------------------------------------------------------------------------ -- The Agda standard library -- -- Core definitions for metrics over ℕ ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Function.Metric.Nat.Structures where open import Data.Nat.Base hiding (suc) open import Function.Base using (const) open import Level using (Level; suc) open import Relation.Binary.Core using (Rel) open import Relation.Binary.PropositionalEquality.Core using (_≡_) open import Function.Metric.Nat.Core open import Function.Metric.Nat.Definitions import Function.Metric.Structures as Base private variable a ℓ : Level A : Set a ------------------------------------------------------------------------ -- Proto-metrics IsProtoMetric : Rel A ℓ → DistanceFunction A → Set _ IsProtoMetric _≈_ = Base.IsProtoMetric _≈_ _≡_ _≤_ 0 open Base using (module IsProtoMetric) public ------------------------------------------------------------------------ -- Pre-metrics IsPreMetric : Rel A ℓ → DistanceFunction A → Set _ IsPreMetric _≈_ = Base.IsPreMetric _≈_ _≡_ _≤_ 0 open Base using (module IsPreMetric) public ------------------------------------------------------------------------ -- Quasi-semi-metrics IsQuasiSemiMetric : Rel A ℓ → DistanceFunction A → Set _ IsQuasiSemiMetric _≈_ = Base.IsQuasiSemiMetric _≈_ _≡_ _≤_ 0 open Base using (module IsQuasiSemiMetric) public ------------------------------------------------------------------------ -- Semi-metrics IsSemiMetric : Rel A ℓ → DistanceFunction A → Set _ IsSemiMetric _≈_ = Base.IsSemiMetric _≈_ _≡_ _≤_ 0 open Base using (module IsSemiMetric) public ------------------------------------------------------------------------ -- Metrics IsMetric : Rel A ℓ → DistanceFunction A → Set _ IsMetric _≈_ = Base.IsGeneralMetric _≈_ _≡_ _≤_ 0 _+_ module IsMetric {_≈_ : Rel A ℓ} {d : DistanceFunction A} (M : IsMetric _≈_ d) where open Base.IsGeneralMetric M public ------------------------------------------------------------------------ -- Ultra-metrics IsUltraMetric : Rel A ℓ → DistanceFunction A → Set _ IsUltraMetric _≈_ = Base.IsGeneralMetric _≈_ _≡_ _≤_ 0 _⊔_ module IsUltraMetric {_≈_ : Rel A ℓ} {d : DistanceFunction A} (UM : IsUltraMetric _≈_ d) where open Base.IsGeneralMetric UM public