------------------------------------------------------------------------ -- The Agda standard library -- -- Operations on nullary relations (like negation and decidability) ------------------------------------------------------------------------ -- Some operations on/properties of nullary relations, i.e. sets. {-# OPTIONS --without-K --safe #-} module Relation.Nullary where open import Data.Empty hiding (⊥-elim) open import Data.Empty.Irrelevant open import Level -- Negation. infix 3 ¬_ ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ P = P → ⊥ -- Decidable relations. data Dec {p} (P : Set p) : Set p where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P -- Given an irrelevant proof of a decidable type, a proof can -- be recomputed and subsequently used in relevant contexts. recompute : ∀ {a} {A : Set a} → Dec A → .A → A recompute (yes x) _ = x recompute (no ¬p) x = ⊥-elim (¬p x)