{-# OPTIONS --without-K --safe #-} -- This file defines the syntax of Mint module Mint.Statics.Syntax where open import Level renaming (suc to succ) open import Lib open import LibNonEmpty public -- O computes the truncation offset of A when truncated by a length record HasO {i} (A : Set i) : Set i where field O : A → ℕ → ℕ open HasO {{...}} public -- _∥_ computes the truncation of A by a length record HasTr {i} (A : Set i) : Set i where infixl 5 _∥_ field _∥_ : A → ℕ → A open HasTr {{...}} public -- A is monotonic relative to B record Monotone {i j} (A : Set i) (B : Set j) : Set (i ⊔ j) where infixl 4.5 _[_] field _[_] : A → B → A open Monotone {{...}} public infixl 4.2 _$_ infixl 4.5 _[|_] mutual -- Type is also an expression. Typ = Exp -- Definition of terms in Mint -- Some notable differences with syntax in the paper are: -- * We use N instead of Nat for the type of natural numbers. -- * We use Se (shortened Set) instead of Ty for the universes. -- * We use rec instead of elim for the natural number eliminator. -- * We use sub instead of _[_] for the substitution application. data Exp : Set where -- type constructors N : Typ Π : Typ → Typ → Typ Se : (i : ℕ) → Typ □ : Typ → Typ v : (x : ℕ) → Exp -- natural numebrs ze : Exp su : Exp → Exp rec : (T : Typ) (s r t : Exp) → Exp -- functions Λ : Exp → Exp _$_ : Exp → Exp → Exp -- modal terms box : Exp → Exp unbox : ℕ → Exp → Exp -- explicit substitutions sub : Exp → Substs → Exp -- Definition of (unified) substitutions in Mint infixl 3 _∘_ infixl 5 _;_ data Substs : Set where -- identity I : Substs -- one step weakening wk : Substs -- composition _∘_ : Substs → Substs → Substs -- extension _,_ : Substs → Exp → Substs -- modal transformation (MoT) _;_ : Substs → ℕ → Substs -- Individual contexts Ctx : Set Ctx = List Typ -- Context stacks are an nonempty list of contexts. Ctxs : Set Ctxs = List⁺ Ctx -- Cons the topmost context infixr 5 _∺_ _∺_ : Typ → Ctxs → Ctxs T ∺ (Ψ ∷ Ψs) = (T ∷ Ψ) ∷ Ψs -- Concatenate the topmost context infixr 4.5 _++⁻_ _++⁻_ : List Typ → Ctxs → Ctxs _++⁻_ Ψ (Ψ′ ∷ Γ) = (Ψ ++ Ψ′) ∷ Γ -- Exp is monotonic and transformed by substitutions instance ExpMonotone : Monotone Exp Substs ExpMonotone = record { _[_] = sub } -- quick helpers ---------------- -- Projection of substitutions p : Substs → Substs p σ = wk ∘ σ -- Nondependent functions infixr 5 _⟶_ _⟶_ : Typ → Typ → Typ S ⟶ T = Π S (T [ wk ]) -- Substitute the first open variable of t with s _[|_] : Exp → Exp → Exp t [| s ] = t [ I , s ] -- Weakening of substitutions by one variable q : Substs → Substs q σ = (σ ∘ wk) , v 0 -- O (truncation offset) and truncation for syntactic substitutions S-O : Substs → ℕ → ℕ S-O σ 0 = 0 S-O I (suc n) = suc n S-O wk (suc n) = suc n S-O (σ , t) (suc n) = S-O σ (suc n) S-O (σ ; m) (suc n) = m + S-O σ n S-O (σ ∘ δ) (suc n) = S-O δ (S-O σ (suc n)) instance SubstsHasO : HasO Substs SubstsHasO = record { O = S-O } S-Tr : Substs → ℕ → Substs S-Tr σ 0 = σ S-Tr I (suc n) = I S-Tr wk (suc n) = I S-Tr (σ , t) (suc n) = S-Tr σ (suc n) S-Tr (σ ; m) (suc n) = S-Tr σ n S-Tr (σ ∘ δ) (suc n) = S-Tr σ (suc n) ∘ S-Tr δ (O σ (suc n)) instance SubstsHasTr : HasTr Substs SubstsHasTr = record { _∥_ = S-Tr } -- Neutral and normal forms -- -- Here we define β-η normal form mutual data Ne : Set where v : (x : ℕ) → Ne rec : (T : Nf) (z s : Nf) → Ne → Ne _$_ : Ne → (n : Nf) → Ne unbox : ℕ → Ne → Ne data Nf : Set where ne : (u : Ne) → Nf N : Nf Π : Nf → Nf → Nf Se : (i : ℕ) → Nf □ : Nf → Nf ze : Nf su : Nf → Nf Λ : Nf → Nf box : Nf → Nf variable S S′ S″ : Typ T T′ T″ : Typ Ψ Ψ′ Ψ″ : Ctx Ψs Ψs′ : List Ctx Γ Γ′ Γ″ : Ctxs Δ Δ′ Δ″ : Ctxs t t′ t″ : Exp r r′ r″ : Exp s s′ s″ : Exp σ σ′ σ″ : Substs τ τ′ τ″ : Substs u u′ u″ : Ne V V′ V″ : Ne w w′ w″ : Nf W W′ W″ : Nf -- Conversion from neutrals/normals to terms mutual Ne⇒Exp : Ne → Exp Ne⇒Exp (v x) = v x Ne⇒Exp (rec T z s u) = rec (Nf⇒Exp T) (Nf⇒Exp z) (Nf⇒Exp s) (Ne⇒Exp u) Ne⇒Exp (u $ n) = Ne⇒Exp u $ Nf⇒Exp n Ne⇒Exp (unbox n u) = unbox n (Ne⇒Exp u) Nf⇒Exp : Nf → Exp Nf⇒Exp (ne u) = Ne⇒Exp u Nf⇒Exp ze = ze Nf⇒Exp (su w) = su (Nf⇒Exp w) Nf⇒Exp (Λ w) = Λ (Nf⇒Exp w) Nf⇒Exp N = N Nf⇒Exp (Π S T) = Π (Nf⇒Exp S) (Nf⇒Exp T) Nf⇒Exp (Se i) = Se i Nf⇒Exp (□ w) = □ (Nf⇒Exp w) Nf⇒Exp (box w) = box (Nf⇒Exp w) -- Dependent context lookup infix 2 _∶_∈!_ data _∶_∈!_ : ℕ → Typ → Ctxs → Set where here : 0 ∶ T [ wk ] ∈! T ∺ Γ there : ∀ {n T S} → n ∶ T ∈! Γ → suc n ∶ T [ wk ] ∈! S ∺ Γ