------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties of Boolean algebras ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Lattice.Bundles module Algebra.Lattice.Properties.BooleanAlgebra {b₁ b₂} (B : BooleanAlgebra b₁ b₂) where open BooleanAlgebra B import Algebra.Lattice.Properties.DistributiveLattice as DistribLatticeProperties open import Algebra.Core open import Algebra.Structures _≈_ open import Algebra.Definitions _≈_ open import Algebra.Consequences.Setoid setoid open import Algebra.Bundles open import Algebra.Lattice.Structures _≈_ open import Relation.Binary.Reasoning.Setoid setoid open import Relation.Binary open import Function.Base open import Function.Bundles using (_⇔_; module Equivalence) open import Data.Product using (_,_) ------------------------------------------------------------------------ -- Export properties from distributive lattices open DistribLatticeProperties distributiveLattice public ------------------------------------------------------------------------ -- The dual construction is also a boolean algebra ∧-∨-isBooleanAlgebra : IsBooleanAlgebra _∧_ _∨_ ¬_ ⊥ ⊤ ∧-∨-isBooleanAlgebra = record { isDistributiveLattice = ∧-∨-isDistributiveLattice ; ∨-complement = ∧-complement ; ∧-complement = ∨-complement ; ¬-cong = ¬-cong } ∧-∨-booleanAlgebra : BooleanAlgebra _ _ ∧-∨-booleanAlgebra = record { isBooleanAlgebra = ∧-∨-isBooleanAlgebra } ------------------------------------------------------------------------ -- (∨, ∧, ⊥, ⊤) and (∧, ∨, ⊤, ⊥) are commutative semirings ∧-identityʳ : RightIdentity ⊤ _∧_ ∧-identityʳ x = begin x ∧ ⊤ ≈⟨ ∧-congˡ (sym (∨-complementʳ _)) ⟩ x ∧ (x ∨ ¬ x) ≈⟨ ∧-absorbs-∨ _ _ ⟩ x ∎ ∧-identityˡ : LeftIdentity ⊤ _∧_ ∧-identityˡ = comm+idʳ⇒idˡ ∧-comm ∧-identityʳ ∧-identity : Identity ⊤ _∧_ ∧-identity = ∧-identityˡ , ∧-identityʳ ∨-identityʳ : RightIdentity ⊥ _∨_ ∨-identityʳ x = begin x ∨ ⊥ ≈⟨ ∨-congˡ $ sym (∧-complementʳ _) ⟩ x ∨ x ∧ ¬ x ≈⟨ ∨-absorbs-∧ _ _ ⟩ x ∎ ∨-identityˡ : LeftIdentity ⊥ _∨_ ∨-identityˡ = comm+idʳ⇒idˡ ∨-comm ∨-identityʳ ∨-identity : Identity ⊥ _∨_ ∨-identity = ∨-identityˡ , ∨-identityʳ ∧-zeroʳ : RightZero ⊥ _∧_ ∧-zeroʳ x = begin x ∧ ⊥ ≈˘⟨ ∧-congˡ (∧-complementʳ x) ⟩ x ∧ x ∧ ¬ x ≈˘⟨ ∧-assoc x x (¬ x) ⟩ (x ∧ x) ∧ ¬ x ≈⟨ ∧-congʳ (∧-idem x) ⟩ x ∧ ¬ x ≈⟨ ∧-complementʳ x ⟩ ⊥ ∎ ∧-zeroˡ : LeftZero ⊥ _∧_ ∧-zeroˡ = comm+zeʳ⇒zeˡ ∧-comm ∧-zeroʳ ∧-zero : Zero ⊥ _∧_ ∧-zero = ∧-zeroˡ , ∧-zeroʳ ∨-zeroʳ : ∀ x → x ∨ ⊤ ≈ ⊤ ∨-zeroʳ x = begin x ∨ ⊤ ≈˘⟨ ∨-congˡ (∨-complementʳ x) ⟩ x ∨ x ∨ ¬ x ≈˘⟨ ∨-assoc x x (¬ x) ⟩ (x ∨ x) ∨ ¬ x ≈⟨ ∨-congʳ (∨-idem x) ⟩ x ∨ ¬ x ≈⟨ ∨-complementʳ x ⟩ ⊤ ∎ ∨-zeroˡ : LeftZero ⊤ _∨_ ∨-zeroˡ = comm+zeʳ⇒zeˡ ∨-comm ∨-zeroʳ ∨-zero : Zero ⊤ _∨_ ∨-zero = ∨-zeroˡ , ∨-zeroʳ ∨-⊥-isMonoid : IsMonoid _∨_ ⊥ ∨-⊥-isMonoid = record { isSemigroup = ∨-isSemigroup ; identity = ∨-identity } ∧-⊤-isMonoid : IsMonoid _∧_ ⊤ ∧-⊤-isMonoid = record { isSemigroup = ∧-isSemigroup ; identity = ∧-identity } ∨-⊥-isCommutativeMonoid : IsCommutativeMonoid _∨_ ⊥ ∨-⊥-isCommutativeMonoid = record { isMonoid = ∨-⊥-isMonoid ; comm = ∨-comm } ∧-⊤-isCommutativeMonoid : IsCommutativeMonoid _∧_ ⊤ ∧-⊤-isCommutativeMonoid = record { isMonoid = ∧-⊤-isMonoid ; comm = ∧-comm } ∨-∧-isSemiring : IsSemiring _∨_ _∧_ ⊥ ⊤ ∨-∧-isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = ∨-⊥-isCommutativeMonoid ; *-cong = ∧-cong ; *-assoc = ∧-assoc ; *-identity = ∧-identity ; distrib = ∧-distrib-∨ } ; zero = ∧-zero } ∧-∨-isSemiring : IsSemiring _∧_ _∨_ ⊤ ⊥ ∧-∨-isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = ∧-⊤-isCommutativeMonoid ; *-cong = ∨-cong ; *-assoc = ∨-assoc ; *-identity = ∨-identity ; distrib = ∨-distrib-∧ } ; zero = ∨-zero } ∨-∧-isCommutativeSemiring : IsCommutativeSemiring _∨_ _∧_ ⊥ ⊤ ∨-∧-isCommutativeSemiring = record { isSemiring = ∨-∧-isSemiring ; *-comm = ∧-comm } ∧-∨-isCommutativeSemiring : IsCommutativeSemiring _∧_ _∨_ ⊤ ⊥ ∧-∨-isCommutativeSemiring = record { isSemiring = ∧-∨-isSemiring ; *-comm = ∨-comm } ∨-∧-commutativeSemiring : CommutativeSemiring _ _ ∨-∧-commutativeSemiring = record { isCommutativeSemiring = ∨-∧-isCommutativeSemiring } ∧-∨-commutativeSemiring : CommutativeSemiring _ _ ∧-∨-commutativeSemiring = record { isCommutativeSemiring = ∧-∨-isCommutativeSemiring } ------------------------------------------------------------------------ -- Some other properties -- I took the statement of this lemma (called Uniqueness of -- Complements) from some course notes, "Boolean Algebra", written -- by Gert Smolka. private lemma : ∀ x y → x ∧ y ≈ ⊥ → x ∨ y ≈ ⊤ → ¬ x ≈ y lemma x y x∧y=⊥ x∨y=⊤ = begin ¬ x ≈˘⟨ ∧-identityʳ _ ⟩ ¬ x ∧ ⊤ ≈˘⟨ ∧-congˡ x∨y=⊤ ⟩ ¬ x ∧ (x ∨ y) ≈⟨ ∧-distribˡ-∨ _ _ _ ⟩ ¬ x ∧ x ∨ ¬ x ∧ y ≈⟨ ∨-congʳ $ ∧-complementˡ _ ⟩ ⊥ ∨ ¬ x ∧ y ≈˘⟨ ∨-congʳ x∧y=⊥ ⟩ x ∧ y ∨ ¬ x ∧ y ≈˘⟨ ∧-distribʳ-∨ _ _ _ ⟩ (x ∨ ¬ x) ∧ y ≈⟨ ∧-congʳ $ ∨-complementʳ _ ⟩ ⊤ ∧ y ≈⟨ ∧-identityˡ _ ⟩ y ∎ ⊥≉⊤ : ¬ ⊥ ≈ ⊤ ⊥≉⊤ = lemma ⊥ ⊤ (∧-identityʳ _) (∨-zeroʳ _) ⊤≉⊥ : ¬ ⊤ ≈ ⊥ ⊤≉⊥ = lemma ⊤ ⊥ (∧-zeroʳ _) (∨-identityʳ _) ¬-involutive : Involutive ¬_ ¬-involutive x = lemma (¬ x) x (∧-complementˡ _) (∨-complementˡ _) deMorgan₁ : ∀ x y → ¬ (x ∧ y) ≈ ¬ x ∨ ¬ y deMorgan₁ x y = lemma (x ∧ y) (¬ x ∨ ¬ y) lem₁ lem₂ where lem₁ = begin (x ∧ y) ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-distribˡ-∨ _ _ _ ⟩ (x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∨-congʳ $ ∧-congʳ $ ∧-comm _ _ ⟩ (y ∧ x) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≈⟨ ∧-assoc _ _ _ ⟨ ∨-cong ⟩ ∧-assoc _ _ _ ⟩ y ∧ (x ∧ ¬ x) ∨ x ∧ (y ∧ ¬ y) ≈⟨ (∧-congˡ $ ∧-complementʳ _) ⟨ ∨-cong ⟩ (∧-congˡ $ ∧-complementʳ _) ⟩ (y ∧ ⊥) ∨ (x ∧ ⊥) ≈⟨ ∧-zeroʳ _ ⟨ ∨-cong ⟩ ∧-zeroʳ _ ⟩ ⊥ ∨ ⊥ ≈⟨ ∨-identityʳ _ ⟩ ⊥ ∎ lem₃ = begin (x ∧ y) ∨ ¬ x ≈⟨ ∨-distribʳ-∧ _ _ _ ⟩ (x ∨ ¬ x) ∧ (y ∨ ¬ x) ≈⟨ ∧-congʳ $ ∨-complementʳ _ ⟩ ⊤ ∧ (y ∨ ¬ x) ≈⟨ ∧-identityˡ _ ⟩ y ∨ ¬ x ≈⟨ ∨-comm _ _ ⟩ ¬ x ∨ y ∎ lem₂ = begin (x ∧ y) ∨ (¬ x ∨ ¬ y) ≈˘⟨ ∨-assoc _ _ _ ⟩ ((x ∧ y) ∨ ¬ x) ∨ ¬ y ≈⟨ ∨-congʳ lem₃ ⟩ (¬ x ∨ y) ∨ ¬ y ≈⟨ ∨-assoc _ _ _ ⟩ ¬ x ∨ (y ∨ ¬ y) ≈⟨ ∨-congˡ $ ∨-complementʳ _ ⟩ ¬ x ∨ ⊤ ≈⟨ ∨-zeroʳ _ ⟩ ⊤ ∎ deMorgan₂ : ∀ x y → ¬ (x ∨ y) ≈ ¬ x ∧ ¬ y deMorgan₂ x y = begin ¬ (x ∨ y) ≈˘⟨ ¬-cong $ ((¬-involutive _) ⟨ ∨-cong ⟩ (¬-involutive _)) ⟩ ¬ (¬ ¬ x ∨ ¬ ¬ y) ≈˘⟨ ¬-cong $ deMorgan₁ _ _ ⟩ ¬ ¬ (¬ x ∧ ¬ y) ≈⟨ ¬-involutive _ ⟩ ¬ x ∧ ¬ y ∎ ------------------------------------------------------------------------ -- (⊕, ∧, id, ⊥, ⊤) is a commutative ring -- This construction is parameterised over the definition of xor. module XorRing (xor : Op₂ Carrier) (⊕-def : ∀ x y → xor x y ≈ (x ∨ y) ∧ ¬ (x ∧ y)) where private infixl 6 _⊕_ _⊕_ : Op₂ Carrier _⊕_ = xor helper : ∀ {x y u v} → x ≈ y → u ≈ v → x ∧ ¬ u ≈ y ∧ ¬ v helper x≈y u≈v = x≈y ⟨ ∧-cong ⟩ ¬-cong u≈v ⊕-cong : Congruent₂ _⊕_ ⊕-cong {x} {y} {u} {v} x≈y u≈v = begin x ⊕ u ≈⟨ ⊕-def _ _ ⟩ (x ∨ u) ∧ ¬ (x ∧ u) ≈⟨ helper (x≈y ⟨ ∨-cong ⟩ u≈v) (x≈y ⟨ ∧-cong ⟩ u≈v) ⟩ (y ∨ v) ∧ ¬ (y ∧ v) ≈˘⟨ ⊕-def _ _ ⟩ y ⊕ v ∎ ⊕-comm : Commutative _⊕_ ⊕-comm x y = begin x ⊕ y ≈⟨ ⊕-def _ _ ⟩ (x ∨ y) ∧ ¬ (x ∧ y) ≈⟨ helper (∨-comm _ _) (∧-comm _ _) ⟩ (y ∨ x) ∧ ¬ (y ∧ x) ≈˘⟨ ⊕-def _ _ ⟩ y ⊕ x ∎ ¬-distribˡ-⊕ : ∀ x y → ¬ (x ⊕ y) ≈ ¬ x ⊕ y ¬-distribˡ-⊕ x y = begin ¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-def _ _ ⟩ ¬ ((x ∨ y) ∧ (¬ (x ∧ y))) ≈⟨ ¬-cong (∧-distribʳ-∨ _ _ _) ⟩ ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (x ∧ y))) ≈⟨ ¬-cong $ ∨-congˡ $ ∧-congˡ $ ¬-cong (∧-comm _ _) ⟩ ¬ ((x ∧ ¬ (x ∧ y)) ∨ (y ∧ ¬ (y ∧ x))) ≈⟨ ¬-cong $ lem _ _ ⟨ ∨-cong ⟩ lem _ _ ⟩ ¬ ((x ∧ ¬ y) ∨ (y ∧ ¬ x)) ≈⟨ deMorgan₂ _ _ ⟩ ¬ (x ∧ ¬ y) ∧ ¬ (y ∧ ¬ x) ≈⟨ ∧-congʳ $ deMorgan₁ _ _ ⟩ (¬ x ∨ (¬ ¬ y)) ∧ ¬ (y ∧ ¬ x) ≈⟨ helper (∨-congˡ $ ¬-involutive _) (∧-comm _ _) ⟩ (¬ x ∨ y) ∧ ¬ (¬ x ∧ y) ≈˘⟨ ⊕-def _ _ ⟩ ¬ x ⊕ y ∎ where lem : ∀ x y → x ∧ ¬ (x ∧ y) ≈ x ∧ ¬ y lem x y = begin x ∧ ¬ (x ∧ y) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩ x ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-distribˡ-∨ _ _ _ ⟩ (x ∧ ¬ x) ∨ (x ∧ ¬ y) ≈⟨ ∨-congʳ $ ∧-complementʳ _ ⟩ ⊥ ∨ (x ∧ ¬ y) ≈⟨ ∨-identityˡ _ ⟩ x ∧ ¬ y ∎ ¬-distribʳ-⊕ : ∀ x y → ¬ (x ⊕ y) ≈ x ⊕ ¬ y ¬-distribʳ-⊕ x y = begin ¬ (x ⊕ y) ≈⟨ ¬-cong $ ⊕-comm _ _ ⟩ ¬ (y ⊕ x) ≈⟨ ¬-distribˡ-⊕ _ _ ⟩ ¬ y ⊕ x ≈⟨ ⊕-comm _ _ ⟩ x ⊕ ¬ y ∎ ⊕-annihilates-¬ : ∀ x y → x ⊕ y ≈ ¬ x ⊕ ¬ y ⊕-annihilates-¬ x y = begin x ⊕ y ≈˘⟨ ¬-involutive _ ⟩ ¬ ¬ (x ⊕ y) ≈⟨ ¬-cong $ ¬-distribˡ-⊕ _ _ ⟩ ¬ (¬ x ⊕ y) ≈⟨ ¬-distribʳ-⊕ _ _ ⟩ ¬ x ⊕ ¬ y ∎ ⊕-identityˡ : LeftIdentity ⊥ _⊕_ ⊕-identityˡ x = begin ⊥ ⊕ x ≈⟨ ⊕-def _ _ ⟩ (⊥ ∨ x) ∧ ¬ (⊥ ∧ x) ≈⟨ helper (∨-identityˡ _) (∧-zeroˡ _) ⟩ x ∧ ¬ ⊥ ≈⟨ ∧-congˡ ⊥≉⊤ ⟩ x ∧ ⊤ ≈⟨ ∧-identityʳ _ ⟩ x ∎ ⊕-identityʳ : RightIdentity ⊥ _⊕_ ⊕-identityʳ _ = ⊕-comm _ _ ⟨ trans ⟩ ⊕-identityˡ _ ⊕-identity : Identity ⊥ _⊕_ ⊕-identity = ⊕-identityˡ , ⊕-identityʳ ⊕-inverseˡ : LeftInverse ⊥ id _⊕_ ⊕-inverseˡ x = begin x ⊕ x ≈⟨ ⊕-def _ _ ⟩ (x ∨ x) ∧ ¬ (x ∧ x) ≈⟨ helper (∨-idem _) (∧-idem _) ⟩ x ∧ ¬ x ≈⟨ ∧-complementʳ _ ⟩ ⊥ ∎ ⊕-inverseʳ : RightInverse ⊥ id _⊕_ ⊕-inverseʳ _ = ⊕-comm _ _ ⟨ trans ⟩ ⊕-inverseˡ _ ⊕-inverse : Inverse ⊥ id _⊕_ ⊕-inverse = ⊕-inverseˡ , ⊕-inverseʳ ∧-distribˡ-⊕ : _∧_ DistributesOverˡ _⊕_ ∧-distribˡ-⊕ x y z = begin x ∧ (y ⊕ z) ≈⟨ ∧-congˡ $ ⊕-def _ _ ⟩ x ∧ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩ (x ∧ (y ∨ z)) ∧ ¬ (y ∧ z) ≈⟨ ∧-congˡ $ deMorgan₁ _ _ ⟩ (x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z) ≈˘⟨ ∨-identityˡ _ ⟩ ⊥ ∨ ((x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z)) ≈⟨ ∨-congʳ lem₃ ⟩ ((x ∧ (y ∨ z)) ∧ ¬ x) ∨ ((x ∧ (y ∨ z)) ∧ (¬ y ∨ ¬ z)) ≈˘⟨ ∧-distribˡ-∨ _ _ _ ⟩ (x ∧ (y ∨ z)) ∧ (¬ x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∧-congˡ $ ∨-congˡ (deMorgan₁ _ _) ⟩ (x ∧ (y ∨ z)) ∧ (¬ x ∨ ¬ (y ∧ z)) ≈˘⟨ ∧-congˡ (deMorgan₁ _ _) ⟩ (x ∧ (y ∨ z)) ∧ ¬ (x ∧ (y ∧ z)) ≈⟨ helper refl lem₁ ⟩ (x ∧ (y ∨ z)) ∧ ¬ ((x ∧ y) ∧ (x ∧ z)) ≈⟨ ∧-congʳ $ ∧-distribˡ-∨ _ _ _ ⟩ ((x ∧ y) ∨ (x ∧ z)) ∧ ¬ ((x ∧ y) ∧ (x ∧ z)) ≈˘⟨ ⊕-def _ _ ⟩ (x ∧ y) ⊕ (x ∧ z) ∎ where lem₂ = begin x ∧ (y ∧ z) ≈˘⟨ ∧-assoc _ _ _ ⟩ (x ∧ y) ∧ z ≈⟨ ∧-congʳ $ ∧-comm _ _ ⟩ (y ∧ x) ∧ z ≈⟨ ∧-assoc _ _ _ ⟩ y ∧ (x ∧ z) ∎ lem₁ = begin x ∧ (y ∧ z) ≈˘⟨ ∧-congʳ (∧-idem _) ⟩ (x ∧ x) ∧ (y ∧ z) ≈⟨ ∧-assoc _ _ _ ⟩ x ∧ (x ∧ (y ∧ z)) ≈⟨ ∧-congˡ lem₂ ⟩ x ∧ (y ∧ (x ∧ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩ (x ∧ y) ∧ (x ∧ z) ∎ lem₃ = begin ⊥ ≈˘⟨ ∧-zeroʳ _ ⟩ (y ∨ z) ∧ ⊥ ≈˘⟨ ∧-congˡ (∧-complementʳ _) ⟩ (y ∨ z) ∧ (x ∧ ¬ x) ≈˘⟨ ∧-assoc _ _ _ ⟩ ((y ∨ z) ∧ x) ∧ ¬ x ≈⟨ ∧-comm _ _ ⟨ ∧-cong ⟩ refl ⟩ (x ∧ (y ∨ z)) ∧ ¬ x ∎ ∧-distribʳ-⊕ : _∧_ DistributesOverʳ _⊕_ ∧-distribʳ-⊕ = comm+distrˡ⇒distrʳ ⊕-cong ∧-comm ∧-distribˡ-⊕ ∧-distrib-⊕ : _∧_ DistributesOver _⊕_ ∧-distrib-⊕ = ∧-distribˡ-⊕ , ∧-distribʳ-⊕ private lemma₂ : ∀ x y u v → (x ∧ y) ∨ (u ∧ v) ≈ ((x ∨ u) ∧ (y ∨ u)) ∧ ((x ∨ v) ∧ (y ∨ v)) lemma₂ x y u v = begin (x ∧ y) ∨ (u ∧ v) ≈⟨ ∨-distribˡ-∧ _ _ _ ⟩ ((x ∧ y) ∨ u) ∧ ((x ∧ y) ∨ v) ≈⟨ ∨-distribʳ-∧ _ _ _ ⟨ ∧-cong ⟩ ∨-distribʳ-∧ _ _ _ ⟩ ((x ∨ u) ∧ (y ∨ u)) ∧ ((x ∨ v) ∧ (y ∨ v)) ∎ ⊕-assoc : Associative _⊕_ ⊕-assoc x y z = sym $ begin x ⊕ (y ⊕ z) ≈⟨ refl ⟨ ⊕-cong ⟩ ⊕-def _ _ ⟩ x ⊕ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ⊕-def _ _ ⟩ (x ∨ ((y ∨ z) ∧ ¬ (y ∧ z))) ∧ ¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ lem₃ ⟨ ∧-cong ⟩ lem₄ ⟩ (((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ ∧-assoc _ _ _ ⟩ ((x ∨ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈⟨ ∧-congˡ lem₅ ⟩ ((x ∨ y) ∨ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z))) ≈˘⟨ ∧-assoc _ _ _ ⟩ (((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈⟨ lem₁ ⟨ ∧-cong ⟩ lem₂ ⟩ (((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z) ∧ ¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ≈˘⟨ ⊕-def _ _ ⟩ ((x ∨ y) ∧ ¬ (x ∧ y)) ⊕ z ≈˘⟨ ⊕-def _ _ ⟨ ⊕-cong ⟩ refl ⟩ (x ⊕ y) ⊕ z ∎ where lem₁ = begin ((x ∨ y) ∨ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈˘⟨ ∨-distribʳ-∧ _ _ _ ⟩ ((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈˘⟨ ∨-congʳ $ ∧-congˡ (deMorgan₁ _ _) ⟩ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z ∎ lem₂′ = begin (x ∨ ¬ y) ∧ (¬ x ∨ y) ≈˘⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩ (⊤ ∧ (x ∨ ¬ y)) ∧ ((¬ x ∨ y) ∧ ⊤) ≈˘⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _) ⟨ ∧-cong ⟩ (∧-congˡ $ ∨-complementˡ _) ⟩ ((¬ x ∨ x) ∧ (¬ y ∨ x)) ∧ ((¬ x ∨ y) ∧ (¬ y ∨ y)) ≈˘⟨ lemma₂ _ _ _ _ ⟩ (¬ x ∧ ¬ y) ∨ (x ∧ y) ≈˘⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩ ¬ (x ∨ y) ∨ ¬ ¬ (x ∧ y) ≈˘⟨ deMorgan₁ _ _ ⟩ ¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∎ lem₂ = begin ((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈˘⟨ ∨-distribʳ-∧ _ _ _ ⟩ ((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ ∨-congʳ lem₂′ ⟩ ¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ ¬ z ≈˘⟨ deMorgan₁ _ _ ⟩ ¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ∎ lem₃ = begin x ∨ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ $ ∧-congˡ $ deMorgan₁ _ _ ⟩ x ∨ ((y ∨ z) ∧ (¬ y ∨ ¬ z)) ≈⟨ ∨-distribˡ-∧ _ _ _ ⟩ (x ∨ (y ∨ z)) ∧ (x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩ ((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z) ∎ lem₄′ = begin ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ deMorgan₁ _ _ ⟩ ¬ (y ∨ z) ∨ ¬ ¬ (y ∧ z) ≈⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩ (¬ y ∧ ¬ z) ∨ (y ∧ z) ≈⟨ lemma₂ _ _ _ _ ⟩ ((¬ y ∨ y) ∧ (¬ z ∨ y)) ∧ ((¬ y ∨ z) ∧ (¬ z ∨ z)) ≈⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _) ⟨ ∧-cong ⟩ (∧-congˡ $ ∨-complementˡ _) ⟩ (⊤ ∧ (y ∨ ¬ z)) ∧ ((¬ y ∨ z) ∧ ⊤) ≈⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩ (y ∨ ¬ z) ∧ (¬ y ∨ z) ∎ lem₄ = begin ¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ deMorgan₁ _ _ ⟩ ¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ lem₄′ ⟩ ¬ x ∨ ((y ∨ ¬ z) ∧ (¬ y ∨ z)) ≈⟨ ∨-distribˡ-∧ _ _ _ ⟩ (¬ x ∨ (y ∨ ¬ z)) ∧ (¬ x ∨ (¬ y ∨ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩ ((¬ x ∨ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z) ≈⟨ ∧-comm _ _ ⟩ ((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ∎ lem₅ = begin ((x ∨ ¬ y) ∨ ¬ z) ∧ (((¬ x ∨ ¬ y) ∨ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ≈˘⟨ ∧-assoc _ _ _ ⟩ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ ¬ y) ∨ z)) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-congʳ $ ∧-comm _ _ ⟩ (((¬ x ∨ ¬ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z)) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈⟨ ∧-assoc _ _ _ ⟩ ((¬ x ∨ ¬ y) ∨ z) ∧ (((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z)) ∎ ⊕-isMagma : IsMagma _⊕_ ⊕-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ⊕-cong } ⊕-isSemigroup : IsSemigroup _⊕_ ⊕-isSemigroup = record { isMagma = ⊕-isMagma ; assoc = ⊕-assoc } ⊕-⊥-isMonoid : IsMonoid _⊕_ ⊥ ⊕-⊥-isMonoid = record { isSemigroup = ⊕-isSemigroup ; identity = ⊕-identity } ⊕-⊥-isGroup : IsGroup _⊕_ ⊥ id ⊕-⊥-isGroup = record { isMonoid = ⊕-⊥-isMonoid ; inverse = ⊕-inverse ; ⁻¹-cong = id } ⊕-⊥-isAbelianGroup : IsAbelianGroup _⊕_ ⊥ id ⊕-⊥-isAbelianGroup = record { isGroup = ⊕-⊥-isGroup ; comm = ⊕-comm } ⊕-∧-isRing : IsRing _⊕_ _∧_ id ⊥ ⊤ ⊕-∧-isRing = record { +-isAbelianGroup = ⊕-⊥-isAbelianGroup ; *-cong = ∧-cong ; *-assoc = ∧-assoc ; *-identity = ∧-identity ; distrib = ∧-distrib-⊕ ; zero = ∧-zero } ⊕-∧-isCommutativeRing : IsCommutativeRing _⊕_ _∧_ id ⊥ ⊤ ⊕-∧-isCommutativeRing = record { isRing = ⊕-∧-isRing ; *-comm = ∧-comm } ⊕-∧-commutativeRing : CommutativeRing _ _ ⊕-∧-commutativeRing = record { isCommutativeRing = ⊕-∧-isCommutativeRing } infixl 6 _⊕_ _⊕_ : Op₂ Carrier x ⊕ y = (x ∨ y) ∧ ¬ (x ∧ y) module DefaultXorRing = XorRing _⊕_ (λ _ _ → refl)