------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Relation.Binary`. {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Definitions where open import Agda.Builtin.Equality using (_≡_) open import Data.Maybe.Base using (Maybe) open import Data.Product.Base using (_×_; ∃-syntax) open import Data.Sum.Base using (_⊎_) open import Function.Base using (_on_; flip) open import Level open import Relation.Binary.Core open import Relation.Nullary.Decidable.Core using (Dec) open import Relation.Nullary.Negation.Core using (¬_) private variable a b c ℓ ℓ₁ ℓ₂ ℓ₃ : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Definitions ------------------------------------------------------------------------ -- Reflexivity - defined without an underlying equality. It could -- alternatively be defined as `_≈_ ⇒ _∼_` for some equality `_≈_`. -- Confusingly the convention in the library is to use the name "refl" -- for proofs of Reflexive and `reflexive` for proofs of type `_≈_ ⇒ _∼_`, -- e.g. in the definition of `IsEquivalence` later in this file. This -- convention is a legacy from the early days of the library. Reflexive : Rel A ℓ → Set _ Reflexive _∼_ = ∀ {x} → x ∼ x -- Generalised symmetry. Sym : REL A B ℓ₁ → REL B A ℓ₂ → Set _ Sym P Q = P ⇒ flip Q -- Symmetry. Symmetric : Rel A ℓ → Set _ Symmetric _∼_ = Sym _∼_ _∼_ -- Generalised transitivity. Trans : REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _ Trans P Q R = ∀ {i j k} → P i j → Q j k → R i k RightTrans : REL A B ℓ₁ → REL B B ℓ₂ → Set _ RightTrans R S = Trans R S R LeftTrans : REL A A ℓ₁ → REL A B ℓ₂ → Set _ LeftTrans S R = Trans S R R -- A flipped variant of generalised transitivity. TransFlip : REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _ TransFlip P Q R = ∀ {i j k} → Q j k → P i j → R i k -- Transitivity. Transitive : Rel A ℓ → Set _ Transitive _∼_ = Trans _∼_ _∼_ _∼_ -- Generalised antisymmetry Antisym : REL A B ℓ₁ → REL B A ℓ₂ → REL A B ℓ₃ → Set _ Antisym R S E = ∀ {i j} → R i j → S j i → E i j -- Antisymmetry. Antisymmetric : Rel A ℓ₁ → Rel A ℓ₂ → Set _ Antisymmetric _≈_ _≤_ = Antisym _≤_ _≤_ _≈_ -- Irreflexivity - this is defined terms of the underlying equality. Irreflexive : REL A B ℓ₁ → REL A B ℓ₂ → Set _ Irreflexive _≈_ _<_ = ∀ {x y} → x ≈ y → ¬ (x < y) -- Asymmetry. Asymmetric : Rel A ℓ → Set _ Asymmetric _<_ = ∀ {x y} → x < y → ¬ (y < x) -- Density Dense : Rel A ℓ → Set _ Dense _<_ = ∀ {x y} → x < y → ∃[ z ] x < z × z < y -- Generalised connex - at least one of the two relations holds. Connex : REL A B ℓ₁ → REL B A ℓ₂ → Set _ Connex P Q = ∀ x y → P x y ⊎ Q y x -- Totality. Total : Rel A ℓ → Set _ Total _∼_ = Connex _∼_ _∼_ -- Generalised trichotomy - exactly one of three types has a witness. data Tri (A : Set a) (B : Set b) (C : Set c) : Set (a ⊔ b ⊔ c) where tri< : ( a : A) (¬b : ¬ B) (¬c : ¬ C) → Tri A B C tri≈ : (¬a : ¬ A) ( b : B) (¬c : ¬ C) → Tri A B C tri> : (¬a : ¬ A) (¬b : ¬ B) ( c : C) → Tri A B C -- Trichotomy. Trichotomous : Rel A ℓ₁ → Rel A ℓ₂ → Set _ Trichotomous _≈_ _<_ = ∀ x y → Tri (x < y) (x ≈ y) (x > y) where _>_ = flip _<_ -- Generalised maximum element. Max : REL A B ℓ → B → Set _ Max _≤_ T = ∀ x → x ≤ T -- Maximum element. Maximum : Rel A ℓ → A → Set _ Maximum = Max -- Generalised minimum element. Min : REL A B ℓ → A → Set _ Min R = Max (flip R) -- Minimum element. Minimum : Rel A ℓ → A → Set _ Minimum = Min -- Definitions for apartness relations -- Note that Cotransitive's arguments are permuted with respect to Transitive's. Cotransitive : Rel A ℓ → Set _ Cotransitive _#_ = ∀ {x y} → x # y → ∀ z → (x # z) ⊎ (z # y) Tight : Rel A ℓ₁ → Rel A ℓ₂ → Set _ Tight _≈_ _#_ = ∀ x y → (¬ x # y → x ≈ y) × (x ≈ y → ¬ x # y) -- Properties of order morphisms, aka order-preserving maps Monotonic₁ : Rel A ℓ₁ → Rel B ℓ₂ → (A → B) → Set _ Monotonic₁ _≤_ _⊑_ f = f Preserves _≤_ ⟶ _⊑_ Antitonic₁ : Rel A ℓ₁ → Rel B ℓ₂ → (A → B) → Set _ Antitonic₁ _≤_ _⊑_ f = f Preserves (flip _≤_) ⟶ _⊑_ Monotonic₂ : Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → (A → B → C) → Set _ Monotonic₂ _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ _≤_ ⟶ _⊑_ ⟶ _≼_ MonotonicAntitonic : Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → (A → B → C) → Set _ MonotonicAntitonic _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ _≤_ ⟶ (flip _⊑_) ⟶ _≼_ AntitonicMonotonic : Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → (A → B → C) → Set _ AntitonicMonotonic _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ (flip _≤_) ⟶ _⊑_ ⟶ _≼_ Antitonic₂ : Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → (A → B → C) → Set _ Antitonic₂ _≤_ _⊑_ _≼_ ∙ = ∙ Preserves₂ (flip _≤_) ⟶ (flip _⊑_) ⟶ _≼_ Adjoint : Rel A ℓ₁ → Rel B ℓ₂ → (A → B) → (B → A) → Set _ Adjoint _≤_ _⊑_ f g = ∀ {x y} → (f x ⊑ y → x ≤ g y) × (x ≤ g y → f x ⊑ y) -- Unary relations respecting a binary relation. _⟶_Respects_ : (A → Set ℓ₁) → (B → Set ℓ₂) → REL A B ℓ₃ → Set _ P ⟶ Q Respects _∼_ = ∀ {x y} → x ∼ y → P x → Q y -- Unary relation respects a binary relation. _Respects_ : (A → Set ℓ₁) → Rel A ℓ₂ → Set _ P Respects _∼_ = P ⟶ P Respects _∼_ -- Right respecting - relatedness is preserved on the right by equality. _Respectsʳ_ : REL A B ℓ₁ → Rel B ℓ₂ → Set _ _∼_ Respectsʳ _≈_ = ∀ {x} → (x ∼_) Respects _≈_ -- Left respecting - relatedness is preserved on the left by equality. _Respectsˡ_ : REL A B ℓ₁ → Rel A ℓ₂ → Set _ P Respectsˡ _∼_ = ∀ {y} → (flip P y) Respects _∼_ -- Respecting - relatedness is preserved on both sides by equality _Respects₂_ : Rel A ℓ₁ → Rel A ℓ₂ → Set _ P Respects₂ _∼_ = (P Respectsʳ _∼_) × (P Respectsˡ _∼_) -- Substitutivity - any two related elements satisfy exactly the same -- set of unary relations. Note that only the various derivatives -- of propositional equality can satisfy this property. Substitutive : Rel A ℓ₁ → (ℓ₂ : Level) → Set _ Substitutive {A = A} _∼_ p = (P : A → Set p) → P Respects _∼_ -- Decidability - it is possible to determine whether a given pair of -- elements are related. Decidable : REL A B ℓ → Set _ Decidable _∼_ = ∀ x y → Dec (x ∼ y) -- Weak decidability - it is sometimes possible to determine if a given -- pair of elements are related. WeaklyDecidable : REL A B ℓ → Set _ WeaklyDecidable _∼_ = ∀ x y → Maybe (x ∼ y) -- Propositional equality is decidable for the type. DecidableEquality : (A : Set a) → Set _ DecidableEquality A = Decidable {A = A} _≡_ -- Irrelevancy - all proofs that a given pair of elements are related -- are indistinguishable. Irrelevant : REL A B ℓ → Set _ Irrelevant _∼_ = ∀ {x y} (a b : x ∼ y) → a ≡ b -- Recomputability - we can rebuild a relevant proof given an -- irrelevant one. Recomputable : REL A B ℓ → Set _ Recomputable _∼_ = ∀ {x y} → .(x ∼ y) → x ∼ y -- Universal - all pairs of elements are related Universal : REL A B ℓ → Set _ Universal _∼_ = ∀ x y → x ∼ y -- Non-emptiness - at least one pair of elements are related. record NonEmpty {A : Set a} {B : Set b} (T : REL A B ℓ) : Set (a ⊔ b ⊔ ℓ) where constructor nonEmpty field {x} : A {y} : B proof : T x y