------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Indexed.Heterogeneous`. {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Indexed.Heterogeneous.Core module Relation.Binary.Indexed.Heterogeneous.Structures {i a ℓ} {I : Set i} (A : I → Set a) (_≈_ : IRel A ℓ) where open import Function.Base open import Level using (suc; _⊔_) open import Relation.Binary using (_⇒_) open import Relation.Binary.PropositionalEquality.Core as P using (_≡_) open import Relation.Binary.Indexed.Heterogeneous.Definitions ------------------------------------------------------------------------ -- Equivalences record IsIndexedEquivalence : Set (i ⊔ a ⊔ ℓ) where field refl : Reflexive A _≈_ sym : Symmetric A _≈_ trans : Transitive A _≈_ reflexive : ∀ {i} → _≡_ ⟨ _⇒_ ⟩ _≈_ {i} reflexive P.refl = refl record IsIndexedPreorder {ℓ₂} (_∼_ : IRel A ℓ₂) : Set (i ⊔ a ⊔ ℓ ⊔ ℓ₂) where field isEquivalence : IsIndexedEquivalence reflexive : ∀ {i j} → (_≈_ {i} {j}) ⟨ _⇒_ ⟩ _∼_ trans : Transitive A _∼_ module Eq = IsIndexedEquivalence isEquivalence refl : Reflexive A _∼_ refl = reflexive Eq.refl