{-# OPTIONS --cubical-compatible --safe #-}
module Data.Product.Properties where
open import Axiom.UniquenessOfIdentityProofs
open import Data.Product
open import Function
open import Level using (Level)
open import Relation.Binary using (DecidableEquality)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary.Decidable as Dec using (Dec; yes; no)
private
variable
a b c d ℓ : Level
A : Set a
B : Set b
C : Set c
D : Set d
module _ {B : A → Set b} where
,-injectiveˡ : ∀ {a c} {b : B a} {d : B c} → (a , b) ≡ (c , d) → a ≡ c
,-injectiveˡ refl = refl
,-injectiveʳ-≡ : ∀ {a b} {c : B a} {d : B b} → UIP A → (a , c) ≡ (b , d) → (q : a ≡ b) → subst B q c ≡ d
,-injectiveʳ-≡ {c = c} u refl q = cong (λ x → subst B x c) (u q refl)
,-injectiveʳ-UIP : ∀ {a} {b c : B a} → UIP A → (Σ A B ∋ (a , b)) ≡ (a , c) → b ≡ c
,-injectiveʳ-UIP u p = ,-injectiveʳ-≡ u p refl
≡-dec : DecidableEquality A → (∀ {a} → DecidableEquality (B a)) →
DecidableEquality (Σ A B)
≡-dec dec₁ dec₂ (a , x) (b , y) with dec₁ a b
... | no [a≢b] = no ([a≢b] ∘ ,-injectiveˡ)
... | yes refl = Dec.map′ (cong (a ,_)) (,-injectiveʳ-UIP (Decidable⇒UIP.≡-irrelevant dec₁)) (dec₂ x y)
,-injectiveʳ : ∀ {a c : A} {b d : B} → (a , b) ≡ (c , d) → b ≡ d
,-injectiveʳ refl = refl
,-injective : ∀ {a c : A} {b d : B} → (a , b) ≡ (c , d) → a ≡ c × b ≡ d
,-injective refl = refl , refl
map-cong : ∀ {f g : A → C} {h i : B → D} → f ≗ g → h ≗ i → map f h ≗ map g i
map-cong f≗g h≗i (x , y) = cong₂ _,_ (f≗g x) (h≗i y)
swap-involutive : swap {A = A} {B = B} ∘ swap ≗ id
swap-involutive _ = refl
module _ {A : Set a} {B : A → Set b} {p₁@(a₁ , b₁) p₂@(a₂ , b₂) : Σ A B} where
Σ-≡,≡→≡ : Σ (a₁ ≡ a₂) (λ p → subst B p b₁ ≡ b₂) → p₁ ≡ p₂
Σ-≡,≡→≡ (refl , refl) = refl
Σ-≡,≡←≡ : p₁ ≡ p₂ → Σ (a₁ ≡ a₂) (λ p → subst B p b₁ ≡ b₂)
Σ-≡,≡←≡ refl = refl , refl
private
left-inverse-of : (p : Σ (a₁ ≡ a₂) (λ x → subst B x b₁ ≡ b₂)) →
Σ-≡,≡←≡ (Σ-≡,≡→≡ p) ≡ p
left-inverse-of (refl , refl) = refl
right-inverse-of : (p : p₁ ≡ p₂) → Σ-≡,≡→≡ (Σ-≡,≡←≡ p) ≡ p
right-inverse-of refl = refl
Σ-≡,≡↔≡ : (∃ λ (p : a₁ ≡ a₂) → subst B p b₁ ≡ b₂) ↔ p₁ ≡ p₂
Σ-≡,≡↔≡ = mk↔′ Σ-≡,≡→≡ Σ-≡,≡←≡ right-inverse-of left-inverse-of
module _ {p₁@(a₁ , b₁) p₂@(a₂ , b₂) : A × B} where
×-≡,≡→≡ : (a₁ ≡ a₂ × b₁ ≡ b₂) → p₁ ≡ p₂
×-≡,≡→≡ (refl , refl) = refl
×-≡,≡←≡ : p₁ ≡ p₂ → (a₁ ≡ a₂ × b₁ ≡ b₂)
×-≡,≡←≡ refl = refl , refl
×-≡,≡↔≡ : (a₁ ≡ a₂ × b₁ ≡ b₂) ↔ p₁ ≡ p₂
×-≡,≡↔≡ = mk↔′
×-≡,≡→≡
×-≡,≡←≡
(λ { refl → refl })
(λ { (refl , refl) → refl })
∃∃↔∃∃ : (R : A → B → Set ℓ) → (∃₂ λ x y → R x y) ↔ (∃₂ λ y x → R x y)
∃∃↔∃∃ R = mk↔′ to from cong′ cong′
where
to : (∃₂ λ x y → R x y) → (∃₂ λ y x → R x y)
to (x , y , Rxy) = (y , x , Rxy)
from : (∃₂ λ y x → R x y) → (∃₂ λ x y → R x y)
from (y , x , Rxy) = (x , y , Rxy)