{-# OPTIONS --without-K --safe #-}

module NonCumulative.Unascribed.Statics.Transfer where

open import Lib

open import NonCumulative.Ascribed.Statics.Syntax as A
open import NonCumulative.Ascribed.Statics.Full as A
open import NonCumulative.Ascribed.Semantics.Domain as A
open import NonCumulative.Unascribed.Statics.Syntax as U
open import NonCumulative.Unascribed.Statics.Full as U
open import NonCumulative.Unascribed.Semantics.Domain as U


infix 4 _↝s_ _[↝]_ _↝_ 

mutual  
  data _↝_ : A.Exp  U.Exp  Set where
    ↝N : N  N
    ↝Π :  {i j} 
          A.S  U.S′ 
          A.T  U.T′ 
          ----------------
          Π (A.S  i) (A.T  j)  Π U.S′ U.T′
    ↝Liftt :  {i n} 
             A.T  U.T′ 
             ----------------
             Liftt n (A.T  i)  Liftt n U.T′
    ↝Se :  {i} 
            A.Se i  U.Se i
    ↝v :  {x} 
          A.v x  U.v x
    ↝ze : ze  ze
    ↝su :  {t t′} 
          t  t′ 
          su t  su t′
    ↝rec :   {i} 
            A.T  U.T′ 
            A.s  U.s′ 
            A.r  U.r′ 
            A.t  U.t′ 
            rec (A.T  i) A.s A.r A.t  rec U.T′ U.s′ U.r′ U.t′ 
    ↝Λ :   {i} 
          A.S  U.S′ 
          A.t  U.t′ 
          Λ (A.S  i) A.t  Λ U.S′ U.t′
    ↝$ :  A.t  U.t′ 
          A.s  U.s′ 
          A.t $ A.s  U.t′ $ U.s′
    ↝liftt :  {n} 
             A.t  U.t′ 
             liftt n A.t  liftt n U.t′
    ↝unlift : A.t  U.t′ 
              unlift A.t  unlift U.t′
    ↝sub :  A.t  U.t′ 
            A.σ ↝s U.σ′ 
            sub A.t A.σ  sub U.t′ U.σ′
      
  data _↝s_ : A.Subst  U.Subst  Set where
    ↝I : I ↝s I
    ↝wk : wk ↝s wk
    ↝∘ :  A.σ ↝s U.σ′ 
          A.τ ↝s U.τ′ 
          (A.σ  A.τ) ↝s (U.σ′  U.τ′)
    ↝, :  {i} 
           A.σ ↝s U.σ′ 
           A.t  U.t′ 
           A.T  U.T′ 
           (A.σ , A.t  A.T  i) ↝s (U.σ′ , U.t′  U.T′)

data _[↝]_ : A.Ctx  U.Ctx  Set where
  ↝[] : [] [↝] []
  ↝∷  :  {i}  
        A.Γ [↝] U.Γ′ 
        A.T  U.T′ 
        --------------
        (A.T  i)  A.Γ [↝] U.T′  U.Γ′

mutual
    ⌊_⌋ : A.Exp  U.Exp
     N  = N
     Π (S  _) (T  _)  = Π  S   T 
     Liftt i (T  j)  = Liftt i  T 
     Se i  = Se i
     v x  = v x
     ze  = ze
     su t  = su  t 
     rec (T  i) r s t  = rec  T   r   s   t 
     Λ (S  _) t  = Λ  S   t 
     r $ s  =  r  $  s 
     liftt i t  = liftt i  t 
     unlift t  = unlift  t 
     sub t σ  = sub  t   σ ⌋ˢ

    ⌊_⌋ˢ : A.Subst  U.Subst
     I ⌋ˢ = I
     wk ⌋ˢ = wk
     σ  τ ⌋ˢ =  σ ⌋ˢ   τ ⌋ˢ
     σ , s  T  _ ⌋ˢ =  σ ⌋ˢ ,  s    T 

mutual 
    ⌊_⌋ⁿᶠ : A.Nf  U.Nf
     ne u ⌋ⁿᶠ = ne  u ⌋ⁿᵉ 
     N ⌋ⁿᶠ = N
     Π (V  _) (W  _) ⌋ⁿᶠ = Π  V ⌋ⁿᶠ  W ⌋ⁿᶠ 
     Liftt i (T  j) ⌋ⁿᶠ = Liftt i  T ⌋ⁿᶠ 
     Se i ⌋ⁿᶠ = Se i
     ze ⌋ⁿᶠ = ze
     su w ⌋ⁿᶠ = su  w ⌋ⁿᶠ 
     Λ (W  i) w ⌋ⁿᶠ = Λ  W ⌋ⁿᶠ  w ⌋ⁿᶠ 
     liftt i w ⌋ⁿᶠ = liftt i  w ⌋ⁿᶠ
    
    ⌊_⌋ⁿᵉ : A.Ne  U.Ne
     v x ⌋ⁿᵉ = v x
     rec (W  _) z s u ⌋ⁿᵉ = rec  W ⌋ⁿᶠ  z ⌋ⁿᶠ  s ⌋ⁿᶠ  u ⌋ⁿᵉ 
     u $ w ⌋ⁿᵉ =  u ⌋ⁿᵉ $  w ⌋ⁿᶠ
     unlift u ⌋ⁿᵉ = unlift  u ⌋ⁿᵉ

[⌊_⌋] : A.Ctx  U.Ctx
[⌊_⌋] [] = []
[⌊_⌋] ((T  i)  Γ) =  T   ([⌊_⌋] Γ)

mutual
  ⌊⌋⇒↝ : A.t   A.t 
  ⌊⌋⇒↝ {N} = ↝N 
  ⌊⌋⇒↝ {Π S T} = ↝Π ⌊⌋⇒↝ ⌊⌋⇒↝
  ⌊⌋⇒↝ {Liftt _ T} = ↝Liftt ⌊⌋⇒↝
  ⌊⌋⇒↝ {Se i} = ↝Se
  ⌊⌋⇒↝ {v x} = ↝v
  ⌊⌋⇒↝ {ze} = ↝ze
  ⌊⌋⇒↝ {su t} = ↝su ⌊⌋⇒↝
  ⌊⌋⇒↝ {rec T r s t} = ↝rec ⌊⌋⇒↝ ⌊⌋⇒↝ ⌊⌋⇒↝ ⌊⌋⇒↝
  ⌊⌋⇒↝ {Λ S t} = ↝Λ ⌊⌋⇒↝ ⌊⌋⇒↝
  ⌊⌋⇒↝ {r $ s} = ↝$ ⌊⌋⇒↝ ⌊⌋⇒↝
  ⌊⌋⇒↝ {liftt i t} = ↝liftt ⌊⌋⇒↝
  ⌊⌋⇒↝ {unlift t} = ↝unlift ⌊⌋⇒↝
  ⌊⌋⇒↝ {sub t σ} = ↝sub ⌊⌋⇒↝ ⌊⌋s⇒↝s

  ⌊⌋s⇒↝s : A.σ ↝s  A.σ ⌋ˢ
  ⌊⌋s⇒↝s {I} = ↝I 
  ⌊⌋s⇒↝s {wk} = ↝wk 
  ⌊⌋s⇒↝s {σ  τ} = ↝∘ ⌊⌋s⇒↝s ⌊⌋s⇒↝s
  ⌊⌋s⇒↝s {σ , t  T} = ↝, ⌊⌋s⇒↝s ⌊⌋⇒↝ ⌊⌋⇒↝

mutual
  ↝⇒⌊⌋ : A.t  U.t′ 
         U.t′   A.t 
  ↝⇒⌊⌋ ↝N = refl 
  ↝⇒⌊⌋ (↝Π S↝ T↝) = cong₂ Π (↝⇒⌊⌋ S↝) (↝⇒⌊⌋ T↝)
  ↝⇒⌊⌋ (↝Liftt T↝) = cong (Liftt _) (↝⇒⌊⌋ T↝)
  ↝⇒⌊⌋ ↝Se = refl
  ↝⇒⌊⌋ ↝v = refl
  ↝⇒⌊⌋ ↝ze = refl
  ↝⇒⌊⌋ (↝su t↝) = cong su (↝⇒⌊⌋ t↝)
  ↝⇒⌊⌋ (↝rec T↝ r↝ s↝ t↝) 
    rewrite ↝⇒⌊⌋ T↝
          | ↝⇒⌊⌋ r↝
          | ↝⇒⌊⌋ s↝
          | ↝⇒⌊⌋ t↝
    = refl
  ↝⇒⌊⌋ (↝Λ S↝ t↝) = cong₂ Λ (↝⇒⌊⌋ S↝) (↝⇒⌊⌋ t↝)
  ↝⇒⌊⌋ (↝$ r↝ s↝) = cong₂ _$_ (↝⇒⌊⌋ r↝) (↝⇒⌊⌋ s↝)
  ↝⇒⌊⌋ (↝liftt t↝) = cong (liftt _) (↝⇒⌊⌋ t↝)
  ↝⇒⌊⌋ (↝unlift t↝) = cong unlift (↝⇒⌊⌋ t↝)
  ↝⇒⌊⌋ (↝sub t↝ ⊢σ) = cong₂ sub (↝⇒⌊⌋ t↝) (↝s⇒⌊⌋s ⊢σ)

  ↝s⇒⌊⌋s : A.σ ↝s U.σ′ 
           U.σ′   A.σ ⌋ˢ
  ↝s⇒⌊⌋s ↝I = refl 
  ↝s⇒⌊⌋s ↝wk = refl
  ↝s⇒⌊⌋s (↝∘ ↝σ ↝τ) = cong₂ _∘_ (↝s⇒⌊⌋s ↝σ) (↝s⇒⌊⌋s ↝τ)
  ↝s⇒⌊⌋s (↝, ↝σ ↝t ↝T) 
    rewrite ↝s⇒⌊⌋s ↝σ 
          | ↝⇒⌊⌋ ↝t
          | ↝⇒⌊⌋ ↝T
    = refl

[⌊⌋]⇒↝[] : A.Γ [↝] [⌊ A.Γ ⌋]
[⌊⌋]⇒↝[] {[]} = ↝[] 
[⌊⌋]⇒↝[] {_  _} = ↝∷ [⌊⌋]⇒↝[] ⌊⌋⇒↝

↝[]⇒[⌊⌋] : A.Γ [↝] U.Γ′ 
           U.Γ′  [⌊ A.Γ ⌋]
↝[]⇒[⌊⌋] ↝[] = refl 
↝[]⇒[⌊⌋] (↝∷ Γ↝ T↝) 
  rewrite ↝[]⇒[⌊⌋] Γ↝
        | ↝⇒⌊⌋ T↝ 
  = refl

mutual 
  ⌊⌋ⁿᶠ-Nf⇒Exp-comm :  w 
                    U.Nf⇒Exp ( w ⌋ⁿᶠ)   A.Nf⇒Exp w 
  ⌊⌋ⁿᶠ-Nf⇒Exp-comm (ne u) = ⌊⌋ⁿᵉ-Ne⇒Exp-comm u
  ⌊⌋ⁿᶠ-Nf⇒Exp-comm N = refl
  ⌊⌋ⁿᶠ-Nf⇒Exp-comm (Π (W  i) (V  j)) = cong₂ Π (⌊⌋ⁿᶠ-Nf⇒Exp-comm W) (⌊⌋ⁿᶠ-Nf⇒Exp-comm V)
  ⌊⌋ⁿᶠ-Nf⇒Exp-comm (Liftt i (W  j)) = cong (Liftt i) (⌊⌋ⁿᶠ-Nf⇒Exp-comm W)
  ⌊⌋ⁿᶠ-Nf⇒Exp-comm (Se i) = refl
  ⌊⌋ⁿᶠ-Nf⇒Exp-comm ze = refl
  ⌊⌋ⁿᶠ-Nf⇒Exp-comm (su w) = cong su (⌊⌋ⁿᶠ-Nf⇒Exp-comm w)
  ⌊⌋ⁿᶠ-Nf⇒Exp-comm (Λ (W  i) w) = cong₂ Λ (⌊⌋ⁿᶠ-Nf⇒Exp-comm W) (⌊⌋ⁿᶠ-Nf⇒Exp-comm w)
  ⌊⌋ⁿᶠ-Nf⇒Exp-comm (liftt i w) = cong (liftt i) (⌊⌋ⁿᶠ-Nf⇒Exp-comm w)

  ⌊⌋ⁿᵉ-Ne⇒Exp-comm :  u 
                    U.Ne⇒Exp ( u ⌋ⁿᵉ)   A.Ne⇒Exp u 
  ⌊⌋ⁿᵉ-Ne⇒Exp-comm (v x) = refl
  ⌊⌋ⁿᵉ-Ne⇒Exp-comm (rec (W  i) w w′ u) 
    rewrite ⌊⌋ⁿᶠ-Nf⇒Exp-comm W
          | ⌊⌋ⁿᶠ-Nf⇒Exp-comm w
          | ⌊⌋ⁿᶠ-Nf⇒Exp-comm w′
          | ⌊⌋ⁿᵉ-Ne⇒Exp-comm u
    = refl
  ⌊⌋ⁿᵉ-Ne⇒Exp-comm (u $ w) = cong₂ _$_ (⌊⌋ⁿᵉ-Ne⇒Exp-comm u) (⌊⌋ⁿᶠ-Nf⇒Exp-comm w)
  ⌊⌋ⁿᵉ-Ne⇒Exp-comm (unlift u) = cong unlift (⌊⌋ⁿᵉ-Ne⇒Exp-comm u)