------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed monads ------------------------------------------------------------------------ -- Note that currently the monad laws are not included here. {-# OPTIONS --without-K --safe #-} module Category.Monad.Indexed where open import Category.Applicative.Indexed open import Function open import Level record RawIMonad {i f} {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where infixl 1 _>>=_ _>>_ _>=>_ infixr 1 _=<<_ _<=<_ field return : ∀ {i A} → A → M i i A _>>=_ : ∀ {i j k A B} → M i j A → (A → M j k B) → M i k B _>>_ : ∀ {i j k A B} → M i j A → M j k B → M i k B m₁ >> m₂ = m₁ >>= λ _ → m₂ _=<<_ : ∀ {i j k A B} → (A → M j k B) → M i j A → M i k B f =<< c = c >>= f _>=>_ : ∀ {i j k a} {A : Set a} {B C} → (A → M i j B) → (B → M j k C) → (A → M i k C) f >=> g = _=<<_ g ∘ f _<=<_ : ∀ {i j k B C a} {A : Set a} → (B → M j k C) → (A → M i j B) → (A → M i k C) g <=< f = f >=> g join : ∀ {i j k A} → M i j (M j k A) → M i k A join m = m >>= id rawIApplicative : RawIApplicative M rawIApplicative = record { pure = return ; _⊛_ = λ f x → f >>= λ f' → x >>= λ x' → return (f' x') } open RawIApplicative rawIApplicative public RawIMonadT : ∀ {i f} {I : Set i} (T : IFun I f → IFun I f) → Set (i ⊔ suc f) RawIMonadT T = ∀ {M} → RawIMonad M → RawIMonad (T M) record RawIMonadZero {i f} {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where field monad : RawIMonad M ∅ : ∀ {i j A} → M i j A open RawIMonad monad public record RawIMonadPlus {i f} {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where infixr 3 _∣_ field monadZero : RawIMonadZero M _∣_ : ∀ {i j A} → M i j A → M i j A → M i j A open RawIMonadZero monadZero public