{-# OPTIONS --without-K --safe #-} -- Typing judgments are PERs module Mint.Statics.PER where open import Relation.Binary using (PartialSetoid; IsPartialEquivalence) import Relation.Binary.Reasoning.PartialSetoid as PS open import Mint.Statics.Full open import Mint.Statics.Misc open import Mint.Statics.Properties.Contexts open import Mint.Statics.CtxEquiv Exp≈-isPER : IsPartialEquivalence (Γ ⊢_≈_∶ T) Exp≈-isPER {Γ} {T} = record { sym = ≈-sym ; trans = ≈-trans } Exp≈-PER : Ctxs → Typ → PartialSetoid _ _ Exp≈-PER Γ T = record { Carrier = Exp ; _≈_ = Γ ⊢_≈_∶ T ; isPartialEquivalence = Exp≈-isPER } module ER {Γ T} = PS (Exp≈-PER Γ T) Substs≈-isPER : IsPartialEquivalence (Γ ⊢s_≈_∶ Δ) Substs≈-isPER = record { sym = s-≈-sym ; trans = s-≈-trans } Substs≈-PER : Ctxs → Ctxs → PartialSetoid _ _ Substs≈-PER Γ Δ = record { Carrier = Substs ; _≈_ = Γ ⊢s_≈_∶ Δ ; isPartialEquivalence = Substs≈-isPER } module SR {Γ Δ} = PS (Substs≈-PER Γ Δ) ⊢≈-trans : ⊢ Γ ≈ Γ′ → ⊢ Γ′ ≈ Γ″ → ⊢ Γ ≈ Γ″ ⊢≈-trans []-≈ []-≈ = []-≈ ⊢≈-trans (κ-cong Γ≈Γ′) (κ-cong Γ′≈Γ″) = κ-cong (⊢≈-trans Γ≈Γ′ Γ′≈Γ″) ⊢≈-trans (∺-cong Γ≈Γ′ ⊢T ⊢T′ T≈T′ T≈T′₁) (∺-cong Γ′≈Γ″ ⊢T′₁ ⊢T″ T′≈T″ T′≈T″₁) = ∺-cong (⊢≈-trans Γ≈Γ′ Γ′≈Γ″) (lift-⊢-Se-max ⊢T) (lift-⊢-Se-max′ ⊢T″) (≈-trans (lift-⊢≈-Se-max T≈T′) (lift-⊢≈-Se-max′ (ctxeq-≈ (⊢≈-sym Γ≈Γ′) T′≈T″))) (≈-trans (lift-⊢≈-Se-max (ctxeq-≈ Γ′≈Γ″ T≈T′₁)) (lift-⊢≈-Se-max′ T′≈T″₁)) Ctxs≈-isPER : IsPartialEquivalence (λ Γ → ⊢ Γ ≈_) -- weird parser bug here Ctxs≈-isPER = record { sym = ⊢≈-sym ; trans = ⊢≈-trans } Ctxs≈-PER : PartialSetoid _ _ Ctxs≈-PER = record { Carrier = Ctxs ; _≈_ = ⊢_≈_ ; isPartialEquivalence = Ctxs≈-isPER } module CR = PS Ctxs≈-PER