------------------------------------------------------------------------ -- The Agda standard library -- -- Maybe-related properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Maybe.Properties where open import Algebra.Bundles import Algebra.Structures as Structures import Algebra.Definitions as Definitions open import Data.Maybe.Base open import Data.Maybe.Relation.Unary.All using (All; just; nothing) open import Data.Product using (_,_) open import Function open import Level using (Level) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (map′) private variable a b c : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Equality just-injective : ∀ {x y} → (Maybe A ∋ just x) ≡ just y → x ≡ y just-injective refl = refl ≡-dec : Decidable _≡_ → Decidable {A = Maybe A} _≡_ ≡-dec _≟_ nothing nothing = yes refl ≡-dec _≟_ (just x) nothing = no λ() ≡-dec _≟_ nothing (just y) = no λ() ≡-dec _≟_ (just x) (just y) = map′ (cong just) just-injective (x ≟ y) ------------------------------------------------------------------------ -- map map-id : map id ≗ id {A = Maybe A} map-id (just x) = refl map-id nothing = refl map-id₂ : ∀ {f : A → A} {mx} → All (λ x → f x ≡ x) mx → map f mx ≡ mx map-id₂ (just eq) = cong just eq map-id₂ nothing = refl map-<∣>-commute : ∀ (f : A → B) mx my → map f (mx <∣> my) ≡ map f mx <∣> map f my map-<∣>-commute f (just x) my = refl map-<∣>-commute f nothing my = refl map-cong : {f g : A → B} → f ≗ g → map f ≗ map g map-cong f≗g (just x) = cong just (f≗g x) map-cong f≗g nothing = refl map-cong₂ : ∀ {f g : A → B} {mx} → All (λ x → f x ≡ g x) mx → map f mx ≡ map g mx map-cong₂ (just eq) = cong just eq map-cong₂ nothing = refl map-injective : ∀ {f : A → B} → Injective _≡_ _≡_ f → Injective _≡_ _≡_ (map f) map-injective f-inj {nothing} {nothing} p = refl map-injective f-inj {just x} {just y} p = cong just (f-inj (just-injective p)) map-compose : {g : B → C} {f : A → B} → map (g ∘ f) ≗ map g ∘ map f map-compose (just x) = refl map-compose nothing = refl map-nothing : ∀ {f : A → B} {ma} → ma ≡ nothing → map f ma ≡ nothing map-nothing refl = refl map-just : ∀ {f : A → B} {ma a} → ma ≡ just a → map f ma ≡ just (f a) map-just refl = refl ------------------------------------------------------------------------ -- maybe maybe-map : ∀ {C : Maybe B → Set c} (j : (x : B) → C (just x)) (n : C nothing) (f : A → B) ma → maybe {B = C} j n (map f ma) ≡ maybe {B = C ∘ map f} (j ∘ f) n ma maybe-map j n f (just x) = refl maybe-map j n f nothing = refl maybe′-map : ∀ j (n : C) (f : A → B) ma → maybe′ j n (map f ma) ≡ maybe′ (j ∘′ f) n ma maybe′-map = maybe-map ------------------------------------------------------------------------ -- _<∣>_ module _ {A : Set a} where open Definitions {A = Maybe A} _≡_ <∣>-assoc : Associative _<∣>_ <∣>-assoc (just x) y z = refl <∣>-assoc nothing y z = refl <∣>-identityˡ : LeftIdentity nothing _<∣>_ <∣>-identityˡ (just x) = refl <∣>-identityˡ nothing = refl <∣>-identityʳ : RightIdentity nothing _<∣>_ <∣>-identityʳ (just x) = refl <∣>-identityʳ nothing = refl <∣>-identity : Identity nothing _<∣>_ <∣>-identity = <∣>-identityˡ , <∣>-identityʳ module _ (A : Set a) where open Structures {A = Maybe A} _≡_ <∣>-isMagma : IsMagma _<∣>_ <∣>-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _<∣>_ } <∣>-isSemigroup : IsSemigroup _<∣>_ <∣>-isSemigroup = record { isMagma = <∣>-isMagma ; assoc = <∣>-assoc } <∣>-isMonoid : IsMonoid _<∣>_ nothing <∣>-isMonoid = record { isSemigroup = <∣>-isSemigroup ; identity = <∣>-identity } <∣>-semigroup : Semigroup a a <∣>-semigroup = record { isSemigroup = <∣>-isSemigroup } <∣>-monoid : Monoid a a <∣>-monoid = record { isMonoid = <∣>-isMonoid }