------------------------------------------------------------------------ -- The Agda standard library -- -- Core lemmas needed to make list argmin/max functions work ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Trans; TotalOrder; Setoid) module Data.List.Extrema.Core {b ℓ₁ ℓ₂} (totalOrder : TotalOrder b ℓ₁ ℓ₂) where open import Algebra.Core open import Algebra.Definitions import Algebra.Construct.NaturalChoice.Min as Min import Algebra.Construct.NaturalChoice.Max as Max open import Data.Product using (_×_; _,_) open import Data.Sum.Base using (_⊎_; inj₁; inj₂) open import Level using (Level) open import Relation.Binary.PropositionalEquality using (_≡_) open import Algebra.Construct.LiftedChoice open TotalOrder totalOrder renaming (Carrier to B) open import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ using (_<_; <-≤-trans; ≤-<-trans) ------------------------------------------------------------------------ -- Setup -- open NonStrictToStrict totalOrder using (_<_; ≤-<-trans; <-≤-trans) open Max totalOrder open Min totalOrder private variable a : Level A : Set a <-transʳ : Trans _≤_ _<_ _<_ <-transʳ = ≤-<-trans trans antisym ≤-respˡ-≈ <-transˡ : Trans _<_ _≤_ _<_ <-transˡ = <-≤-trans Eq.sym trans antisym ≤-respʳ-≈ module _ (f : A → B) where lemma₁ : ∀ {x y v} → f x ≤ v → f x ⊓ f y ≈ f y → f y ≤ v lemma₁ fx≤v fx⊓fy≈fy = trans (x⊓y≈y⇒y≤x fx⊓fy≈fy) fx≤v lemma₂ : ∀ {x y v} → f y ≤ v → f x ⊓ f y ≈ f x → f x ≤ v lemma₂ fy≤v fx⊓fy≈fx = trans (x⊓y≈x⇒x≤y fx⊓fy≈fx) fy≤v lemma₃ : ∀ {x y v} → f x < v → f x ⊓ f y ≈ f y → f y < v lemma₃ fx<v fx⊓fy≈fy = <-transʳ (x⊓y≈y⇒y≤x fx⊓fy≈fy) fx<v lemma₄ : ∀ {x y v} → f y < v → f x ⊓ f y ≈ f x → f x < v lemma₄ fx<v fx⊓fy≈fy = <-transʳ (x⊓y≈x⇒x≤y fx⊓fy≈fy) fx<v ------------------------------------------------------------------------ -- Definition of lifted max and min ⊓ᴸ : (A → B) → Op₂ A ⊓ᴸ = Lift _≈_ _⊓_ ⊓-sel ⊔ᴸ : (A → B) → Op₂ A ⊔ᴸ = Lift _≈_ _⊔_ ⊔-sel ------------------------------------------------------------------------ -- Properties of ⊓ᴸ ⊓ᴸ-sel : ∀ f → Selective {A = A} _≡_ (⊓ᴸ f) ⊓ᴸ-sel f = sel-≡ ⊓-isSelectiveMagma f ⊓ᴸ-presᵒ-≤v : ∀ f {v} (x y : A) → f x ≤ v ⊎ f y ≤ v → f (⊓ᴸ f x y) ≤ v ⊓ᴸ-presᵒ-≤v f = preservesᵒ ⊓-isSelectiveMagma f (lemma₁ f) (lemma₂ f) ⊓ᴸ-presᵒ-<v : ∀ f {v} (x y : A) → f x < v ⊎ f y < v → f (⊓ᴸ f x y) < v ⊓ᴸ-presᵒ-<v f = preservesᵒ ⊓-isSelectiveMagma f (lemma₃ f) (lemma₄ f) ⊓ᴸ-presᵇ-v≤ : ∀ f {v} {x y : A} → v ≤ f x → v ≤ f y → v ≤ f (⊓ᴸ f x y) ⊓ᴸ-presᵇ-v≤ f {v} = preservesᵇ ⊓-isSelectiveMagma {P = λ x → v ≤ f x} f ⊓ᴸ-presᵇ-v< : ∀ f {v} {x y : A} → v < f x → v < f y → v < f (⊓ᴸ f x y) ⊓ᴸ-presᵇ-v< f {v} = preservesᵇ ⊓-isSelectiveMagma {P = λ x → v < f x} f ⊓ᴸ-forcesᵇ-v≤ : ∀ f {v} (x y : A) → v ≤ f (⊓ᴸ f x y) → v ≤ f x × v ≤ f y ⊓ᴸ-forcesᵇ-v≤ f {v} = forcesᵇ ⊓-isSelectiveMagma f (λ v≤fx fx⊓fy≈fx → trans v≤fx (x⊓y≈x⇒x≤y fx⊓fy≈fx)) (λ v≤fy fx⊓fy≈fy → trans v≤fy (x⊓y≈y⇒y≤x fx⊓fy≈fy)) ------------------------------------------------------------------------ -- Properties of ⊔ᴸ ⊔ᴸ-sel : ∀ f → Selective {A = A} _≡_ (⊔ᴸ f) ⊔ᴸ-sel f = sel-≡ ⊔-isSelectiveMagma f ⊔ᴸ-presᵒ-v≤ : ∀ f {v} (x y : A) → v ≤ f x ⊎ v ≤ f y → v ≤ f (⊔ᴸ f x y) ⊔ᴸ-presᵒ-v≤ f {v} = preservesᵒ ⊔-isSelectiveMagma f (λ v≤fx fx⊔fy≈fy → trans v≤fx (x⊔y≈y⇒x≤y fx⊔fy≈fy)) (λ v≤fy fx⊔fy≈fx → trans v≤fy (x⊔y≈x⇒y≤x fx⊔fy≈fx)) ⊔ᴸ-presᵒ-v< : ∀ f {v} (x y : A) → v < f x ⊎ v < f y → v < f (⊔ᴸ f x y) ⊔ᴸ-presᵒ-v< f {v} = preservesᵒ ⊔-isSelectiveMagma f (λ v<fx fx⊔fy≈fy → <-transˡ v<fx (x⊔y≈y⇒x≤y fx⊔fy≈fy)) (λ v<fy fx⊔fy≈fx → <-transˡ v<fy (x⊔y≈x⇒y≤x fx⊔fy≈fx)) ⊔ᴸ-presᵇ-≤v : ∀ f {v} {x y : A} → f x ≤ v → f y ≤ v → f (⊔ᴸ f x y) ≤ v ⊔ᴸ-presᵇ-≤v f {v} = preservesᵇ ⊔-isSelectiveMagma {P = λ x → f x ≤ v} f ⊔ᴸ-presᵇ-<v : ∀ f {v} {x y : A} → f x < v → f y < v → f (⊔ᴸ f x y) < v ⊔ᴸ-presᵇ-<v f {v} = preservesᵇ ⊔-isSelectiveMagma {P = λ x → f x < v} f ⊔ᴸ-forcesᵇ-≤v : ∀ f {v} (x y : A) → f (⊔ᴸ f x y) ≤ v → f x ≤ v × f y ≤ v ⊔ᴸ-forcesᵇ-≤v f {v} = forcesᵇ ⊔-isSelectiveMagma f (λ fx≤v fx⊔fy≈fx → trans (x⊔y≈x⇒y≤x fx⊔fy≈fx) fx≤v) (λ fy≤v fx⊔fy≈fy → trans (x⊔y≈y⇒x≤y fx⊔fy≈fy) fy≤v)