{-# OPTIONS --without-K --safe #-} module Unbox.Gluing where open import Lib hiding (lookup) open import Data.List.Properties as Lₚ open import Unbox.Statics open import Unbox.Semantics open import Unbox.Restricted mt : Substs → UMoT mt I = vone mt p = vone mt (σ , _) = mt σ mt (σ ; n) = ins (mt σ) n mt (σ ∘ δ) = mt σ ø mt δ Glue : Set₁ Glue = Exp → D → Set IGlue : Set₁ IGlue = Ctxs → Glue record TopPred Ψ σ t a T : Set where field nf : Nf ↘nf : Rf map len Ψ - ↓ T (a [ mt σ ]) ↘ nf ≈nf : Ψ ⊢ t [ σ ] ≈ Nf⇒Exp nf ∶ T record Top T Ψ t a : Set where field t∶T : Ψ ⊢ t ∶ T krip : Ψ′ ⊢r σ ∶ Ψ → TopPred Ψ′ σ t a T record BotPred Ψ σ t c T : Set where field neu : Ne ↘ne : Re map len Ψ - c [ mt σ ] ↘ neu ≈ne : Ψ ⊢ t [ σ ] ≈ Ne⇒Exp neu ∶ T record Bot T Ψ t c : Set where field t∶T : Ψ ⊢ t ∶ T krip : Ψ′ ⊢r σ ∶ Ψ → BotPred Ψ′ σ t c T data BotT T : IGlue where bne : Bot T Ψ t c → BotT T Ψ t (↑ T c) record unbox-rel (P : IGlue) Γs Ψ σ t a : Set where field ua : D ↘ua : unbox∙ len Γs , a [ mt σ ] ↘ ua rel : unbox (len Γs) (t [ σ ]) ∼ ua ∈ P (Γs ++⁺ Ψ) record ■ (P : IGlue) T Ψ t a : Set where field t∶□ : Ψ ⊢ t ∶ □ T krip : ∀ Γs → Ψ′ ⊢r σ ∶ Ψ → unbox-rel P Γs Ψ′ σ t a record ap-rel (P : IGlue) Ψ σ t s f a : Set where field fa : D ↘fa : f [ mt σ ] ∙ a ↘ fa rel : (t [ σ ]) $ s ∼ fa ∈ P Ψ record Fun (P Q : IGlue) S T Ψ t f : Set where field t∶⟶ : Ψ ⊢ t ∶ S ⟶ T krip : Ψ′ ⊢r σ ∶ Ψ → s ∼ a ∈ P Ψ′ → ap-rel Q Ψ′ σ t s f a 《_》T : Typ → IGlue 《 B 》T = BotT B 《 S ⟶ T 》T = Fun 《 S 》T 《 T 》T S T 《 □ T 》T = ■ 《 T 》T T glu⇒⊢ : ∀ T → t ∼ a ∈ 《 T 》T Ψ → Ψ ⊢ t ∶ T glu⇒⊢ B (bne t~a) = Bot.t∶T t~a glu⇒⊢ (S ⟶ T) t~a = Fun.t∶⟶ t~a glu⇒⊢ (□ T) t~a = ■.t∶□ t~a record Single Γ Ψ σ ρ : Set where field σ-wf : Ψ ⊢s σ ∶ Γ ∷ [] vlkup : ∀ {x} → x ∶ T ∈ Γ → v x [ σ ] ∼ lookup ρ x ∈ 《 T 》T Ψ record Cons Γ Γs (R : Ctxs → Substs → Envs → Set) Ψ σ ρ : Set where field σ-wf : Ψ ⊢s σ ∶ Γ ∷ Γs vlkup : ∀ {x} → x ∶ T ∈ Γ → v x [ σ ] ∼ lookup ρ x ∈ 《 T 》T Ψ Leq : O σ 1 ≡ proj₁ (ρ 0) hds : List Ctx Ψ|ρ0 : Ctxs Ψ≡ : Ψ ≡ hds ++⁺ Ψ|ρ0 len≡ : len hds ≡ proj₁ (ρ 0) rel : Tr σ 1 ∼ Tr ρ 1 ∈ R Ψ|ρ0 《_》Γs : List Ctx → Ctxs → Substs → Envs → Set 《 [] 》Γs Ψ σ ρ = ⊤ 《 Γ ∷ [] 》Γs = Single Γ 《 Γ ∷ Γs 》Γs = Cons Γ Γs 《 Γs 》Γs 《_》Ψ : Ctxs → Ctxs → Substs → Envs → Set 《 Γ ∷ Γs 》Ψ = 《 Γ ∷ Γs 》Γs glu⇒⊢s : σ ∼ ρ ∈ 《 Γ ∷ Γs 》Ψ Ψ → Ψ ⊢s σ ∶ Γ ∷ Γs glu⇒⊢s {Γs = []} σ∼ρ = σ-wf where open Single σ∼ρ glu⇒⊢s {Γs = _ ∷ Γs} σ∼ρ = σ-wf where open Cons σ∼ρ glu⇒vlookup : σ ∼ ρ ∈ 《 Γ ∷ Γs 》Ψ Ψ → ∀ {x} → x ∶ T ∈ Γ → v x [ σ ] ∼ lookup ρ x ∈ 《 T 》T Ψ glu⇒vlookup {Γs = []} σ∼ρ = vlkup where open Single σ∼ρ glu⇒vlookup {Γs = x ∷ Γs} σ∼ρ = vlkup where open Cons σ∼ρ infix 4 _⊩_∶_ _⊩s_∶_ record Intp Ψ (σ : Substs) ρ t T : Set where field ⟦t⟧ : D ↘⟦t⟧ : ⟦ t ⟧ ρ ↘ ⟦t⟧ tσ∼ : t [ σ ] ∼ ⟦t⟧ ∈ 《 T 》T Ψ _⊩_∶_ : Ctxs → Exp → Typ → Set Ψ ⊩ t ∶ T = ∀ {Ψ′} σ ρ → σ ∼ ρ ∈ 《 Ψ 》Ψ Ψ′ → Intp Ψ′ σ ρ t T record Intps Ψ σ′ ρ σ Ψ′ : Set where field ⟦σ⟧ : Envs ↘⟦σ⟧ : ⟦ σ ⟧s ρ ↘ ⟦σ⟧ comp : σ ∘ σ′ ∼ ⟦σ⟧ ∈ 《 Ψ′ 》Ψ Ψ _⊩s_∶_ : Ctxs → Substs → Ctxs → Set Ψ ⊩s δ ∶ Ψ′ = ∀ {Ψ″} σ ρ → σ ∼ ρ ∈ 《 Ψ 》Ψ Ψ″ → Intps Ψ″ σ ρ δ Ψ′