------------------------------------------------------------------------ -- The Agda standard library -- -- Function setoids and related constructions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Equality where import Function as Fun open import Level open import Relation.Binary using (Setoid) open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid; _=[_]⇒_) import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial as Trivial ------------------------------------------------------------------------ -- Functions which preserve equality record Π {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : IndexedSetoid (Setoid.Carrier From) t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where infixl 5 _⟨$⟩_ field _⟨$⟩_ : (x : Setoid.Carrier From) → IndexedSetoid.Carrier To x cong : Setoid._≈_ From =[ _⟨$⟩_ ]⇒ IndexedSetoid._≈_ To open Π public infixr 0 _⟶_ _⟶_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Set _ From ⟶ To = Π From (Trivial.indexedSetoid To) ------------------------------------------------------------------------ -- Identity and composition. id : ∀ {a₁ a₂} {A : Setoid a₁ a₂} → A ⟶ A id = record { _⟨$⟩_ = Fun.id; cong = Fun.id } infixr 9 _∘_ _∘_ : ∀ {a₁ a₂} {A : Setoid a₁ a₂} {b₁ b₂} {B : Setoid b₁ b₂} {c₁ c₂} {C : Setoid c₁ c₂} → B ⟶ C → A ⟶ B → A ⟶ C f ∘ g = record { _⟨$⟩_ = Fun._∘_ (_⟨$⟩_ f) (_⟨$⟩_ g) ; cong = Fun._∘_ (cong f) (cong g) } -- Constant equality-preserving function. const : ∀ {a₁ a₂} {A : Setoid a₁ a₂} {b₁ b₂} {B : Setoid b₁ b₂} → Setoid.Carrier B → A ⟶ B const {B = B} b = record { _⟨$⟩_ = Fun.const b ; cong = Fun.const (Setoid.refl B) } ------------------------------------------------------------------------ -- Function setoids -- Dependent. setoid : ∀ {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) → IndexedSetoid (Setoid.Carrier From) t₁ t₂ → Setoid _ _ setoid From To = record { Carrier = Π From To ; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y ; isEquivalence = record { refl = λ {f} → cong f ; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y)) ; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y) } } where open module From = Setoid From using () renaming (_≈_ to _≈₁_) open module To = IndexedSetoid To using () renaming (_≈_ to _≈₂_) -- Non-dependent. infixr 0 _⇨_ _⇨_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Setoid _ _ From ⇨ To = setoid From (Trivial.indexedSetoid To) -- A variant of setoid which uses the propositional equality setoid -- for the domain, and a more convenient definition of _≈_. ≡-setoid : ∀ {f t₁ t₂} (From : Set f) → IndexedSetoid From t₁ t₂ → Setoid _ _ ≡-setoid From To = record { Carrier = (x : From) → Carrier x ; _≈_ = λ f g → ∀ x → f x ≈ g x ; isEquivalence = record { refl = λ {f} x → refl ; sym = λ f∼g x → sym (f∼g x) ; trans = λ f∼g g∼h x → trans (f∼g x) (g∼h x) } } where open IndexedSetoid To -- Parameter swapping function. flip : ∀ {a₁ a₂} {A : Setoid a₁ a₂} {b₁ b₂} {B : Setoid b₁ b₂} {c₁ c₂} {C : Setoid c₁ c₂} → A ⟶ B ⇨ C → B ⟶ A ⇨ C flip {B = B} f = record { _⟨$⟩_ = λ b → record { _⟨$⟩_ = λ a → f ⟨$⟩ a ⟨$⟩ b ; cong = λ a₁≈a₂ → cong f a₁≈a₂ (Setoid.refl B) } ; cong = λ b₁≈b₂ a₁≈a₂ → cong f a₁≈a₂ b₁≈b₂ }