------------------------------------------------------------------------ -- The Agda standard library -- -- Some lattice-like structures defined by properties of _∧_ and _∨_ -- (not packed up with sets, operations, etc.) -- -- For lattices defined via an order relation, see -- Relation.Binary.Lattice. ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Algebra.Lattice`, -- unless you want to parameterise it via the equality relation. {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Core open import Data.Product.Base using (proj₁; proj₂) open import Level using (_⊔_) open import Relation.Binary.Core using (Rel) open import Relation.Binary.Bundles using (Setoid) open import Relation.Binary.Structures using (IsEquivalence) module Algebra.Lattice.Structures {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality relation where open import Algebra.Definitions _≈_ open import Algebra.Structures _≈_ ------------------------------------------------------------------------ -- Structures with 1 binary operation record IsSemilattice (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isBand : IsBand ∙ comm : Commutative ∙ open IsBand isBand public -- Used to bring names appropriate for a meet semilattice into scope. IsMeetSemilattice = IsSemilattice module IsMeetSemilattice {∧} (L : IsMeetSemilattice ∧) where open IsSemilattice L public renaming ( ∙-cong to ∧-cong ; ∙-congˡ to ∧-congˡ ; ∙-congʳ to ∧-congʳ ) -- Used to bring names appropriate for a join semilattice into scope. IsJoinSemilattice = IsSemilattice module IsJoinSemilattice {∨} (L : IsJoinSemilattice ∨) where open IsSemilattice L public renaming ( ∙-cong to ∨-cong ; ∙-congˡ to ∨-congˡ ; ∙-congʳ to ∨-congʳ ) ------------------------------------------------------------------------ -- Structures with 1 binary operation & 1 element -- A bounded semi-lattice is the same thing as an idempotent commutative -- monoid. IsBoundedSemilattice = IsIdempotentCommutativeMonoid module IsBoundedSemilattice {∙ ε} (L : IsBoundedSemilattice ∙ ε) where open IsIdempotentCommutativeMonoid L public isSemilattice : IsSemilattice ∙ isSemilattice = record { isBand = isBand ; comm = comm } -- Used to bring names appropriate for a bounded meet semilattice -- into scope. IsBoundedMeetSemilattice = IsBoundedSemilattice module IsBoundedMeetSemilattice {∧ ⊤} (L : IsBoundedMeetSemilattice ∧ ⊤) where open IsBoundedSemilattice L public using (identity; identityˡ; identityʳ) renaming (isSemilattice to isMeetSemilattice) open IsMeetSemilattice isMeetSemilattice public -- Used to bring names appropriate for a bounded join semilattice -- into scope. IsBoundedJoinSemilattice = IsBoundedSemilattice module IsBoundedJoinSemilattice {∨ ⊥} (L : IsBoundedJoinSemilattice ∨ ⊥) where open IsBoundedSemilattice L public using (identity; identityˡ; identityʳ) renaming (isSemilattice to isJoinSemilattice) open IsJoinSemilattice isJoinSemilattice public ------------------------------------------------------------------------ -- Structures with 2 binary operations -- Note that `IsLattice` is not defined in terms of `IsMeetSemilattice` -- and `IsJoinSemilattice` for two reasons: -- 1) it would result in a structure with two *different* proofs that -- the equality relation `≈` is an equivalence relation. -- 2) the idempotence laws of ∨ and ∧ can be derived from the -- absorption laws, which makes the corresponding "idem" fields -- redundant. -- -- It is possible to construct the `IsLattice` record from -- `IsMeetSemilattice` and `IsJoinSemilattice` via the `IsLattice₂` -- record found in `Algebra.Lattice.Structures.Biased`. -- -- The derived idempotence laws are stated and proved in -- `Algebra.Lattice.Properties.Lattice` along with the fact that every -- lattice consists of two semilattices. record IsLattice (∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ ∨-comm : Commutative ∨ ∨-assoc : Associative ∨ ∨-cong : Congruent₂ ∨ ∧-comm : Commutative ∧ ∧-assoc : Associative ∧ ∧-cong : Congruent₂ ∧ absorptive : Absorptive ∨ ∧ open IsEquivalence isEquivalence public ∨-absorbs-∧ : ∨ Absorbs ∧ ∨-absorbs-∧ = proj₁ absorptive ∧-absorbs-∨ : ∧ Absorbs ∨ ∧-absorbs-∨ = proj₂ absorptive ∧-congˡ : LeftCongruent ∧ ∧-congˡ y≈z = ∧-cong refl y≈z ∧-congʳ : RightCongruent ∧ ∧-congʳ y≈z = ∧-cong y≈z refl ∨-congˡ : LeftCongruent ∨ ∨-congˡ y≈z = ∨-cong refl y≈z ∨-congʳ : RightCongruent ∨ ∨-congʳ y≈z = ∨-cong y≈z refl record IsDistributiveLattice (∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where field isLattice : IsLattice ∨ ∧ ∨-distrib-∧ : ∨ DistributesOver ∧ ∧-distrib-∨ : ∧ DistributesOver ∨ open IsLattice isLattice public ∨-distribˡ-∧ : ∨ DistributesOverˡ ∧ ∨-distribˡ-∧ = proj₁ ∨-distrib-∧ ∨-distribʳ-∧ : ∨ DistributesOverʳ ∧ ∨-distribʳ-∧ = proj₂ ∨-distrib-∧ ∧-distribˡ-∨ : ∧ DistributesOverˡ ∨ ∧-distribˡ-∨ = proj₁ ∧-distrib-∨ ∧-distribʳ-∨ : ∧ DistributesOverʳ ∨ ∧-distribʳ-∨ = proj₂ ∧-distrib-∨ ------------------------------------------------------------------------ -- Structures with 2 binary ops, 1 unary op and 2 elements. record IsBooleanAlgebra (∨ ∧ : Op₂ A) (¬ : Op₁ A) (⊤ ⊥ : A) : Set (a ⊔ ℓ) where field isDistributiveLattice : IsDistributiveLattice ∨ ∧ ∨-complement : Inverse ⊤ ¬ ∨ ∧-complement : Inverse ⊥ ¬ ∧ ¬-cong : Congruent₁ ¬ open IsDistributiveLattice isDistributiveLattice public ∨-complementˡ : LeftInverse ⊤ ¬ ∨ ∨-complementˡ = proj₁ ∨-complement ∨-complementʳ : RightInverse ⊤ ¬ ∨ ∨-complementʳ = proj₂ ∨-complement ∧-complementˡ : LeftInverse ⊥ ¬ ∧ ∧-complementˡ = proj₁ ∧-complement ∧-complementʳ : RightInverse ⊥ ¬ ∧ ∧-complementʳ = proj₂ ∧-complement