------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional (intensional) equality ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.PropositionalEquality where open import Axiom.UniquenessOfIdentityProofs open import Function.Base using (id; _∘_) import Function.Dependent.Bundles as Dependent open import Function.Indexed.Relation.Binary.Equality using (≡-setoid) open import Level using (Level; _⊔_) open import Relation.Nullary using (Irrelevant) open import Relation.Nullary.Decidable using (yes; no; dec-yes-irr; dec-no) open import Relation.Binary.Bundles using (Setoid) open import Relation.Binary.Definitions using (DecidableEquality) open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid) import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial as Trivial private variable a b c ℓ p : Level A B C : Set a ------------------------------------------------------------------------ -- Re-export contents modules that make up the parts open import Relation.Binary.PropositionalEquality.Core public open import Relation.Binary.PropositionalEquality.Properties public open import Relation.Binary.PropositionalEquality.Algebra public ------------------------------------------------------------------------ -- Pointwise equality infix 4 _≗_ _→-setoid_ : ∀ (A : Set a) (B : Set b) → Setoid _ _ A →-setoid B = ≡-setoid A (Trivial.indexedSetoid (setoid B)) _≗_ : (f g : A → B) → Set _ _≗_ {A = A} {B = B} = Setoid._≈_ (A →-setoid B) :→-to-Π : ∀ {A : Set a} {B : IndexedSetoid A b ℓ} → ((x : A) → IndexedSetoid.Carrier B x) → Dependent.Func (setoid A) B :→-to-Π {B = B} f = record { to = f ; cong = λ { refl → IndexedSetoid.refl B } } →-to-⟶ : ∀ {A : Set a} {B : Setoid b ℓ} → (A → Setoid.Carrier B) → Dependent.Func (setoid A) (Trivial.indexedSetoid B) →-to-⟶ = :→-to-Π ------------------------------------------------------------------------ -- More complex rearrangement lemmas -- A lemma that is very similar to Lemma 2.4.3 from the HoTT book. naturality : ∀ {x y} {x≡y : x ≡ y} {f g : A → B} (f≡g : ∀ x → f x ≡ g x) → trans (cong f x≡y) (f≡g y) ≡ trans (f≡g x) (cong g x≡y) naturality {x = x} {x≡y = refl} f≡g = f≡g x ≡⟨ sym (trans-reflʳ _) ⟩ trans (f≡g x) refl ∎ where open ≡-Reasoning -- A lemma that is very similar to Corollary 2.4.4 from the HoTT book. cong-≡id : ∀ {f : A → A} {x : A} (f≡id : ∀ x → f x ≡ x) → cong f (f≡id x) ≡ f≡id (f x) cong-≡id {f = f} {x} f≡id = begin cong f fx≡x ≡⟨ sym (trans-reflʳ _) ⟩ trans (cong f fx≡x) refl ≡⟨ cong (trans _) (sym (trans-symʳ fx≡x)) ⟩ trans (cong f fx≡x) (trans fx≡x (sym fx≡x)) ≡⟨ sym (trans-assoc (cong f fx≡x)) ⟩ trans (trans (cong f fx≡x) fx≡x) (sym fx≡x) ≡⟨ cong (λ p → trans p (sym _)) (naturality f≡id) ⟩ trans (trans f²x≡x (cong id fx≡x)) (sym fx≡x) ≡⟨ cong (λ p → trans (trans f²x≡x p) (sym fx≡x)) (cong-id _) ⟩ trans (trans f²x≡x fx≡x) (sym fx≡x) ≡⟨ trans-assoc f²x≡x ⟩ trans f²x≡x (trans fx≡x (sym fx≡x)) ≡⟨ cong (trans _) (trans-symʳ fx≡x) ⟩ trans f²x≡x refl ≡⟨ trans-reflʳ _ ⟩ f≡id (f x) ∎ where open ≡-Reasoning; fx≡x = f≡id x; f²x≡x = f≡id (f x) module _ (_≟_ : DecidableEquality A) {x y : A} where ≡-≟-identity : (eq : x ≡ y) → x ≟ y ≡ yes eq ≡-≟-identity eq = dec-yes-irr (x ≟ y) (Decidable⇒UIP.≡-irrelevant _≟_) eq ≢-≟-identity : (x≢y : x ≢ y) → x ≟ y ≡ no x≢y ≢-≟-identity = dec-no (x ≟ y) ------------------------------------------------------------------------ -- Inspect -- Inspect can be used when you want to pattern match on the result r -- of some expression e, and you also need to "remember" that r ≡ e. -- See README.Inspect for an explanation of how/why to use this. -- Normally (but not always) the new `with ... in` syntax described at -- https://agda.readthedocs.io/en/v2.6.4/language/with-abstraction.html#with-abstraction-equality -- can be used instead." record Reveal_·_is_ {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) (y : B x) : Set (a ⊔ b) where constructor [_] field eq : f x ≡ y inspect : ∀ {A : Set a} {B : A → Set b} (f : (x : A) → B x) (x : A) → Reveal f · x is f x inspect f x = [ refl ] ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 2.0 isPropositional : Set a → Set a isPropositional = Irrelevant {-# WARNING_ON_USAGE isPropositional "Warning: isPropositional was deprecated in v2.0. Please use Relation.Nullary.Irrelevant instead. " #-}