------------------------------------------------------------------------ -- The Agda standard library -- -- Functors ------------------------------------------------------------------------ -- Note that currently the functor laws are not included here. {-# OPTIONS --without-K --safe #-} module Category.Functor where open import Function open import Level open import Relation.Binary.PropositionalEquality record RawFunctor {ℓ} (F : Set ℓ → Set ℓ) : Set (suc ℓ) where infixl 4 _<$>_ _<$_ infixl 1 _<&>_ field _<$>_ : ∀ {A B} → (A → B) → F A → F B _<$_ : ∀ {A B} → A → F B → F A x <$ y = const x <$> y _<&>_ : ∀ {A B} → F A → (A → B) → F B _<&>_ = flip _<$>_ -- A functor morphism from F₁ to F₂ is an operation op such that -- op (F₁ f x) ≡ F₂ f (op x) record Morphism {ℓ} {F₁ F₂ : Set ℓ → Set ℓ} (fun₁ : RawFunctor F₁) (fun₂ : RawFunctor F₂) : Set (suc ℓ) where open RawFunctor field op : ∀{X} → F₁ X → F₂ X op-<$> : ∀{X Y} (f : X → Y) (x : F₁ X) → op (fun₁ ._<$>_ f x) ≡ fun₂ ._<$>_ f (op x)