------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of a max operator derived from a spec over a total -- preorder. ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Core open import Algebra.Construct.NaturalChoice.Base import Algebra.Construct.NaturalChoice.MinOp as MinOp open import Function.Base using (flip) open import Relation.Binary.Core using (_Preserves_⟶_) open import Relation.Binary.Bundles using (TotalPreorder) open import Relation.Binary.Construct.Flip.EqAndOrd using () renaming (totalPreorder to flipOrder) module Algebra.Construct.NaturalChoice.MaxOp {a ℓ₁ ℓ₂} {O : TotalPreorder a ℓ₁ ℓ₂} (maxOp : MaxOperator O) where open TotalPreorder O renaming (Carrier to A; _≲_ to _≤_) open MaxOperator maxOp -- Max is just min with a flipped order private module Min = MinOp (MaxOp⇒MinOp maxOp) open Min public using () renaming ( ⊓-cong to ⊔-cong ; ⊓-congʳ to ⊔-congʳ ; ⊓-congˡ to ⊔-congˡ ; ⊓-idem to ⊔-idem ; ⊓-sel to ⊔-sel ; ⊓-assoc to ⊔-assoc ; ⊓-comm to ⊔-comm ; ⊓-identityˡ to ⊔-identityˡ ; ⊓-identityʳ to ⊔-identityʳ ; ⊓-identity to ⊔-identity ; ⊓-zeroˡ to ⊔-zeroˡ ; ⊓-zeroʳ to ⊔-zeroʳ ; ⊓-zero to ⊔-zero ; ⊓-isMagma to ⊔-isMagma ; ⊓-isSemigroup to ⊔-isSemigroup ; ⊓-isCommutativeSemigroup to ⊔-isCommutativeSemigroup ; ⊓-isBand to ⊔-isBand ; ⊓-isMonoid to ⊔-isMonoid ; ⊓-isSelectiveMagma to ⊔-isSelectiveMagma ; ⊓-magma to ⊔-magma ; ⊓-semigroup to ⊔-semigroup ; ⊓-commutativeSemigroup to ⊔-commutativeSemigroup ; ⊓-band to ⊔-band ; ⊓-monoid to ⊔-monoid ; ⊓-selectiveMagma to ⊔-selectiveMagma ; x⊓y≈y⇒y≤x to x⊔y≈y⇒x≤y ; x⊓y≈x⇒x≤y to x⊔y≈x⇒y≤x ; x⊓y≤x to x≤x⊔y ; x⊓y≤y to x≤y⊔x ; x≤y⇒x⊓z≤y to x≤y⇒x≤y⊔z ; x≤y⇒z⊓x≤y to x≤y⇒x≤z⊔y ; x≤y⊓z⇒x≤y to x⊔y≤z⇒x≤z ; x≤y⊓z⇒x≤z to x⊔y≤z⇒y≤z ; ⊓-glb to ⊔-lub ; ⊓-triangulate to ⊔-triangulate ; ⊓-mono-≤ to ⊔-mono-≤ ; ⊓-monoˡ-≤ to ⊔-monoˡ-≤ ; ⊓-monoʳ-≤ to ⊔-monoʳ-≤ ) mono-≤-distrib-⊔ : ∀ {f} → f Preserves _≈_ ⟶ _≈_ → f Preserves _≤_ ⟶ _≤_ → ∀ x y → f (x ⊔ y) ≈ f x ⊔ f y mono-≤-distrib-⊔ cong pres = Min.mono-≤-distrib-⊓ cong pres