------------------------------------------------------------------------ -- The Agda standard library -- -- Maybes where one of the elements satisfies a given property ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Maybe.Relation.Unary.Any where open import Data.Maybe.Base using (Maybe; just; nothing) open import Data.Product as Prod using (∃; _,_; -,_) open import Function.Base using (id) open import Function.Bundles using (_⇔_; mk⇔) open import Level open import Relation.Binary.PropositionalEquality as P using (_≡_; cong) open import Relation.Unary open import Relation.Nullary hiding (Irrelevant) import Relation.Nullary.Decidable as Dec ------------------------------------------------------------------------ -- Definition data Any {a p} {A : Set a} (P : Pred A p) : Pred (Maybe A) (a ⊔ p) where just : ∀ {x} → P x → Any P (just x) ------------------------------------------------------------------------ -- Basic operations module _ {a p} {A : Set a} {P : Pred A p} where drop-just : ∀ {x} → Any P (just x) → P x drop-just (just px) = px just-equivalence : ∀ {x} → P x ⇔ Any P (just x) just-equivalence = mk⇔ just drop-just map : ∀ {q} {Q : Pred A q} → P ⊆ Q → Any P ⊆ Any Q map f (just px) = just (f px) satisfied : ∀ {x} → Any P x → ∃ P satisfied (just p) = -, p ------------------------------------------------------------------------ -- (un/)zip(/With) module _ {a p q r} {A : Set a} {P : Pred A p} {Q : Pred A q} {R : Pred A r} where zipWith : P ∩ Q ⊆ R → Any P ∩ Any Q ⊆ Any R zipWith f (just px , just qx) = just (f (px , qx)) unzipWith : P ⊆ Q ∩ R → Any P ⊆ Any Q ∩ Any R unzipWith f (just px) = Prod.map just just (f px) module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where zip : Any P ∩ Any Q ⊆ Any (P ∩ Q) zip = zipWith id unzip : Any (P ∩ Q) ⊆ Any P ∩ Any Q unzip = unzipWith id ------------------------------------------------------------------------ -- Seeing Any as a predicate transformer module _ {a p} {A : Set a} {P : Pred A p} where dec : Decidable P → Decidable (Any P) dec P-dec nothing = no λ () dec P-dec (just x) = Dec.map just-equivalence (P-dec x) irrelevant : Irrelevant P → Irrelevant (Any P) irrelevant P-irrelevant (just p) (just q) = cong just (P-irrelevant p q) satisfiable : Satisfiable P → Satisfiable (Any P) satisfiable P-satisfiable = Prod.map just just P-satisfiable