------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to negation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Nullary.Negation where open import Category.Monad open import Data.Bool.Base using (Bool; false; true; if_then_else_; not) open import Data.Empty open import Data.Product as Prod open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]) open import Function open import Level open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Unary private variable a p q r w : Level A : Set a P : Set p Q : Set q R : Set r Whatever : Set w ------------------------------------------------------------------------ -- Re-export public definitions open import Relation.Nullary.Negation.Core public ------------------------------------------------------------------------ -- Other properties -- Decidable predicates are stable. decidable-stable : Dec P → Stable P decidable-stable (yes p) ¬¬p = p decidable-stable (no ¬p) ¬¬p = ⊥-elim (¬¬p ¬p) ¬-drop-Dec : Dec (¬ ¬ P) → Dec (¬ P) ¬-drop-Dec ¬¬p? = map′ negated-stable contradiction (¬? ¬¬p?) -- Double-negation is a monad (if we assume that all elements of ¬ ¬ P -- are equal). ¬¬-Monad : RawMonad (λ (P : Set p) → ¬ ¬ P) ¬¬-Monad = record { return = contradiction ; _>>=_ = λ x f → negated-stable (¬¬-map f x) } ¬¬-push : ∀ {P : Set p} {Q : P → Set q} → ¬ ¬ ((x : P) → Q x) → (x : P) → ¬ ¬ Q x ¬¬-push ¬¬P⟶Q P ¬Q = ¬¬P⟶Q (λ P⟶Q → ¬Q (P⟶Q P)) -- A double-negation-translated variant of excluded middle (or: every -- nullary relation is decidable in the double-negation monad). excluded-middle : ¬ ¬ Dec P excluded-middle ¬h = ¬h (no (λ p → ¬h (yes p))) -- If Whatever is instantiated with ¬ ¬ something, then this function -- is call with current continuation in the double-negation monad, or, -- if you will, a double-negation translation of Peirce's law. -- -- In order to prove ¬ ¬ P one can assume ¬ P and prove ⊥. However, -- sometimes it is nice to avoid leaving the double-negation monad; in -- that case this function can be used (with Whatever instantiated to -- ⊥). call/cc : ((P → Whatever) → ¬ ¬ P) → ¬ ¬ P call/cc hyp ¬p = hyp (λ p → ⊥-elim (¬p p)) ¬p -- The "independence of premise" rule, in the double-negation monad. -- It is assumed that the index set (Q) is inhabited. independence-of-premise : ∀ {P : Set p} {Q : Set q} {R : Q → Set r} → Q → (P → Σ Q R) → ¬ ¬ (Σ[ x ∈ Q ] (P → R x)) independence-of-premise {P = P} q f = ¬¬-map helper excluded-middle where helper : Dec P → _ helper (yes p) = Prod.map id const (f p) helper (no ¬p) = (q , ⊥-elim ∘′ ¬p) -- The independence of premise rule for binary sums. independence-of-premise-⊎ : (P → Q ⊎ R) → ¬ ¬ ((P → Q) ⊎ (P → R)) independence-of-premise-⊎ {P = P} f = ¬¬-map helper excluded-middle where helper : Dec P → _ helper (yes p) = Sum.map const const (f p) helper (no ¬p) = inj₁ (⊥-elim ∘′ ¬p) private -- Note that independence-of-premise-⊎ is a consequence of -- independence-of-premise (for simplicity it is assumed that Q and -- R have the same type here): corollary : {P : Set p} {Q R : Set q} → (P → Q ⊎ R) → ¬ ¬ ((P → Q) ⊎ (P → R)) corollary {P = P} {Q} {R} f = ¬¬-map helper (independence-of-premise true ([ _,_ true , _,_ false ] ∘′ f)) where helper : ∃ (λ b → P → if b then Q else R) → (P → Q) ⊎ (P → R) helper (true , f) = inj₁ f helper (false , f) = inj₂ f ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 Excluded-Middle : (ℓ : Level) → Set (suc ℓ) Excluded-Middle p = {P : Set p} → Dec P {-# WARNING_ON_USAGE Excluded-Middle "Warning: Excluded-Middle was deprecated in v1.0. Please use ExcludedMiddle from `Axiom.ExcludedMiddle` instead." #-} Double-Negation-Elimination : (ℓ : Level) → Set (suc ℓ) Double-Negation-Elimination p = {P : Set p} → Stable P {-# WARNING_ON_USAGE Double-Negation-Elimination "Warning: Double-Negation-Elimination was deprecated in v1.0. Please use DoubleNegationElimination from `Axiom.DoubleNegationElimination` instead." #-}