------------------------------------------------------------------------ -- The Agda standard library -- -- Non-dependent product combinators for setoid equality preserving -- functions ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Product.Function.NonDependent.Setoid where open import Data.Product open import Data.Product.Relation.Binary.Pointwise.NonDependent open import Relation.Binary open import Function.Equality as F using (_⟶_; _⟨$⟩_) open import Function.Equivalence as Eq using (Equivalence; _⇔_; module Equivalence) open import Function.Injection as Inj using (Injection; _↣_; module Injection) open import Function.Inverse as Inv using (Inverse; _↔_; module Inverse) open import Function.LeftInverse as LeftInv using (LeftInverse; _↞_; _LeftInverseOf_; module LeftInverse) open import Function.Related open import Function.Surjection as Surj using (Surjection; _↠_; module Surjection) ------------------------------------------------------------------------ -- Combinators for equality preserving functions module _ {a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} {C : Setoid c₁ c₂} {D : Setoid d₁ d₂} where _×-⟶_ : (A ⟶ B) → (C ⟶ D) → (A ×ₛ C) ⟶ (B ×ₛ D) _×-⟶_ f g = record { _⟨$⟩_ = fg ; cong = fg-cong } where open Setoid (A ×ₛ C) using () renaming (_≈_ to _≈AC_) open Setoid (B ×ₛ D) using () renaming (_≈_ to _≈BD_) fg = map (f ⟨$⟩_) (g ⟨$⟩_) fg-cong : _≈AC_ =[ fg ]⇒ _≈BD_ fg-cong (_∼₁_ , _∼₂_) = (F.cong f _∼₁_ , F.cong g _∼₂_) module _ {a₁ a₂ b₁ b₂ c₁ c₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} {C : Setoid c₁ c₂} where <_,_>ₛ : (A ⟶ B) → (A ⟶ C) → A ⟶ (B ×ₛ C) < f , g >ₛ = record { _⟨$⟩_ = < f ⟨$⟩_ , g ⟨$⟩_ > ; cong = < F.cong f , F.cong g > } module _ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} where proj₁ₛ : (A ×ₛ B) ⟶ A proj₁ₛ = record { _⟨$⟩_ = proj₁ ; cong = proj₁ } proj₂ₛ : (A ×ₛ B) ⟶ B proj₂ₛ = record { _⟨$⟩_ = proj₂ ; cong = proj₂ } swapₛ : (A ×ₛ B) ⟶ (B ×ₛ A) swapₛ = < proj₂ₛ , proj₁ₛ >ₛ ------------------------------------------------------------------------ -- Combinators for more complex function types module _ {a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} {C : Setoid c₁ c₂} {D : Setoid d₁ d₂} where _×-equivalence_ : Equivalence A B → Equivalence C D → Equivalence (A ×ₛ C) (B ×ₛ D) _×-equivalence_ A⇔B C⇔D = record { to = to A⇔B ×-⟶ to C⇔D ; from = from A⇔B ×-⟶ from C⇔D } where open Equivalence _×-injection_ : Injection A B → Injection C D → Injection (A ×ₛ C) (B ×ₛ D) A↣B ×-injection C↣D = record { to = to A↣B ×-⟶ to C↣D ; injective = map (injective A↣B) (injective C↣D) } where open Injection _×-left-inverse_ : LeftInverse A B → LeftInverse C D → LeftInverse (A ×ₛ C) (B ×ₛ D) A↞B ×-left-inverse C↞D = record { to = Equivalence.to eq ; from = Equivalence.from eq ; left-inverse-of = left } where open LeftInverse eq = LeftInverse.equivalence A↞B ×-equivalence LeftInverse.equivalence C↞D left : Equivalence.from eq LeftInverseOf Equivalence.to eq left (x , y) = (left-inverse-of A↞B x , left-inverse-of C↞D y) module _ {a₁ a₂ b₁ b₂ c₁ c₂ d₁ d₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} {C : Setoid c₁ c₂} {D : Setoid d₁ d₂} where _×-surjection_ : Surjection A B → Surjection C D → Surjection (A ×ₛ C) (B ×ₛ D) A↠B ×-surjection C↠D = record { to = LeftInverse.from inv ; surjective = record { from = LeftInverse.to inv ; right-inverse-of = LeftInverse.left-inverse-of inv } } where open Surjection inv = right-inverse A↠B ×-left-inverse right-inverse C↠D _×-inverse_ : Inverse A B → Inverse C D → Inverse (A ×ₛ C) (B ×ₛ D) A↔B ×-inverse C↔D = record { to = Surjection.to surj ; from = Surjection.from surj ; inverse-of = record { left-inverse-of = LeftInverse.left-inverse-of inv ; right-inverse-of = Surjection.right-inverse-of surj } } where open Inverse surj = Inverse.surjection A↔B ×-surjection Inverse.surjection C↔D inv = Inverse.left-inverse A↔B ×-left-inverse Inverse.left-inverse C↔D