLoopMonomorphism : IsLoopMonomorphism ⟦_⟧ surjective : Surjective ⟦_⟧ open IsLoopMonomorphism isLoopMonomorphism public ------------------------------------------------------------------------ -- Re-export contents of modules publicly open MagmaMorphisms public open MonoidMorphisms public open GroupMorphisms public open NearSemiringMorphisms public open SemiringMorphisms public open RingWithoutOneMorphisms public open RingMorphisms public open QuasigroupMorphisms public open LoopMorphisms public