{-# OPTIONS --without-K --safe #-}
module NonCumulative.Ascribed.Soundness.Properties.NoFunExt.LogRel where
open import Lib
open import NonCumulative.Ascribed.Semantics.Readback
open import NonCumulative.Ascribed.Semantics.Properties.PER.Core
open import NonCumulative.Ascribed.Soundness.LogRel
open import NonCumulative.Ascribed.Statics.Presup
open import NonCumulative.Ascribed.Statics.Misc
open import NonCumulative.Ascribed.Statics.Refl
open import NonCumulative.Ascribed.Statics.CtxEquiv
open import NonCumulative.Ascribed.Statics.Properties
open import NonCumulative.Ascribed.Statics.Properties.Contexts
®Nat⇒∈Nat : Γ ⊢ t ∶N® a ∈Nat → a ∈′ Nat
®Nat⇒∈Nat (ze t≈) = ze
®Nat⇒∈Nat (su _ rel) = su (®Nat⇒∈Nat rel)
®Nat⇒∈Nat (ne c∈ _) = ne c∈
®Nat⇒∶Nat : Γ ⊢ t ∶N® a ∈Nat → ⊢ Γ → Γ ⊢ t ∶[ 0 ] N
®Nat⇒∶Nat (ze t≈) ⊢Γ = proj₁ (proj₂ (presup-≈ t≈))
®Nat⇒∶Nat (su t≈ _) ⊢Γ = proj₁ (proj₂ (presup-≈ t≈))
®Nat⇒∶Nat (ne _ rel) ⊢Γ = [I]-inv (proj₁ (proj₂ (presup-≈ (rel (⊢wI ⊢Γ)))))
®Nat-resp-≈ : Γ ⊢ t ∶N® a ∈Nat → Γ ⊢ t ≈ t′ ∶[ 0 ] N → Γ ⊢ t′ ∶N® a ∈Nat
®Nat-resp-≈ (ze t≈) t≈t′ = ze (≈-trans (≈-sym t≈t′) t≈)
®Nat-resp-≈ (su t≈ t∼a) t≈t′ = su (≈-trans (≈-sym t≈t′) t≈) t∼a
®Nat-resp-≈ (ne c∈ rel) t≈t′ = ne c∈ λ ⊢σ → ≈-trans ([]-cong-N′ (≈-sym t≈t′) (⊢w⇒⊢s ⊢σ)) (rel ⊢σ)
®Nat-resp-⊢≈ : Γ ⊢ t ∶N® a ∈Nat → ⊢ Γ ≈ Δ → Δ ⊢ t ∶N® a ∈Nat
®Nat-resp-⊢≈ (ze t≈) Γ≈Δ = ze (ctxeq-≈ Γ≈Δ t≈)
®Nat-resp-⊢≈ (su t≈ t∼a) Γ≈Δ = su (ctxeq-≈ Γ≈Δ t≈) (®Nat-resp-⊢≈ t∼a Γ≈Δ)
®Nat-resp-⊢≈ (ne c∈ rel) Γ≈Δ = ne c∈ (λ ⊢σ → rel (⊢w-resp-⊢≈ʳ ⊢σ (⊢≈-sym Γ≈Δ)))
®Nat⇒∈Top : Γ ⊢ t ∶N® a ∈Nat → ↓ 0 N a ∈′ Top
®Nat⇒∈Top (ze t≈) ns = ze , Rze ns , Rze ns
®Nat⇒∈Top (su t≈ t′∼a) ns
with ®Nat⇒∈Top t′∼a ns
... | w , ↘w , ↘w′ = su w , Rsu ns ↘w , Rsu ns ↘w′
®Nat⇒∈Top (ne c∈ rel) ns
with c∈ ns
... | u , ↘u , ↘u′ = ne u , RN ns ↘u′ , RN ns ↘u′
®Nat⇒≈ : (t∼a : Γ ⊢ t ∶N® a ∈Nat) → Δ ⊢w σ ∶ Γ → Δ ⊢ t [ σ ] ≈ Nf⇒Exp (proj₁ (®Nat⇒∈Top t∼a (len Δ))) ∶[ 0 ] N
®Nat⇒≈ (ze t≈) ⊢σ = ≈-trans ([]-cong-N′ t≈ (⊢w⇒⊢s ⊢σ)) (ze-[] (⊢w⇒⊢s ⊢σ))
®Nat⇒≈ (su t≈ t′∼a) ⊢σ
with presup-s (⊢w⇒⊢s ⊢σ)
... | _ , ⊢Γ = ≈-trans ([]-cong-N′ t≈ (⊢w⇒⊢s ⊢σ)) (≈-trans (su-[] (⊢w⇒⊢s ⊢σ) (®Nat⇒∶Nat t′∼a ⊢Γ)) (su-cong (®Nat⇒≈ t′∼a ⊢σ)))
®Nat⇒≈ (ne c∈ rel) ⊢σ = rel ⊢σ
®Nat-mon : Γ ⊢ t ∶N® a ∈Nat → Δ ⊢w σ ∶ Γ → Δ ⊢ t [ σ ] ∶N® a ∈Nat
®Nat-mon (ze t≈) ⊢σ = ze (≈-trans ([]-cong-N′ t≈ (⊢w⇒⊢s ⊢σ)) (ze-[] (⊢w⇒⊢s ⊢σ)))
®Nat-mon (su t≈ t∼a) ⊢σ = su (≈-trans ([]-cong-N′ t≈ ⊢σ′) (su-[] ⊢σ′ (®Nat⇒∶Nat t∼a (proj₂ (presup-s ⊢σ′))))) (®Nat-mon t∼a ⊢σ)
where ⊢σ′ = ⊢w⇒⊢s ⊢σ
®Nat-mon {_} {t} {_} {Δ} {σ} t∼a@(ne {c} c∈ rel) ⊢σ = ne c∈ helper
where
helper : Δ′ ⊢w τ ∶ Δ → Δ′ ⊢ sub (sub t σ) τ ≈ Ne⇒Exp (proj₁ (c∈ (L.length Δ′))) ∶[ 0 ] N
helper {Δ′} {τ} ⊢τ
with c∈ (len Δ′) | c∈ (len Δ′) | rel (⊢w-∘ ⊢σ ⊢τ)
... | u , ↘u , _ | u′ , ↘u′ , _ | tστ≈
rewrite Re-det ↘u ↘u′ = ≈-trans ([∘]-N (®Nat⇒∶Nat t∼a (proj₂ (presup-s (⊢w⇒⊢s ⊢σ)))) (⊢w⇒⊢s ⊢σ) (⊢w⇒⊢s ⊢τ)) tστ≈
®⇒ty : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ T ®[ i ] A≈B →
Γ ⊢ T ∶[ 1 + i ] Se i
®⇒ty (ne C≈C′ j≡1+i j′≡1+i) (⊢T , _) = ⊢T
®⇒ty (N i≡0) T® = proj₁ (proj₂ (presup-≈ T®))
®⇒ty (U i≡1+j j≡j′) T® = proj₁ (proj₂ (presup-≈ T®))
®⇒ty (Π i≡maxjk jA RT j≡j′ k≡k′) T® = proj₁ (proj₂ (presup-≈ T≈))
where open GluΠ T®
®⇒ty (L i≡j+k kA j≡j′ k≡k′) T® = proj₁ (proj₂ (presup-≈ T≈))
where open GluL T®
®-resp-≈ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ T ®[ i ] A≈B →
Γ ⊢ T ≈ T′ ∶[ 1 + i ] Se i →
Γ ⊢ T′ ®[ i ] A≈B
®-resp-≈ (ne C≈C′ j≡1+i j′≡1+i) (⊢T , rel) T≈T′ = (proj₁ (proj₂ (proj₂ (presup-≈ T≈T′)))) , λ ⊢σ → ≈-trans ([]-cong-Se′ (≈-sym T≈T′) (⊢w⇒⊢s ⊢σ)) (rel ⊢σ)
®-resp-≈ (N i≡0) T® T≈T′ = ≈-trans (≈-sym T≈T′) T®
®-resp-≈ (U i≡1+j j≡j′) T® T≈T′ = ≈-trans (≈-sym T≈T′) T®
®-resp-≈ (Π i≡maxjk jA RT j≡j′ k≡k′) T® T≈T′ = record
{ IT = IT
; OT = OT
; ⊢IT = ⊢IT
; ⊢OT = ⊢OT
; T≈ = ≈-trans (≈-sym T≈T′) T≈
; krip = krip
}
where open GluΠ T®
®-resp-≈ (L i≡j+k kA j≡j′ k≡k′) T® T≈T′ = record
{ UT = UT
; ⊢UT = ⊢UT
; T≈ = ≈-trans (≈-sym T≈T′) T≈
; krip = krip
}
where open GluL T®
®El-resp-T≈ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Γ ⊢ T ≈ T′ ∶[ 1 + i ] Se i →
Γ ⊢ t ∶ T′ ®[ i ] a ∈El A≈B
®El-resp-T≈ (ne C≈C′ j≡1+i j′≡1+i) (ne c≈c' j≡i j≡′i , glu) T≈T′ =
(ne c≈c' j≡i j≡′i) , record
{ t∶T = conv t∶T T≈T′
; ⊢T = proj₁ (proj₂ (proj₂ (presup-≈ T≈T′)))
; krip = λ ⊢σ → let Tσ≈ , tσ≈ = krip ⊢σ
TT′σ = []-cong-Se′ T≈T′ (⊢w⇒⊢s ⊢σ)
in ≈-trans (≈-sym TT′σ) Tσ≈ , ≈-conv tσ≈ TT′σ
}
where open GluNe glu
®El-resp-T≈ N′ (t∶N® , T≈N) T≈T′ = t∶N® , ≈-trans (≈-sym T≈T′) T≈N
®El-resp-T≈ (U i≡1+j j≡j′) t® T≈T′ = record
{ t∶T = conv t∶T T≈T′
; T≈ = ≈-trans (≈-sym T≈T′) T≈
; A∈𝕌 = A∈𝕌
; rel = rel
}
where open GluU t®
®El-resp-T≈ (Π i≡maxjk jA RT j≡j′ k≡k′) t® T≈T′ = record
{ t∶T = conv t∶T T≈T′
; a∈El = a∈El
; IT = IT
; OT = OT
; ⊢IT = ⊢IT
; ⊢OT = ⊢OT
; T≈ = ≈-trans (≈-sym T≈T′) T≈
; krip = krip
}
where open GluΛ t®
®El-resp-T≈ (L i≡j+k kA j≡j′ k≡k′) t® T≈T′ = record
{ t∶T = conv t∶T T≈T′
; UT = UT
; ⊢UT = ⊢UT
; a∈El = a∈El
; T≈ = ≈-trans (≈-sym T≈T′) T≈
; krip = krip
}
where open Glul t®
®-resp-⊢≈ : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ T ®[ i ] A≈B →
⊢ Γ ≈ Δ →
Δ ⊢ T ®[ i ] A≈B
®-resp-⊢≈ (ne C≈C′ j≡1+i j′≡1+i) (⊢T , krip) Γ≈Δ = (ctxeq-tm Γ≈Δ ⊢T) , λ ⊢σ → krip (⊢w-resp-⊢≈ʳ ⊢σ (⊢≈-sym Γ≈Δ))
®-resp-⊢≈ (N i≡0) T® Γ≈Δ = ctxeq-≈ Γ≈Δ T®
®-resp-⊢≈ (U i≡1+j j≡j′) T® Γ≈Δ = ctxeq-≈ Γ≈Δ T®
®-resp-⊢≈ (Π eq jA RT j≡j′ k≡k′) T® Γ≈Δ = record
{ IT = IT
; OT = OT
; ⊢IT = ctxeq-tm Γ≈Δ ⊢IT
; ⊢OT = ctxeq-tm (∷-cong Γ≈Δ ⊢IT (ctxeq-tm Γ≈Δ ⊢IT) (≈-refl ⊢IT) (ctxeq-≈ Γ≈Δ (≈-refl ⊢IT))) ⊢OT
; T≈ = ctxeq-≈ Γ≈Δ T≈
; krip = λ ⊢σ → krip ((⊢w-resp-⊢≈ʳ ⊢σ (⊢≈-sym Γ≈Δ)))
}
where open GluΠ T®
®-resp-⊢≈ (L eq i≡j+k j≡j′ k≡k′) T® Γ≈Δ = record
{ UT = UT
; ⊢UT = ctxeq-tm Γ≈Δ ⊢UT
; T≈ = ctxeq-≈ Γ≈Δ T≈
; krip = λ ⊢σ → krip (⊢w-resp-⊢≈ʳ ⊢σ (⊢≈-sym Γ≈Δ))
}
where open GluL T®
®El⇒tm : ∀ {i} (A≈B : A ≈ B ∈ 𝕌 i) →
Γ ⊢ t ∶ T ®[ i ] a ∈El A≈B →
Γ ⊢ t ∶[ i ] T
®El⇒tm (ne′ _) (ne _ refl _ , glu) = GluNe.t∶T glu
®El⇒tm N′ (t®Nat , T≈N) = conv (®Nat⇒∶Nat t®Nat (proj₁ (presup-≈ T≈N))) (≈-sym T≈N)
®El⇒tm (U _ _) t® = GluU.t∶T t®
®El⇒tm (Π _ _ _ _ _) t® = GluΛ.t∶T t®
®El⇒tm (L _ _ _ _) t® = Glul.t∶T t®