------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional equality -- -- This file contains some core definitions which are re-exported by -- Relation.Binary.PropositionalEquality. ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.PropositionalEquality.Core where open import Data.Product using (_,_) open import Function.Base using (_∘_) open import Level open import Relation.Binary.Core open import Relation.Binary.Definitions open import Relation.Nullary.Negation.Core using (¬_) private variable a b ℓ : Level A B C : Set a ------------------------------------------------------------------------ -- Propositional equality open import Agda.Builtin.Equality public infix 4 _≢_ _≢_ : {A : Set a} → Rel A a x ≢ y = ¬ x ≡ y ------------------------------------------------------------------------ -- A variant of `refl` where the argument is explicit pattern erefl x = refl {x = x} ------------------------------------------------------------------------ -- Congruence lemmas cong : ∀ (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl cong′ : ∀ {f : A → B} x → f x ≡ f x cong′ _ = refl icong : ∀ {f : A → B} {x y} → x ≡ y → f x ≡ f y icong = cong _ icong′ : ∀ {f : A → B} x → f x ≡ f x icong′ _ = refl cong₂ : ∀ (f : A → B → C) {x y u v} → x ≡ y → u ≡ v → f x u ≡ f y v cong₂ f refl refl = refl cong-app : ∀ {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → f ≡ g → (x : A) → f x ≡ g x cong-app refl x = refl ------------------------------------------------------------------------ -- Properties of _≡_ sym : Symmetric {A = A} _≡_ sym refl = refl trans : Transitive {A = A} _≡_ trans refl eq = eq subst : Substitutive {A = A} _≡_ ℓ subst P refl p = p subst₂ : ∀ (_∼_ : REL A B ℓ) {x y u v} → x ≡ y → u ≡ v → x ∼ u → y ∼ v subst₂ _ refl refl p = p resp : ∀ (P : A → Set ℓ) → P Respects _≡_ resp P refl p = p respˡ : ∀ (∼ : Rel A ℓ) → ∼ Respectsˡ _≡_ respˡ _∼_ refl x∼y = x∼y respʳ : ∀ (∼ : Rel A ℓ) → ∼ Respectsʳ _≡_ respʳ _∼_ refl x∼y = x∼y resp₂ : ∀ (∼ : Rel A ℓ) → ∼ Respects₂ _≡_ resp₂ _∼_ = respʳ _∼_ , respˡ _∼_ ------------------------------------------------------------------------ -- Properties of _≢_ ≢-sym : Symmetric {A = A} _≢_ ≢-sym x≢y = x≢y ∘ sym ------------------------------------------------------------------------ -- Convenient syntax for equational reasoning -- This is a special instance of `Relation.Binary.Reasoning.Setoid`. -- Rather than instantiating the latter with (setoid A), we reimplement -- equation chains from scratch since then goals are printed much more -- readably. module ≡-Reasoning {A : Set a} where infix 3 _∎ infixr 2 _≡⟨⟩_ step-≡ step-≡˘ infix 1 begin_ begin_ : ∀{x y : A} → x ≡ y → x ≡ y begin_ x≡y = x≡y _≡⟨⟩_ : ∀ (x {y} : A) → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y step-≡ : ∀ (x {y z} : A) → y ≡ z → x ≡ y → x ≡ z step-≡ _ y≡z x≡y = trans x≡y y≡z step-≡˘ : ∀ (x {y z} : A) → y ≡ z → y ≡ x → x ≡ z step-≡˘ _ y≡z y≡x = trans (sym y≡x) y≡z _∎ : ∀ (x : A) → x ≡ x _∎ _ = refl syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z syntax step-≡˘ x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z