------------------------------------------------------------------------ -- The Agda standard library -- -- Relations between properties of functions, such as associativity and -- commutativity (specialised to propositional equality) ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Algebra.Consequences.Propositional {a} {A : Set a} where open import Data.Sum.Base using (inj₁; inj₂) open import Relation.Binary using (Rel; Setoid; Symmetric; Total) open import Relation.Binary.PropositionalEquality open import Relation.Unary using (Pred) open import Algebra.Core open import Algebra.Definitions {A = A} _≡_ import Algebra.Consequences.Setoid (setoid A) as Base ------------------------------------------------------------------------ -- Re-export all proofs that don't require congruence or substitutivity open Base public hiding ( assoc+distribʳ+idʳ+invʳ⇒zeˡ ; assoc+distribˡ+idʳ+invʳ⇒zeʳ ; assoc+id+invʳ⇒invˡ-unique ; assoc+id+invˡ⇒invʳ-unique ; comm+distrˡ⇒distrʳ ; comm+distrʳ⇒distrˡ ; comm⇒sym[distribˡ] ; subst+comm⇒sym ; wlog ; sel⇒idem ) ------------------------------------------------------------------------ -- Group-like structures module _ {_•_ _⁻¹ ε} where assoc+id+invʳ⇒invˡ-unique : Associative _•_ → Identity ε _•_ → RightInverse ε _⁻¹ _•_ → ∀ x y → (x • y) ≡ ε → x ≡ (y ⁻¹) assoc+id+invʳ⇒invˡ-unique = Base.assoc+id+invʳ⇒invˡ-unique (cong₂ _) assoc+id+invˡ⇒invʳ-unique : Associative _•_ → Identity ε _•_ → LeftInverse ε _⁻¹ _•_ → ∀ x y → (x • y) ≡ ε → y ≡ (x ⁻¹) assoc+id+invˡ⇒invʳ-unique = Base.assoc+id+invˡ⇒invʳ-unique (cong₂ _) ------------------------------------------------------------------------ -- Ring-like structures module _ {_+_ _*_ -_ 0#} where assoc+distribʳ+idʳ+invʳ⇒zeˡ : Associative _+_ → _*_ DistributesOverʳ _+_ → RightIdentity 0# _+_ → RightInverse 0# -_ _+_ → LeftZero 0# _*_ assoc+distribʳ+idʳ+invʳ⇒zeˡ = Base.assoc+distribʳ+idʳ+invʳ⇒zeˡ (cong₂ _+_) (cong₂ _*_) assoc+distribˡ+idʳ+invʳ⇒zeʳ : Associative _+_ → _*_ DistributesOverˡ _+_ → RightIdentity 0# _+_ → RightInverse 0# -_ _+_ → RightZero 0# _*_ assoc+distribˡ+idʳ+invʳ⇒zeʳ = Base.assoc+distribˡ+idʳ+invʳ⇒zeʳ (cong₂ _+_) (cong₂ _*_) ------------------------------------------------------------------------ -- Bisemigroup-like structures module _ {_•_ _◦_ : Op₂ A} (•-comm : Commutative _•_) where comm+distrˡ⇒distrʳ : _•_ DistributesOverˡ _◦_ → _•_ DistributesOverʳ _◦_ comm+distrˡ⇒distrʳ = Base.comm+distrˡ⇒distrʳ (cong₂ _) •-comm comm+distrʳ⇒distrˡ : _•_ DistributesOverʳ _◦_ → _•_ DistributesOverˡ _◦_ comm+distrʳ⇒distrˡ = Base.comm+distrʳ⇒distrˡ (cong₂ _) •-comm comm⇒sym[distribˡ] : ∀ x → Symmetric (λ y z → (x ◦ (y • z)) ≡ ((x ◦ y) • (x ◦ z))) comm⇒sym[distribˡ] = Base.comm⇒sym[distribˡ] (cong₂ _◦_) •-comm ------------------------------------------------------------------------ -- Selectivity module _ {_•_ : Op₂ A} where sel⇒idem : Selective _•_ → Idempotent _•_ sel⇒idem = Base.sel⇒idem _≡_ ------------------------------------------------------------------------ -- Without Loss of Generality module _ {p} {P : Pred A p} where subst+comm⇒sym : ∀ {f} (f-comm : Commutative f) → Symmetric (λ a b → P (f a b)) subst+comm⇒sym = Base.subst+comm⇒sym {P = P} subst wlog : ∀ {f} (f-comm : Commutative f) → ∀ {r} {_R_ : Rel _ r} → Total _R_ → (∀ a b → a R b → P (f a b)) → ∀ a b → P (f a b) wlog = Base.wlog {P = P} subst