------------------------------------------------------------------------ -- The Agda standard library -- -- Results concerning function extensionality for propositional equality ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Axiom.Extensionality.Propositional where open import Function.Base open import Level using (Level; _⊔_; suc; lift) open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality.Core ------------------------------------------------------------------------ -- Function extensionality states that if two functions are -- propositionally equal for every input, then the functions themselves -- must be propositionally equal. Extensionality : (a b : Level) → Set _ Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g -- A variant for implicit function spaces. ExtensionalityImplicit : (a b : Level) → Set _ ExtensionalityImplicit a b = {A : Set a} {B : A → Set b} {f g : {x : A} → B x} → (∀ {x} → f {x} ≡ g {x}) → (λ {x} → f {x}) ≡ (λ {x} → g {x}) ------------------------------------------------------------------------ -- Properties -- If extensionality holds for a given universe level, then it also -- holds for lower ones. lower-extensionality : ∀ {a₁ b₁} a₂ b₂ → Extensionality (a₁ ⊔ a₂) (b₁ ⊔ b₂) → Extensionality a₁ b₁ lower-extensionality a₂ b₂ ext f≡g = cong (λ h → Level.lower ∘ h ∘ lift) $ ext (cong (lift {ℓ = b₂}) ∘ f≡g ∘ Level.lower {ℓ = a₂}) -- Functional extensionality implies a form of extensionality for -- Π-types. ∀-extensionality : ∀ {a b} → Extensionality a (suc b) → {A : Set a} (B₁ B₂ : A → Set b) → (∀ x → B₁ x ≡ B₂ x) → (∀ x → B₁ x) ≡ (∀ x → B₂ x) ∀-extensionality ext B₁ B₂ B₁≡B₂ with ext B₁≡B₂ ... | refl = refl -- Extensionality for explicit function spaces implies extensionality -- for implicit function spaces. implicit-extensionality : ∀ {a b} → Extensionality a b → ExtensionalityImplicit a b implicit-extensionality ext f≡g = cong _$- (ext (λ x → f≡g))