------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to negation ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Nullary.Negation where open import Data.Bool.Base using (Bool; false; true; if_then_else_) open import Data.Product.Base as Product using (_,_; Σ; Σ-syntax; ∃; curry; uncurry) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]) open import Effect.Monad using (RawMonad; mkRawMonad) open import Function.Base using (flip; _∘_; const; _∘′_) open import Level using (Level) open import Relation.Nullary.Decidable.Core using (Dec; yes; no; ¬¬-excluded-middle) open import Relation.Unary using (Universal; Pred) private variable a b c d p w : Level A B C D : Set a P : Pred A p Whatever : Set w ------------------------------------------------------------------------ -- Re-export public definitions open import Relation.Nullary.Negation.Core public ------------------------------------------------------------------------ -- Quantifier juggling ∃⟶¬∀¬ : ∃ P → ¬ (∀ x → ¬ P x) ∃⟶¬∀¬ = flip uncurry ∀⟶¬∃¬ : (∀ x → P x) → ¬ ∃ λ x → ¬ P x ∀⟶¬∃¬ ∀xPx (x , ¬Px) = ¬Px (∀xPx x) ¬∃⟶∀¬ : ¬ ∃ (λ x → P x) → ∀ x → ¬ P x ¬∃⟶∀¬ = curry ∀¬⟶¬∃ : (∀ x → ¬ P x) → ¬ ∃ (λ x → P x) ∀¬⟶¬∃ = uncurry ∃¬⟶¬∀ : ∃ (λ x → ¬ P x) → ¬ (∀ x → P x) ∃¬⟶¬∀ = flip ∀⟶¬∃¬ ------------------------------------------------------------------------ -- Double Negation -- Double-negation is a monad (if we assume that all elements of ¬ ¬ P -- are equal). ¬¬-Monad : RawMonad {a} DoubleNegation ¬¬-Monad = mkRawMonad DoubleNegation contradiction (λ x f → negated-stable (¬¬-map f x)) ¬¬-push : DoubleNegation Π[ P ] → Π[ DoubleNegation ∘ P ] ¬¬-push ¬¬∀P a ¬Pa = ¬¬∀P (λ ∀P → ¬Pa (∀P a)) -- If Whatever is instantiated with ¬ ¬ something, then this function -- is call with current continuation in the double-negation monad, or, -- if you will, a double-negation translation of Peirce's law. -- -- In order to prove ¬ ¬ P one can assume ¬ P and prove ⊥. However, -- sometimes it is nice to avoid leaving the double-negation monad; in -- that case this function can be used (with Whatever instantiated to -- ⊥). call/cc : ((A → Whatever) → DoubleNegation A) → DoubleNegation A call/cc hyp ¬a = hyp (flip contradiction ¬a) ¬a -- The "independence of premise" rule, in the double-negation monad. -- It is assumed that the index set (A) is inhabited. independence-of-premise : A → (B → Σ A P) → DoubleNegation (Σ[ x ∈ A ] (B → P x)) independence-of-premise {A = A} {B = B} {P = P} q f = ¬¬-map helper ¬¬-excluded-middle where helper : Dec B → Σ[ x ∈ A ] (B → P x) helper (yes p) = Product.map₂ const (f p) helper (no ¬p) = (q , flip contradiction ¬p) -- The independence of premise rule for binary sums. independence-of-premise-⊎ : (A → B ⊎ C) → DoubleNegation ((A → B) ⊎ (A → C)) independence-of-premise-⊎ {A = A} {B = B} {C = C} f = ¬¬-map helper ¬¬-excluded-middle where helper : Dec A → (A → B) ⊎ (A → C) helper (yes p) = Sum.map const const (f p) helper (no ¬p) = inj₁ (flip contradiction ¬p) private -- Note that independence-of-premise-⊎ is a consequence of -- independence-of-premise (for simplicity it is assumed that Q and -- R have the same type here): corollary : {B C : Set b} → (A → B ⊎ C) → DoubleNegation ((A → B) ⊎ (A → C)) corollary {A = A} {B = B} {C = C} f = ¬¬-map helper (independence-of-premise true ([ _,_ true , _,_ false ] ∘′ f)) where helper : ∃ (λ b → A → if b then B else C) → (A → B) ⊎ (A → C) helper (true , f) = inj₁ f helper (false , f) = inj₂ f