{-# OPTIONS --without-K --safe #-} -- Definitions of semantic judgments for completeness module MLTT.Completeness.LogRel where open import Lib open import MLTT.Semantics.Domain public open import MLTT.Semantics.Evaluation public open import MLTT.Semantics.PER public record RelExp t ρ t′ ρ′ (R : Ty) : Set where field ⟦t⟧ : D ⟦t′⟧ : D ↘⟦t⟧ : ⟦ t ⟧ ρ ↘ ⟦t⟧ ↘⟦t′⟧ : ⟦ t′ ⟧ ρ′ ↘ ⟦t′⟧ t≈t′ : ⟦t⟧ ≈ ⟦t′⟧ ∈ R infix 4 _⊨_≈_∶_ _⊨_∶_ _⊨s_≈_∶_ _⊨s_∶_ -- Two terms are related if their evaluations are related by the evaluation of their type. _⊨_≈_∶_ : Ctx → Exp → Exp → Typ → Set Γ ⊨ t ≈ t′ ∶ T = Σ (⊨ Γ) λ ⊨Γ → ∃ λ i → ∀ {ρ ρ′} (ρ≈ρ′ : ρ ≈ ρ′ ∈ ⟦ ⊨Γ ⟧ρ) → Σ (RelTyp i T ρ T ρ′) λ rel → let open RelTyp rel in RelExp t ρ t′ ρ′ (El _ T≈T′) _⊨_∶_ : Ctx → Exp → Typ → Set Γ ⊨ t ∶ T = Γ ⊨ t ≈ t ∶ T record RelSubst σ ρ δ ρ′ (R : Ev) : Set where field ⟦σ⟧ : Env ⟦δ⟧ : Env ↘⟦σ⟧ : ⟦ σ ⟧s ρ ↘ ⟦σ⟧ ↘⟦δ⟧ : ⟦ δ ⟧s ρ′ ↘ ⟦δ⟧ σ≈δ : ⟦σ⟧ ≈ ⟦δ⟧ ∈ R -- Two substitutions are related if their evaluations are related. _⊨s_≈_∶_ : Ctx → Subst → Subst → Ctx → Set Γ ⊨s σ ≈ σ′ ∶ Δ = Σ (⊨ Γ) λ ⊨Γ → Σ (⊨ Δ) λ ⊨Δ → ∀ {ρ ρ′} (ρ≈ρ′ : ρ ≈ ρ′ ∈ ⟦ ⊨Γ ⟧ρ) → RelSubst σ ρ σ′ ρ′ ⟦ ⊨Δ ⟧ρ _⊨s_∶_ : Ctx → Subst → Ctx → Set Γ ⊨s σ ∶ Δ = Γ ⊨s σ ≈ σ ∶ Δ RelExp⇒RepTyp : ∀ {i} → RelExp T ρ T′ ρ′ (𝕌 i) → RelTyp i T ρ T′ ρ′ RelExp⇒RepTyp rel = record { ⟦T⟧ = ⟦t⟧ ; ⟦T′⟧ = ⟦t′⟧ ; ↘⟦T⟧ = ↘⟦t⟧ ; ↘⟦T′⟧ = ↘⟦t′⟧ ; T≈T′ = t≈t′ } where open RelExp rel