{-# OPTIONS --without-K --safe #-}
module NonCumulative.Statics.Unascribed.Full where
open import Lib
open import NonCumulative.Statics.Unascribed.Syntax public
infix 4 ⊢_ _⊢_ _⊢_∶_ _⊢s_∶_ _⊢_≈_∶_ _⊢_≈_ _⊢s_≈_∶_ ⊢_≈_
variable
Γ Γ′ Γ″ : Ctx
Δ Δ′ Δ″ : Ctx
Ψ Ψ′ Ψ″ : Ctx
mutual
data ⊢_ : Ctx → Set where
⊢[] : ⊢ []
⊢∷ : ∀ {i} →
⊢ Γ →
Γ ⊢ T ∶ Se i →
⊢ T ∷ Γ
data ⊢_≈_ : Ctx → Ctx → Set where
[]-≈ : ⊢ [] ≈ []
∷-cong : ∀ {i} →
⊢ Γ ≈ Δ →
Γ ⊢ T ∶ Se i →
Δ ⊢ T′ ∶ Se i →
Γ ⊢ T ≈ T′ ∶ Se i →
Δ ⊢ T ≈ T′ ∶ Se i →
⊢ T ∷ Γ ≈ T′ ∷ Δ
data _⊢_∶_ : Ctx → Exp → Typ → Set where
N-wf : ⊢ Γ →
Γ ⊢ N ∶ Se 0
Se-wf : ∀ i →
⊢ Γ →
Γ ⊢ Se i ∶ Se (1 + i)
Liftt-wf : ∀ {i} n →
Γ ⊢ T ∶ Se i →
Γ ⊢ Liftt n T ∶ Se (n + i)
Π-wf : ∀ {i j k} →
Γ ⊢ S ∶ Se i →
S ∷ Γ ⊢ T ∶ Se j →
k ≡ max i j →
Γ ⊢ Π S T ∶ Se k
vlookup : ∀ {x} →
⊢ Γ →
x ∶ T ∈! Γ →
Γ ⊢ v x ∶ T
ze-I : ⊢ Γ →
Γ ⊢ ze ∶ N
su-I : Γ ⊢ t ∶ N →
Γ ⊢ su t ∶ N
N-E : ∀ {i} →
N ∷ Γ ⊢ T ∶ Se i →
Γ ⊢ s ∶ T [| ze ∶ N ] →
T ∷ N ∷ Γ ⊢ r ∶ T [ (wk ∘ wk) , su (v 1) ∶ N ] →
Γ ⊢ t ∶ N →
Γ ⊢ rec T s r t ∶ T [| t ∶ N ]
Λ-I : ∀ {i} →
Γ ⊢ S ∶ Se i →
S ∷ Γ ⊢ t ∶ T →
Γ ⊢ Λ S t ∶ Π S T
Λ-E : ∀ {i j} →
Γ ⊢ S ∶ Se i →
S ∷ Γ ⊢ T ∶ Se j →
Γ ⊢ r ∶ Π S T →
Γ ⊢ s ∶ S →
Γ ⊢ r $ s ∶ T [| s ∶ S ]
L-I : ∀ n →
Γ ⊢ t ∶ T →
Γ ⊢ liftt n t ∶ Liftt n T
L-E : ∀ {i} n →
Γ ⊢ T ∶ Se i →
Γ ⊢ t ∶ Liftt n T →
Γ ⊢ unlift t ∶ T
t[σ] : Δ ⊢ t ∶ T →
Γ ⊢s σ ∶ Δ →
Γ ⊢ t [ σ ] ∶ T [ σ ]
conv : ∀ {i} →
Γ ⊢ t ∶ S →
Γ ⊢ S ≈ T ∶ Se i →
Γ ⊢ t ∶ T
data _⊢s_∶_ : Ctx → Subst → Ctx → Set where
s-I : ⊢ Γ →
Γ ⊢s I ∶ Γ
s-wk : ⊢ T ∷ Γ →
T ∷ Γ ⊢s wk ∶ Γ
s-∘ : Γ ⊢s τ ∶ Γ′ →
Γ′ ⊢s σ ∶ Γ″ →
Γ ⊢s σ ∘ τ ∶ Γ″
s-, : ∀ {i} →
Γ ⊢s σ ∶ Δ →
Δ ⊢ T ∶ Se i →
Γ ⊢ t ∶ T [ σ ] →
Γ ⊢s σ , t ∶ T ∶ T ∷ Δ
s-conv : Γ ⊢s σ ∶ Δ →
⊢ Δ ≈ Δ′ →
Γ ⊢s σ ∶ Δ′
data _⊢_≈_∶_ : Ctx → Exp → Exp → Typ → Set where
N-[] : Γ ⊢s σ ∶ Δ →
Γ ⊢ N [ σ ] ≈ N ∶ Se 0
Se-[] : ∀ i →
Γ ⊢s σ ∶ Δ →
Γ ⊢ Se i [ σ ] ≈ Se i ∶ Se (1 + i)
Liftt-[] : ∀ {i} n →
Γ ⊢s σ ∶ Δ →
Δ ⊢ T ∶ Se i →
Γ ⊢ Liftt n T [ σ ] ≈ Liftt n (T [ σ ]) ∶ Se (n + i)
Π-[] : ∀ {i j k} →
Γ ⊢s σ ∶ Δ →
Δ ⊢ S ∶ Se i →
S ∷ Δ ⊢ T ∶ Se j →
k ≡ max i j →
Γ ⊢ Π S T [ σ ] ≈ Π (S [ σ ]) (T [ q S σ ]) ∶ Se k
Π-cong : ∀ {i j k} →
Γ ⊢ S ∶ Se i →
Γ ⊢ S ≈ S′ ∶ Se i →
S ∷ Γ ⊢ T ≈ T′ ∶ Se j →
k ≡ max i j →
Γ ⊢ Π S T ≈ Π S′ T′ ∶ Se k
Liftt-cong : ∀ {i} n →
Γ ⊢ T ≈ T′ ∶ Se i →
Γ ⊢ Liftt n T ≈ Liftt n T′ ∶ Se (n + i)
v-≈ : ∀ {x} →
⊢ Γ →
x ∶ T ∈! Γ →
Γ ⊢ v x ≈ v x ∶ T
ze-≈ : ⊢ Γ →
Γ ⊢ ze ≈ ze ∶ N
su-cong : Γ ⊢ t ≈ t′ ∶ N →
Γ ⊢ su t ≈ su t′ ∶ N
rec-cong : ∀ {i} →
N ∷ Γ ⊢ T ∶ Se i →
N ∷ Γ ⊢ T ≈ T′ ∶ Se i →
Γ ⊢ s ≈ s′ ∶ T [ I , ze ∶ N ] →
T ∷ N ∷ Γ ⊢ r ≈ r′ ∶ T [ (wk ∘ wk) , su (v 1) ∶ N ] →
Γ ⊢ t ≈ t′ ∶ N →
Γ ⊢ rec T s r t ≈ rec T′ s′ r′ t′ ∶ T [| t ∶ N ]
Λ-cong : ∀ {i} →
Γ ⊢ S ∶ Se i →
Γ ⊢ S ≈ S′ ∶ Se i →
S ∷ Γ ⊢ t ≈ t′ ∶ T →
Γ ⊢ Λ S t ≈ Λ S′ t′ ∶ Π S T
$-cong : ∀ {i j} →
Γ ⊢ S ∶ Se i →
S ∷ Γ ⊢ T ∶ Se j →
Γ ⊢ r ≈ r′ ∶ Π S T →
Γ ⊢ s ≈ s′ ∶ S →
Γ ⊢ r $ s ≈ r′ $ s′ ∶ T [| s ∶ S ]
liftt-cong : ∀ n →
Γ ⊢ t ≈ t′ ∶ T →
Γ ⊢ liftt n t ≈ liftt n t′ ∶ Liftt n T
unlift-cong : ∀ {i} n →
Γ ⊢ T ∶ Se i →
Γ ⊢ t ≈ t′ ∶ Liftt n T →
Γ ⊢ unlift t ≈ unlift t′ ∶ T
[]-cong : Δ ⊢ t ≈ t′ ∶ T →
Γ ⊢s σ ≈ σ′ ∶ Δ →
Γ ⊢ t [ σ ] ≈ t′ [ σ′ ] ∶ T [ σ ]
ze-[] : Γ ⊢s σ ∶ Δ →
Γ ⊢ ze [ σ ] ≈ ze ∶ N
su-[] : Γ ⊢s σ ∶ Δ →
Δ ⊢ t ∶ N →
Γ ⊢ su t [ σ ] ≈ su (t [ σ ]) ∶ N
rec-[] : ∀ {i} →
Γ ⊢s σ ∶ Δ →
N ∷ Δ ⊢ T ∶ Se i →
Δ ⊢ s ∶ T [| ze ∶ N ] →
T ∷ N ∷ Δ ⊢ r ∶ T [ (wk ∘ wk) , su (v 1) ∶ N ] →
Δ ⊢ t ∶ N →
Γ ⊢ rec T s r t [ σ ] ≈ rec (T [ q N σ ]) (s [ σ ]) (r [ q T (q N σ) ]) (t [ σ ]) ∶ T [ σ , t [ σ ] ∶ N ]
Λ-[] : ∀ {i} →
Γ ⊢s σ ∶ Δ →
Δ ⊢ S ∶ Se i →
S ∷ Δ ⊢ t ∶ T →
Γ ⊢ Λ S t [ σ ] ≈ Λ (S [ σ ]) (t [ q S σ ]) ∶ Π S T [ σ ]
$-[] : ∀ {i j} →
Δ ⊢ S ∶ Se i →
S ∷ Δ ⊢ T ∶ Se j →
Γ ⊢s σ ∶ Δ →
Δ ⊢ r ∶ Π S T →
Δ ⊢ s ∶ S →
Γ ⊢ (r $ s) [ σ ] ≈ r [ σ ] $ s [ σ ] ∶ T [ σ , s [ σ ] ∶ S ]
liftt-[] : ∀ {i} n →
Γ ⊢s σ ∶ Δ →
Δ ⊢ T ∶ Se i →
Δ ⊢ t ∶ T →
Γ ⊢ liftt n t [ σ ] ≈ liftt n (t [ σ ]) ∶ Liftt n T [ σ ]
unlift-[] : ∀ {i} n →
Δ ⊢ T ∶ Se i →
Γ ⊢s σ ∶ Δ →
Δ ⊢ t ∶ Liftt n T →
Γ ⊢ unlift t [ σ ] ≈ unlift (t [ σ ]) ∶ T [ σ ]
rec-β-ze : ∀ {i} →
N ∷ Γ ⊢ T ∶ Se i →
Γ ⊢ s ∶ T [| ze ∶ N ] →
T ∷ N ∷ Γ ⊢ r ∶ T [ (wk ∘ wk) , su (v 1) ∶ N ] →
Γ ⊢ rec T s r ze ≈ s ∶ T [| ze ∶ N ]
rec-β-su : ∀ {i} →
N ∷ Γ ⊢ T ∶ Se i →
Γ ⊢ s ∶ T [| ze ∶ N ] →
T ∷ N ∷ Γ ⊢ r ∶ T [ (wk ∘ wk) , su (v 1) ∶ N ] →
Γ ⊢ t ∶ N →
Γ ⊢ rec T s r (su t) ≈ r [ (I , t ∶ N ) , rec T s r t ∶ T ] ∶ T [| su t ∶ N ]
Λ-β : ∀ {i j} →
Γ ⊢ S ∶ Se i →
S ∷ Γ ⊢ T ∶ Se j →
S ∷ Γ ⊢ t ∶ T →
Γ ⊢ s ∶ S →
Γ ⊢ Λ S t $ s ≈ t [| s ∶ S ] ∶ T [| s ∶ S ]
Λ-η : ∀ {i j} →
Γ ⊢ S ∶ Se i →
S ∷ Γ ⊢ T ∶ Se j →
Γ ⊢ t ∶ Π S T →
Γ ⊢ t ≈ Λ S (t [ wk ] $ v 0) ∶ Π S T
L-β : ∀ n →
Γ ⊢ t ∶ T →
Γ ⊢ unlift (liftt n t) ≈ t ∶ T
L-η : ∀ {i} n →
Γ ⊢ T ∶ Se i →
Γ ⊢ t ∶ Liftt n T →
Γ ⊢ t ≈ liftt n (unlift t) ∶ Liftt n T
[I] : Γ ⊢ t ∶ T →
Γ ⊢ t [ I ] ≈ t ∶ T
[wk] : ∀ {x j} →
⊢ Γ →
Γ ⊢ S ∶ Se j →
x ∶ T ∈! Γ →
S ∷ Γ ⊢ v x [ wk ] ≈ v (suc x) ∶ T [ wk ]
[∘] : Γ ⊢s τ ∶ Γ′ →
Γ′ ⊢s σ ∶ Γ″ →
Γ″ ⊢ t ∶ T →
Γ ⊢ t [ σ ∘ τ ] ≈ t [ σ ] [ τ ] ∶ T [ σ ∘ τ ]
[,]-v-ze : ∀ {i} →
Γ ⊢s σ ∶ Δ →
Δ ⊢ S ∶ Se i →
Γ ⊢ s ∶ S [ σ ] →
Γ ⊢ v 0 [ σ , s ∶ S ] ≈ s ∶ S [ σ ]
[,]-v-su : ∀ {i x} →
Γ ⊢s σ ∶ Δ →
Δ ⊢ S ∶ Se i →
Γ ⊢ s ∶ S [ σ ] →
x ∶ T ∈! Δ →
Γ ⊢ v (suc x) [ σ , s ∶ S ] ≈ v x [ σ ] ∶ T [ σ ]
≈-conv : ∀ {i} →
Γ ⊢ s ≈ t ∶ S →
Γ ⊢ S ≈ T ∶ Se i →
Γ ⊢ s ≈ t ∶ T
≈-sym : Γ ⊢ t ≈ t′ ∶ T →
Γ ⊢ t′ ≈ t ∶ T
≈-trans : Γ ⊢ t ≈ t′ ∶ T →
Γ ⊢ t′ ≈ t″ ∶ T →
Γ ⊢ t ≈ t″ ∶ T
data _⊢s_≈_∶_ : Ctx → Subst → Subst → Ctx → Set where
I-≈ : ⊢ Γ →
Γ ⊢s I ≈ I ∶ Γ
wk-≈ : ⊢ T ∷ Γ →
T ∷ Γ ⊢s wk ≈ wk ∶ Γ
∘-cong : Γ ⊢s τ ≈ τ′ ∶ Γ′ →
Γ′ ⊢s σ ≈ σ′ ∶ Γ″ →
Γ ⊢s σ ∘ τ ≈ σ′ ∘ τ′ ∶ Γ″
,-cong : ∀ {i} →
Γ ⊢s σ ≈ σ′ ∶ Δ →
Δ ⊢ T ∶ Se i →
Δ ⊢ T ≈ T′ ∶ Se i →
Γ ⊢ t ≈ t′ ∶ T [ σ ] →
Γ ⊢s σ , t ∶ T ≈ σ′ , t′ ∶ T′ ∶ T ∷ Δ
I-∘ : Γ ⊢s σ ∶ Δ →
Γ ⊢s I ∘ σ ≈ σ ∶ Δ
∘-I : Γ ⊢s σ ∶ Δ →
Γ ⊢s σ ∘ I ≈ σ ∶ Δ
∘-assoc : ∀ {Γ‴} →
Γ′ ⊢s σ ∶ Γ →
Γ″ ⊢s σ′ ∶ Γ′ →
Γ‴ ⊢s σ″ ∶ Γ″ →
Γ‴ ⊢s σ ∘ σ′ ∘ σ″ ≈ σ ∘ (σ′ ∘ σ″) ∶ Γ
,-∘ : ∀ {i} →
Γ′ ⊢s σ ∶ Γ″ →
Γ″ ⊢ T ∶ Se i →
Γ′ ⊢ t ∶ T [ σ ] →
Γ ⊢s τ ∶ Γ′ →
Γ ⊢s (σ , t ∶ T) ∘ τ ≈ (σ ∘ τ) , t [ τ ] ∶ T ∶ T ∷ Γ″
p-, : ∀ {i} →
Γ′ ⊢s σ ∶ Γ →
Γ ⊢ T ∶ Se i →
Γ′ ⊢ t ∶ T [ σ ] →
Γ′ ⊢s p (σ , t ∶ T) ≈ σ ∶ Γ
,-ext : Γ′ ⊢s σ ∶ T ∷ Γ →
Γ′ ⊢s σ ≈ p σ , v 0 [ σ ] ∶ T ∶ T ∷ Γ
s-≈-sym : Γ ⊢s σ ≈ σ′ ∶ Δ →
Γ ⊢s σ′ ≈ σ ∶ Δ
s-≈-trans : Γ ⊢s σ ≈ σ′ ∶ Δ →
Γ ⊢s σ′ ≈ σ″ ∶ Δ →
Γ ⊢s σ ≈ σ″ ∶ Δ
s-≈-conv : Γ ⊢s σ ≈ σ′ ∶ Δ →
⊢ Δ ≈ Δ′ →
Γ ⊢s σ ≈ σ′ ∶ Δ′
_⊢_ : Ctx → Typ → Set
Γ ⊢ T = ∃ λ i → Γ ⊢ T ∶ Se i
_⊢_≈_ : Ctx → Exp → Exp → Set
Γ ⊢ S ≈ T = ∃ λ i → Γ ⊢ S ≈ T ∶ Se i