------------------------------------------------------------------------ -- The Agda standard library -- -- Exponentiation defined over a semiring as repeated multiplication ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra open import Data.Nat.Base as ℕ using (ℕ; zero; suc) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) import Data.Nat.Properties as ℕ module Algebra.Properties.Semiring.Exp {a ℓ} (S : Semiring a ℓ) where open Semiring S open import Relation.Binary.Reasoning.Setoid setoid import Algebra.Properties.Monoid.Mult *-monoid as Mult ------------------------------------------------------------------------ -- Definition open import Algebra.Definitions.RawSemiring rawSemiring public using (_^_) ------------------------------------------------------------------------ -- Properties ^-congˡ : ∀ n → (_^ n) Preserves _≈_ ⟶ _≈_ ^-congˡ = Mult.×-congʳ ^-cong : _^_ Preserves₂ _≈_ ⟶ _≡_ ⟶ _≈_ ^-cong x≈y u≡v = Mult.×-cong u≡v x≈y ^-congʳ : ∀ x → (x ^_) Preserves _≡_ ⟶ _≈_ ^-congʳ x = Mult.×-congˡ -- xᵐ⁺ⁿ ≈ xᵐxⁿ ^-homo-* : ∀ x m n → x ^ (m ℕ.+ n) ≈ (x ^ m) * (x ^ n) ^-homo-* = Mult.×-homo-+ -- (xᵐ)ⁿ≈xᵐ*ⁿ ^-assocʳ : ∀ x m n → (x ^ m) ^ n ≈ x ^ (m ℕ.* n) ^-assocʳ x m n rewrite ℕ.*-comm m n = Mult.×-assocˡ x n m ------------------------------------------------------------------------ -- A lemma using commutativity, needed for the Binomial Theorem y*x^m*y^n≈x^m*y^[n+1] : ∀ {x} {y} (x*y≈y*x : x * y ≈ y * x) → ∀ m n → y * (x ^ m * y ^ n) ≈ x ^ m * y ^ suc n y*x^m*y^n≈x^m*y^[n+1] {x} {y} x*y≈y*x = helper where helper : ∀ m n → y * (x ^ m * y ^ n) ≈ x ^ m * y ^ suc n helper zero n = begin y * (x ^ ℕ.zero * y ^ n) ≡⟨⟩ y * (1# * y ^ n) ≈⟨ *-congˡ (*-identityˡ (y ^ n)) ⟩ y * (y ^ n) ≡⟨⟩ y ^ (suc n) ≈˘⟨ *-identityˡ (y ^ suc n) ⟩ 1# * y ^ (suc n) ≡⟨⟩ x ^ ℕ.zero * y ^ (suc n) ∎ helper (suc m) n = begin y * (x ^ suc m * y ^ n) ≡⟨⟩ y * ((x * x ^ m) * y ^ n) ≈⟨ *-congˡ (*-assoc x (x ^ m) (y ^ n)) ⟩ y * (x * (x ^ m * y ^ n)) ≈˘⟨ *-assoc y x (x ^ m * y ^ n) ⟩ y * x * (x ^ m * y ^ n) ≈˘⟨ *-congʳ x*y≈y*x ⟩ x * y * (x ^ m * y ^ n) ≈⟨ *-assoc x y _ ⟩ x * (y * (x ^ m * y ^ n)) ≈⟨ *-congˡ (helper m n) ⟩ x * (x ^ m * y ^ suc n) ≈˘⟨ *-assoc x (x ^ m) (y ^ suc n) ⟩ (x * x ^ m) * y ^ suc n ≡⟨⟩ x ^ suc m * y ^ suc n ∎