------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise lifting of relations to lists ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.List.Relation.Binary.Pointwise where open import Algebra.Core using (Op₂) open import Function.Base open import Function.Bundles using (Inverse) open import Data.Bool.Base using (true; false) open import Data.Product.Base hiding (map) open import Data.List.Base as List hiding (map; head; tail; uncons) open import Data.List.Properties using (≡-dec; length-++) open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.List.Relation.Unary.AllPairs using (AllPairs; []; _∷_) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.Fin.Base using (Fin; toℕ; cast) renaming (zero to fzero; suc to fsuc) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Nat.Properties open import Level open import Relation.Nullary hiding (Irrelevant) import Relation.Nullary.Decidable as Dec using (map′) open import Relation.Unary as U using (Pred) open import Relation.Binary.Core renaming (Rel to Rel₂) open import Relation.Binary.Definitions using (_Respects_; _Respects₂_) open import Relation.Binary.Bundles using (Setoid; DecSetoid; Preorder; Poset) open import Relation.Binary.Structures using (IsEquivalence; IsDecEquivalence; IsPartialOrder; IsPreorder) open import Relation.Binary.PropositionalEquality.Core as P using (_≡_) import Relation.Binary.PropositionalEquality.Properties as P private variable a b c d p q ℓ ℓ₁ ℓ₂ : Level A B C D : Set d x y z : A ws xs ys zs : List A R S T : REL A B ℓ ------------------------------------------------------------------------ -- Re-exporting the definition and basic operations ------------------------------------------------------------------------ open import Data.List.Relation.Binary.Pointwise.Base public open import Data.List.Relation.Binary.Pointwise.Properties public ------------------------------------------------------------------------ -- Structures isEquivalence : IsEquivalence R → IsEquivalence (Pointwise R) isEquivalence eq = record { refl = refl Eq.refl ; sym = symmetric Eq.sym ; trans = transitive Eq.trans } where module Eq = IsEquivalence eq isDecEquivalence : IsDecEquivalence R → IsDecEquivalence (Pointwise R) isDecEquivalence eq = record { isEquivalence = isEquivalence DE.isEquivalence ; _≟_ = decidable DE._≟_ } where module DE = IsDecEquivalence eq isPreorder : IsPreorder R S → IsPreorder (Pointwise R) (Pointwise S) isPreorder pre = record { isEquivalence = isEquivalence Pre.isEquivalence ; reflexive = reflexive Pre.reflexive ; trans = transitive Pre.trans } where module Pre = IsPreorder pre isPartialOrder : IsPartialOrder R S → IsPartialOrder (Pointwise R) (Pointwise S) isPartialOrder po = record { isPreorder = isPreorder PO.isPreorder ; antisym = antisymmetric PO.antisym } where module PO = IsPartialOrder po ------------------------------------------------------------------------ -- Bundles setoid : Setoid a ℓ → Setoid a (a ⊔ ℓ) setoid s = record { isEquivalence = isEquivalence (Setoid.isEquivalence s) } decSetoid : DecSetoid a ℓ → DecSetoid a (a ⊔ ℓ) decSetoid d = record { isDecEquivalence = isDecEquivalence (DecSetoid.isDecEquivalence d) } preorder : Preorder a ℓ₁ ℓ₂ → Preorder _ _ _ preorder p = record { isPreorder = isPreorder (Preorder.isPreorder p) } poset : Poset a ℓ₁ ℓ₂ → Poset _ _ _ poset p = record { isPartialOrder = isPartialOrder (Poset.isPartialOrder p) } ------------------------------------------------------------------------ -- Relationships to other list predicates ------------------------------------------------------------------------ All-resp-Pointwise : ∀ {P : Pred A p} → P Respects R → (All P) Respects (Pointwise R) All-resp-Pointwise resp [] [] = [] All-resp-Pointwise resp (x∼y ∷ xs) (px ∷ pxs) = resp x∼y px ∷ All-resp-Pointwise resp xs pxs Any-resp-Pointwise : ∀ {P : Pred A p} → P Respects R → (Any P) Respects (Pointwise R) Any-resp-Pointwise resp (x∼y ∷ xs) (here px) = here (resp x∼y px) Any-resp-Pointwise resp (x∼y ∷ xs) (there pxs) = there (Any-resp-Pointwise resp xs pxs) AllPairs-resp-Pointwise : R Respects₂ S → (AllPairs R) Respects (Pointwise S) AllPairs-resp-Pointwise _ [] [] = [] AllPairs-resp-Pointwise resp@(respₗ , respᵣ) (x∼y ∷ xs) (px ∷ pxs) = All-resp-Pointwise respₗ xs (All.map (respᵣ x∼y) px) ∷ (AllPairs-resp-Pointwise resp xs pxs) ------------------------------------------------------------------------ -- Relationship to functions over lists ------------------------------------------------------------------------ -- length Pointwise-length : Pointwise R xs ys → length xs ≡ length ys Pointwise-length [] = P.refl Pointwise-length (x∼y ∷ xs∼ys) = P.cong ℕ.suc (Pointwise-length xs∼ys) ------------------------------------------------------------------------ -- tabulate tabulate⁺ : ∀ {n} {f : Fin n → A} {g : Fin n → B} → (∀ i → R (f i) (g i)) → Pointwise R (tabulate f) (tabulate g) tabulate⁺ {n = zero} f∼g = [] tabulate⁺ {n = suc n} f∼g = f∼g fzero ∷ tabulate⁺ (f∼g ∘ fsuc) tabulate⁻ : ∀ {n} {f : Fin n → A} {g : Fin n → B} → Pointwise R (tabulate f) (tabulate g) → (∀ i → R (f i) (g i)) tabulate⁻ {n = suc n} (x∼y ∷ xs∼ys) fzero = x∼y tabulate⁻ {n = suc n} (x∼y ∷ xs∼ys) (fsuc i) = tabulate⁻ xs∼ys i ------------------------------------------------------------------------ -- _++_ ++⁺ : Pointwise R ws xs → Pointwise R ys zs → Pointwise R (ws ++ ys) (xs ++ zs) ++⁺ [] ys∼zs = ys∼zs ++⁺ (w∼x ∷ ws∼xs) ys∼zs = w∼x ∷ ++⁺ ws∼xs ys∼zs ++-cancelˡ : ∀ xs → Pointwise R (xs ++ ys) (xs ++ zs) → Pointwise R ys zs ++-cancelˡ [] ys∼zs = ys∼zs ++-cancelˡ (x ∷ xs) (_ ∷ xs++ys∼xs++zs) = ++-cancelˡ xs xs++ys∼xs++zs ++-cancelʳ : ∀ ys zs → Pointwise R (ys ++ xs) (zs ++ xs) → Pointwise R ys zs ++-cancelʳ [] [] _ = [] ++-cancelʳ (y ∷ ys) (z ∷ zs) (y∼z ∷ ys∼zs) = y∼z ∷ (++-cancelʳ ys zs ys∼zs) -- Impossible cases ++-cancelʳ {xs = xs} [] (z ∷ zs) eq = contradiction (P.trans (Pointwise-length eq) (length-++ (z ∷ zs))) (m≢1+n+m (length xs)) ++-cancelʳ {xs = xs} (y ∷ ys) [] eq = contradiction (P.trans (P.sym (length-++ (y ∷ ys))) (Pointwise-length eq)) (m≢1+n+m (length xs) ∘ P.sym) ------------------------------------------------------------------------ -- concat concat⁺ : ∀ {xss yss} → Pointwise (Pointwise R) xss yss → Pointwise R (concat xss) (concat yss) concat⁺ [] = [] concat⁺ (xs∼ys ∷ xss∼yss) = ++⁺ xs∼ys (concat⁺ xss∼yss) ------------------------------------------------------------------------ -- reverse reverseAcc⁺ : Pointwise R ws xs → Pointwise R ys zs → Pointwise R (reverseAcc ws ys) (reverseAcc xs zs) reverseAcc⁺ rs′ [] = rs′ reverseAcc⁺ rs′ (r ∷ rs) = reverseAcc⁺ (r ∷ rs′) rs ʳ++⁺ : Pointwise R ws xs → Pointwise R ys zs → Pointwise R (ws ʳ++ ys) (xs ʳ++ zs) ʳ++⁺ rs rs′ = reverseAcc⁺ rs′ rs reverse⁺ : Pointwise R xs ys → Pointwise R (reverse xs) (reverse ys) reverse⁺ = reverseAcc⁺ [] ------------------------------------------------------------------------ -- map map⁺ : ∀ (f : A → C) (g : B → D) → Pointwise (λ a b → R (f a) (g b)) xs ys → Pointwise R (List.map f xs) (List.map g ys) map⁺ f g [] = [] map⁺ f g (r ∷ rs) = r ∷ map⁺ f g rs map⁻ : ∀ (f : A → C) (g : B → D) → Pointwise R (List.map f xs) (List.map g ys) → Pointwise (λ a b → R (f a) (g b)) xs ys map⁻ {xs = []} {[]} f g [] = [] map⁻ {xs = _ ∷ _} {_ ∷ _} f g (r ∷ rs) = r ∷ map⁻ f g rs ------------------------------------------------------------------------ -- foldr foldr⁺ : ∀ {_•_ : Op₂ A} {_◦_ : Op₂ B} → (∀ {w x y z} → R w x → R y z → R (w • y) (x ◦ z)) → ∀ {e f} → R e f → Pointwise R xs ys → R (foldr _•_ e xs) (foldr _◦_ f ys) foldr⁺ _ e~f [] = e~f foldr⁺ pres e~f (x~y ∷ xs~ys) = pres x~y (foldr⁺ pres e~f xs~ys) ------------------------------------------------------------------------ -- filter module _ {P : Pred A p} {Q : Pred B q} (P? : U.Decidable P) (Q? : U.Decidable Q) (P⇒Q : ∀ {a b} → R a b → P a → Q b) (Q⇒P : ∀ {a b} → R a b → Q b → P a) where filter⁺ : Pointwise R xs ys → Pointwise R (filter P? xs) (filter Q? ys) filter⁺ [] = [] filter⁺ {x ∷ _} {y ∷ _} (r ∷ rs) with P? x | Q? y ... | true because _ | true because _ = r ∷ filter⁺ rs ... | false because _ | false because _ = filter⁺ rs ... | yes p | no ¬q = contradiction (P⇒Q r p) ¬q ... | no ¬p | yes q = contradiction (Q⇒P r q) ¬p ------------------------------------------------------------------------ -- replicate replicate⁺ : R x y → ∀ n → Pointwise R (replicate n x) (replicate n y) replicate⁺ r 0 = [] replicate⁺ r (suc n) = r ∷ replicate⁺ r n ------------------------------------------------------------------------ -- lookup lookup⁻ : length xs ≡ length ys → (∀ {i j} → toℕ i ≡ toℕ j → R (lookup xs i) (lookup ys j)) → Pointwise R xs ys lookup⁻ {xs = []} {ys = []} _ _ = [] lookup⁻ {xs = _ ∷ _} {ys = _ ∷ _} |xs|≡|ys| eq = eq {fzero} P.refl ∷ lookup⁻ (suc-injective |xs|≡|ys|) (eq ∘ P.cong ℕ.suc) lookup⁺ : ∀ (Rxys : Pointwise R xs ys) → ∀ i → (let j = cast (Pointwise-length Rxys) i) → R (lookup xs i) (lookup ys j) lookup⁺ (Rxy ∷ _) fzero = Rxy lookup⁺ (_ ∷ Rxys) (fsuc i) = lookup⁺ Rxys i ------------------------------------------------------------------------ -- Properties of propositional pointwise ------------------------------------------------------------------------ Pointwise-≡⇒≡ : Pointwise {A = A} _≡_ ⇒ _≡_ Pointwise-≡⇒≡ [] = P.refl Pointwise-≡⇒≡ (P.refl ∷ xs∼ys) with Pointwise-≡⇒≡ xs∼ys ... | P.refl = P.refl ≡⇒Pointwise-≡ : _≡_ ⇒ Pointwise {A = A} _≡_ ≡⇒Pointwise-≡ P.refl = refl P.refl Pointwise-≡↔≡ : Inverse (setoid (P.setoid A)) (P.setoid (List A)) Pointwise-≡↔≡ = record { to = id ; from = id ; to-cong = Pointwise-≡⇒≡ ; from-cong = ≡⇒Pointwise-≡ ; inverse = Pointwise-≡⇒≡ , ≡⇒Pointwise-≡ }