------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for reasoning with a setoid ------------------------------------------------------------------------ -- Example use: -- n*0≡0 : ∀ n → n * 0 ≡ 0 -- n*0≡0 zero = refl -- n*0≡0 (suc n) = begin -- suc n * 0 ≈⟨ refl ⟩ -- n * 0 + 0 ≈⟨ ... ⟩ -- n * 0 ≈⟨ n*0≡0 n ⟩ -- 0 ∎ -- Module ≡-Reasoning in Relation.Binary.PropositionalEquality -- is recommended for equational reasoning when the underlying equality is -- `_≡_`. {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Reasoning.Setoid {s₁ s₂} (S : Setoid s₁ s₂) where open Setoid S ------------------------------------------------------------------------ -- Publicly re-export base contents open import Relation.Binary.Reasoning.Base.Single _≈_ refl trans public renaming (_∼⟨_⟩_ to _≈⟨_⟩_) infixr 2 _≈˘⟨_⟩_ _≈˘⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z x ≈˘⟨ x≈y ⟩ y∼z = x ≈⟨ sym x≈y ⟩ y∼z